-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatamodules.py
143 lines (124 loc) · 4.86 KB
/
datamodules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from torch.utils.data import Dataset, DataLoader
import os
import glob
from skimage import io
from PIL import Image
import numpy as np
import pytorch_lightning as pl
import torch
from constants import classes
class CAMELYON16_PATCHES(Dataset):
def __init__(self, dir_src_normal, dir_src_tumor,
num_samples, transform=None
):
self.dir_src_normal = dir_src_normal
self.num_samples = num_samples
self.transform=transform
path_normal = [os.path.join(dir_src_normal,'{}.png'.format(i)) for i in range(self.num_samples)]
paths_tumor = [os.path.join(dir_src_tumor,'{}.png'.format(i)) for i in range(self.num_samples)]
self.filepaths = path_normal+paths_tumor
def __len__(self):
return len(self.filepaths)
def __getitem__(self, idx):
img = Image.open(self.filepaths[idx])
if self.transform is not None:
img = self.transform(img)
return img
class Kather_19_patches(CAMELYON16_PATCHES):
def __init__(self, dir_img, path_list,
transform=None,
return_label = None,
):
self.dir_img = dir_img
with open(path_list, 'r') as f:
self.filepaths, self.labels = zip(*[(os.path.join(self.dir_img,line.strip()), line.strip().split(os.sep)[0]) for line in f.readlines()])
self.transform=transform
self.return_label = return_label
self.mapper = {}
for i,cls in enumerate(classes):
self.mapper[cls] = np.zeros(len(classes))
self.mapper[cls][i] = 1.0
def __getitem__(self, idx):
img = Image.open(self.filepaths[idx])
if self.transform is not None:
img = self.transform(img)
if self.return_label == 'categorical':
return img, self.labels[idx]
if self.return_label == 'one_hot':
return img, torch.tensor(self.mapper[self.labels[idx]]).float()
if self.return_label == 'numerical':
return img, torch.tensor(np.argmax(self.mapper[self.labels[idx]]))
return img
class Kather_19_ssl_multiscale(Kather_19_patches):
def __getitem__(self, idx):
img = Image.open(self.filepaths[idx])
img_multiscale = self.transform['ms'](img)
scales = len(img_multiscale)
img1 = torch.zeros(scales,3,224,224).float()
img2 = torch.zeros(scales,3,224,224).float()
for i,img in enumerate(img_multiscale):
img1[i] = self.transform['per_image'](img)
img2[i] = self.transform['per_image'](img)
if self.return_label == 'categorical':
return img1, self.labels[idx]
if self.return_label == 'one_hot':
return img1, torch.tensor(self.mapper[self.labels[idx]]).float()
if self.return_label == 'numerical':
return img1, torch.tensor(np.argmax(self.mapper[self.labels[idx]]))
if self.return_label is None:
return img1, img2
class Kather_19_ssl(Kather_19_patches):
def __getitem__(self, idx):
img = Image.open(self.filepaths[idx])
img1 = self.transform(img)
img2 = self.transform(img)
return img1,img2
class CAMELYONDataModule(pl.LightningDataModule):
def __init__(self, dataset_train, dataset_val, batch_size: int = 32,
num_workers: int = 16,
transform_train = None,
transform_valid = None,
name = None
):
super().__init__()
self.dataset_train = dataset_train
self.dataset_val = dataset_val
self.batch_size = batch_size
self.num_workers = num_workers
self.transform_train = transform_train
self.transform_valid = transform_valid
self.name = name
def train_dataloader(self):
return DataLoader(
self.dataset_train,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=True,
drop_last = True
)
def val_dataloader(self):
return DataLoader(
self.dataset_val,
batch_size=self.batch_size,
num_workers=self.num_workers,
pin_memory=True
)
class KatherDataset(torch.utils.data.Dataset):
def __init__(self, paths, y, transforms):
super().__init__()
self.paths = paths
self.y = y
self.transforms = transforms
def __len__(self):
return(len(self.paths))
def __getitem__(self,idx):
img = Image.open(self.paths[idx])
if self.transforms is not None:
img = self.transforms(img)
flname = os.path.basename(self.paths[idx])
return(img, self.y[idx], flname)
if __name__ == '__main__':
dataset = Kather_19_patches(
'/tank/mirror/kather-19/NCT-CRC-HE-100K',
'/tank/mirror/kather-19/path_list_train.txt')
print(dataset[0].size)