forked from JavierAntoran/Bayesian-Neural-Networks
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_SGHMC_MNIST.py
221 lines (178 loc) · 7.75 KB
/
train_SGHMC_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from __future__ import division, print_function
import time
import torch.utils.data
from torchvision import transforms, datasets
import argparse
import matplotlib
from src.Stochastic_Gradient_HMC_SA.model import BNN_cat
from src.utils import *
matplotlib.use('Agg')
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser(description='Train Bayesian Neural Net on MNIST with Scale-adapted Stochastic Gradient HMC')
parser.add_argument('--epochs', type=int, nargs='?', action='store', default=250,
help='How many epochs to train. Default: 250.')
parser.add_argument('--sample_freq', type=int, nargs='?', action='store', default=2,
help='How many epochs pass between saving samples. Default: 2.')
parser.add_argument('--burn_in', type=int, nargs='?', action='store', default=20,
help='How many epochs to burn in for?. Default: 20.')
parser.add_argument('--lr', type=float, nargs='?', action='store', default=1e-2,
help='learning rate. I recommend 1e-2. Default: 1e-2.')
parser.add_argument('--models_dir', type=str, nargs='?', action='store', default='SGHMC_models',
help='Where to save learnt weights and train vectors. Default: \'SGHMC_models\'.')
parser.add_argument('--results_dir', type=str, nargs='?', action='store', default='SGHMC_results',
help='Where to save learnt training plots. Default: \'SGHMC_results\'.')
args = parser.parse_args()
# Where to save models weights
models_dir = args.models_dir
# Where to save plots and error, accuracy vectors
results_dir = args.results_dir
mkdir(models_dir)
mkdir(results_dir)
# ------------------------------------------------------------------------------------------------------
# train config
NTrainPointsMNIST = 60000
batch_size = 256
nb_epochs = args.epochs
log_interval = 1
nb_its_dev = log_interval
flat_ims=True
# ------------------------------------------------------------------------------------------------------
# dataset
cprint('c', '\nData:')
# load data
# data augmentation
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.1307,), std=(0.3081,))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.1307,), std=(0.3081,))
])
use_cuda = torch.cuda.is_available()
trainset = datasets.MNIST(root='../data', train=True, download=True, transform=transform_train)
valset = datasets.MNIST(root='../data', train=False, download=True, transform=transform_test)
if use_cuda:
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, pin_memory=True,
num_workers=3)
valloader = torch.utils.data.DataLoader(valset, batch_size=batch_size, shuffle=False, pin_memory=True,
num_workers=3)
else:
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, pin_memory=False,
num_workers=3)
valloader = torch.utils.data.DataLoader(valset, batch_size=batch_size, shuffle=False, pin_memory=False,
num_workers=3)
## ---------------------------------------------------------------------------------------------------------------------
# net dims
cprint('c', '\nNetwork:')
lr = args.lr
########################################################################################
net = BNN_cat(NTrainPointsMNIST, lr=lr, cuda=use_cuda, grad_std_mul=20)
## weight saving parameters #######
burn_in = args.burn_in
sim_steps = args.sample_freq
N_saves=100
resample_its = 50
resample_prior_its = 15
re_burn = 1e8
###################################
## ---------------------------------------------------------------------------------------------------------------------
# net dims
epoch = 0
it_count = 0
## ---------------------------------------------------------------------------------------------------------------------
# train
cprint('c', '\nTrain:')
print(' init cost variables:')
cost_train = np.zeros(nb_epochs)
err_train = np.zeros(nb_epochs)
cost_dev = np.zeros(nb_epochs)
err_dev = np.zeros(nb_epochs)
best_cost = np.inf
best_err = np.inf
tic0 = time.time()
for i in range(epoch, nb_epochs):
net.set_mode_train(True)
tic = time.time()
nb_samples = 0
for x, y in trainloader:
if flat_ims:
x = x.view(x.shape[0], -1)
cost_pred, err = net.fit(x, y, burn_in=(i % re_burn < burn_in),
resample_momentum=(it_count % resample_its == 0),
resample_prior=(it_count % resample_prior_its == 0))
it_count += 1
err_train[i] += err
cost_train[i] += cost_pred
nb_samples += len(x)
cost_train[i] /= nb_samples
err_train[i] /= nb_samples
toc = time.time()
# ---- print
print("it %d/%d, Jtr_pred = %f, err = %f, " % (i, nb_epochs, cost_train[i], err_train[i]), end="")
cprint('r', ' time: %f seconds\n' % (toc - tic))
net.update_lr(i)
# ---- save weights
if i % re_burn >= burn_in and i % sim_steps == 0:
net.save_sampled_net(max_samples=N_saves)
# ---- dev
if i % nb_its_dev == 0:
nb_samples = 0
for j, (x, y) in enumerate(valloader):
if flat_ims:
x = x.view(x.shape[0], -1)
cost, err, probs = net.eval(x, y)
cost_dev[i] += cost
err_dev[i] += err
nb_samples += len(x)
cost_dev[i] /= nb_samples
err_dev[i] /= nb_samples
cprint('g', ' Jdev = %f, err = %f\n' % (cost_dev[i], err_dev[i]))
if err_dev[i] < best_err:
best_err = err_dev[i]
cprint('b', 'best test error')
toc0 = time.time()
runtime_per_it = (toc0 - tic0) / float(nb_epochs)
cprint('r', ' average time: %f seconds\n' % runtime_per_it)
## SAVE WEIGHTS
net.save_weights(models_dir + '/state_dicts.pkl')
## ---------------------------------------------------------------------------------------------------------------------
# fig cost vs its
# fig cost vs its
textsize = 15
marker = 5
plt.figure(dpi=100)
fig, ax1 = plt.subplots()
ax1.plot(range(0, nb_epochs, nb_its_dev), np.clip(cost_dev[::nb_its_dev], a_min=-5, a_max=5), 'b-')
ax1.plot(np.clip(cost_train, a_min=-5, a_max=5), 'r--')
ax1.set_ylabel('Cross Entropy')
plt.xlabel('epoch')
plt.grid(b=True, which='major', color='k', linestyle='-')
plt.grid(b=True, which='minor', color='k', linestyle='--')
lgd = plt.legend(['test error', 'train error'], markerscale=marker, prop={'size': textsize, 'weight': 'normal'})
ax = plt.gca()
plt.title('classification costs')
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] +
ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(textsize)
item.set_weight('normal')
plt.savefig(results_dir + '/cost.png', bbox_extra_artists=(lgd,), bbox_inches='tight')
plt.figure(dpi=100)
fig2, ax2 = plt.subplots()
ax2.set_ylabel('% error')
ax2.semilogy(range(0, nb_epochs, nb_its_dev), err_dev[::nb_its_dev], 'b-')
ax2.semilogy(err_train, 'r--')
ax2.set_ylim(top=1, bottom=1e-3)
plt.xlabel('epoch')
plt.grid(b=True, which='major', color='k', linestyle='-')
plt.grid(b=True, which='minor', color='k', linestyle='--')
ax2.get_yaxis().set_minor_formatter(matplotlib.ticker.ScalarFormatter())
ax2.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
lgd = plt.legend(['test error', 'train error'], markerscale=marker, prop={'size': textsize, 'weight': 'normal'})
ax = plt.gca()
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] +
ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(textsize)
item.set_weight('normal')
plt.savefig(results_dir + '/err.png', bbox_extra_artists=(lgd,), box_inches='tight')
plt.show()