-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_whisper.py
816 lines (696 loc) · 33.8 KB
/
finetune_whisper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
"""Here is my code I want to fine tune the model on both translation and transcription simultaneously. edit the code as necessary I am using a dataset called razhan/DOLMA-speech it can be loaded as the following load_dataset("razhan/DOLMA-speech", "hawrami", split="train") it has the following columns id,file_name,sentence,english,gender,language,original_full_path,duration,speaker_id
No I want you to process each sample twice once for transcription once for translation in prepare dataset"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import numpy as np
import datasets
import evaluate
import torch
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForSpeechSeq2Seq,
AutoProcessor,
AutoTokenizer,
HfArgumentParser,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from klpt.preprocess import Preprocess
preprocessor_ckb = Preprocess("Sorani", "Arabic", numeral="Latin")
normalizer = BasicTextNormalizer()
def preprocess_func(text):
text = preprocessor_ckb.unify_numerals(text)
text = normalizer(text)
return text
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.49.0.dev0")
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
feature_extractor_name: Optional[str] = field(
default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether to trust the execution of code from datasets/models defined on the Hub."
" This option should only be set to `True` for repositories you trust and in which you have read the"
" code, as it will execute code present on the Hub on your local machine."
)
},
)
freeze_feature_encoder: bool = field(
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
)
freeze_encoder: bool = field(
default=False, metadata={"help": "Whether to freeze the entire encoder of the seq2seq model."}
)
forced_decoder_ids: List[List[int]] = field(
default=None,
metadata={"help": "Deprecated. Please use the `language` and `task` arguments instead."},
)
suppress_tokens: List[int] = field(
default=None,
metadata={
"help": (
"Deprecated. The use of `suppress_tokens` should not be required for the majority of fine-tuning examples."
"Should you need to use `suppress_tokens`, please manually update them in the fine-tuning script directly."
)
},
)
apply_spec_augment: bool = field(
default=False,
metadata={
"help": "Whether to apply *SpecAugment* data augmentation to the input features. This is currently only relevant for Wav2Vec2, HuBERT, WavLM and Whisper models."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: str = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
audio_column_name: str = field(
default="audio",
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
)
transcription_column_name: str = field(
default="sentence",
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
)
translation_column_name: str = field(
default="english",
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
)
max_duration_in_seconds: float = field(
default=20.0,
metadata={
"help": (
"Truncate audio files that are longer than `max_duration_in_seconds` seconds to"
" 'max_duration_in_seconds`"
)
},
)
min_duration_in_seconds: float = field(
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
)
preprocessing_only: bool = field(
default=False,
metadata={
"help": (
"Whether to only do data preprocessing and skip training. This is especially useful when data"
" preprocessing errors out in distributed training due to timeout. In this case, one should run the"
" preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
" can consequently be loaded in distributed training"
)
},
)
train_split_name: str = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
eval_split_name: str = field(
default="test",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
do_lower_case: bool = field(
default=True,
metadata={"help": "Whether the target text should be lower cased."},
)
language: str = field(
default=None,
metadata={
"help": (
"Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning "
"only. For English speech recognition, it should be set to `None`."
)
},
)
task: str = field(
default="transcribe",
metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."},
)
@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor ([`WhisperProcessor`])
The processor used for processing the data.
decoder_start_token_id (`int`)
The begin-of-sentence of the decoder.
forward_attention_mask (`bool`)
Whether to return attention_mask.
"""
processor: Any
decoder_start_token_id: int
forward_attention_mask: bool
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need
# different padding methods
input_features = [{"input_features": feature["input_features"]} for feature in features]
label_features = [{"input_ids": feature["labels"]} for feature in features]
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
if self.forward_attention_mask:
batch["attention_mask"] = torch.LongTensor([feature["attention_mask"] for feature in features])
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
# if bos token is appended in previous tokenization step,
# cut bos token here as it's append later anyways
if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():
labels = labels[:, 1:]
batch["labels"] = labels
return batch
def main():
# 1. Parse input arguments
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# 2. Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# 3. Detecting last checkpoint and eventually continue from last checkpoint
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# 4. Load dataset
raw_datasets = DatasetDict()
# List of languages and their corresponding codes
languages = {
"hawrami": "fa",
"gilaki": "de",
"zazaki": "es",
"mazanderani": "it",
"laki_kurdish": "fr",
"southern_kurdish": "nl",
"talysh": "pt",
}
# Load and combine datasets for all languages
train_datasets = []
eval_datasets = []
for lang_name, lang_code in languages.items():
# Load train split
train_dataset = load_dataset("razhan/DOLMA-speech", lang_name, split="train")
# Remove id column and add it back with consistent type
columns_to_remove = ["id"]
train_dataset = train_dataset.remove_columns(columns_to_remove)
# Add row indices as new id column
train_dataset = train_dataset.add_column("id", list(range(len(train_dataset))))
# Update language code
train_dataset = train_dataset.map(lambda x: {"language": lang_code})
# Apply max_train_samples if specified
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(min(len(train_dataset), data_args.max_train_samples)))
train_datasets.append(train_dataset)
if training_args.do_eval:
# Load test split
eval_dataset = load_dataset("razhan/DOLMA-speech", lang_name, split="test")
# Remove id column and add it back with consistent type
eval_dataset = eval_dataset.remove_columns(columns_to_remove)
# Add row indices as new id column
eval_dataset = eval_dataset.add_column("id", list(range(len(eval_dataset))))
# Update language code
eval_dataset = eval_dataset.map(lambda x: {"language": lang_code})
# Apply max_eval_samples if specified
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(min(len(eval_dataset), data_args.max_eval_samples)))
eval_datasets.append(eval_dataset)
# Combine all language datasets
raw_datasets["train"] = datasets.concatenate_datasets(train_datasets)
if training_args.do_eval:
raw_datasets["eval"] = datasets.concatenate_datasets(eval_datasets)
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
# SpecAugment for whisper models
if getattr(config, "model_type", None) == "whisper":
config.update({"apply_spec_augment": model_args.apply_spec_augment})
feature_extractor = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if model_args.freeze_encoder:
model.freeze_encoder()
model.model.encoder.gradient_checkpointing = False
if hasattr(model.generation_config, "is_multilingual") and model.generation_config.is_multilingual:
# We only need to set the language and task ids in a multilingual setting
tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task)
model.generation_config.language = data_args.language
model.generation_config.task = data_args.task
elif data_args.language is not None:
raise ValueError(
"Setting language token for an English-only checkpoint is not permitted. The language argument should "
"only be set for multilingual checkpoints."
)
# TODO (Sanchit): deprecate these arguments in v4.41
if model_args.forced_decoder_ids is not None:
logger.warning(
"The use of `forced_decoder_ids` is deprecated and will be removed in v4.41."
"Please use the `language` and `task` arguments instead"
)
model.generation_config.forced_decoder_ids = model_args.forced_decoder_ids
else:
model.generation_config.forced_decoder_ids = None
model.config.forced_decoder_ids = None
if model_args.suppress_tokens is not None:
logger.warning(
"The use of `suppress_tokens` is deprecated and will be removed in v4.41."
"Should you need `suppress_tokens`, please manually set them in the fine-tuning script."
)
model.generation_config.suppress_tokens = model_args.suppress_tokens
# 6. Resample speech dataset if necessary
raw_datasets = raw_datasets.cast_column(
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
)
# 7. Preprocessing the datasets.
# We need to read the audio files as arrays and tokenize the targets.
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
audio_column_name = data_args.audio_column_name
num_workers = data_args.preprocessing_num_workers
transcription_column_name = data_args.transcription_column_name
model_input_name = feature_extractor.model_input_names[0]
do_lower_case = data_args.do_lower_case
# if SpecAugment is used for whisper models, return attention_mask to guide the mask along time axis
forward_attention_mask = (
getattr(config, "model_type", None) == "whisper"
and getattr(config, "apply_spec_augment", False)
and getattr(config, "mask_time_prob", 0) > 0
)
def prepare_dataset_translation(batch):
"""Process dataset for both transcription and translation"""
# process audio
sample = batch[audio_column_name]
inputs = feature_extractor(
sample["array"], sampling_rate=sample["sampling_rate"], return_attention_mask=forward_attention_mask
)
# process audio length
batch["input_features"] = inputs.get("input_features")[0]
batch["input_length"] = len(sample["array"])
if forward_attention_mask:
batch["attention_mask"] = inputs.get("attention_mask")[0]
# process targets for translation with language-specific prefix
tokenizer.set_prefix_tokens(language=batch["language"], task="translate")
input_str_translate = batch["english"].lower()
batch["labels_translate"] = tokenizer(input_str_translate).input_ids
# process targets for transcription with language-specific prefix
tokenizer.set_prefix_tokens(language=batch["language"], task="transcribe")
input_str_transcribe = preprocess_func(batch[transcription_column_name])
batch["labels_transcribe"] = tokenizer(input_str_transcribe).input_ids
return batch
# def prepare_dataset(batch):
# # process audio
# sample = batch[audio_column_name]
# inputs = feature_extractor(
# sample["array"], sampling_rate=sample["sampling_rate"], return_attention_mask=forward_attention_mask
# )
# # process audio length
# batch[model_input_name] = inputs.get(model_input_name)[0]
# batch["input_length"] = len(sample["array"])
# if forward_attention_mask:
# batch["attention_mask"] = inputs.get("attention_mask")[0]
# # process targets
# input_str = preprocess_func(batch[transcription_column_name])
# tokenizer.set_prefix_tokens(language=batch["language"], task="transcribe")
# batch["labels"] = tokenizer(input_str).input_ids
# return batch
def flatten_dataset(batch):
"""Flatten the dataset to combine transcription and translation samples efficiently"""
batch_size = len(batch["input_features"])
# Create lists for both transcription and translation samples
combined_features = []
combined_masks = []
combined_labels = []
combined_tasks = []
combined_lengths = []
# Pre-allocate lists with total size
combined_features = [None] * (batch_size * 2)
combined_masks = [None] * (batch_size * 2) if "attention_mask" in batch else None
combined_labels = [None] * (batch_size * 2)
combined_tasks = ["transcribe"] * batch_size + ["translate"] * batch_size
combined_lengths = [None] * (batch_size * 2)
# Fill lists efficiently
for i in range(batch_size):
# Transcription sample
combined_features[i] = batch["input_features"][i]
combined_labels[i] = batch["labels_transcribe"][i]
combined_lengths[i] = batch["input_length"][i]
# Translation sample
combined_features[i + batch_size] = batch["input_features"][i]
combined_labels[i + batch_size] = batch["labels_translate"][i]
combined_lengths[i + batch_size] = batch["input_length"][i]
# Handle attention masks if present
if combined_masks is not None:
mask = batch["attention_mask"][i]
combined_masks[i] = mask
combined_masks[i + batch_size] = mask
result = {
"input_features": combined_features,
"labels": combined_labels,
"task": combined_tasks,
"input_length": combined_lengths
}
if combined_masks is not None:
result["attention_mask"] = combined_masks
return result
with training_args.main_process_first(desc="dataset map pre-processing"):
# Map and process the dataset
vectorized_datasets = raw_datasets.map(
prepare_dataset_translation,
remove_columns=next(iter(raw_datasets.values())).column_names,
num_proc=data_args.preprocessing_num_workers,
desc="preprocess dataset",
)
# Flatten the dataset to combine transcription and translation samples
flattened_datasets = DatasetDict()
for split, dataset in vectorized_datasets.items():
flattened_datasets[split] = dataset.map(
flatten_dataset,
batched=True,
remove_columns=dataset.column_names,
desc=f"flatten {split} dataset"
)
# filter data that is shorter than min_input_length or longer than
# max_input_length
def is_audio_in_length_range(length):
return length > min_input_length and length < max_input_length
# Apply filter to flattened_datasets
filtered_datasets = DatasetDict()
for split, dataset in flattened_datasets.items():
filtered_datasets[split] = dataset.filter(
is_audio_in_length_range,
num_proc=num_workers,
input_columns=["input_length"],
)
# Update vectorized_datasets to use the filtered version
vectorized_datasets = filtered_datasets
# for large datasets it is advised to run the preprocessing on a
# single machine first with `args.preprocessing_only` since there will mostly likely
# be a timeout when running the script in distributed mode.
# In a second step `args.preprocessing_only` can then be set to `False` to load the
# cached dataset
if data_args.preprocessing_only:
cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
logger.info(f"Data preprocessing finished. Files cached at {cache}.")
return
# 8. Load Metric
wer_metric = evaluate.load("wer", cache_dir=model_args.cache_dir)
cer_metric = evaluate.load("cer", cache_dir=model_args.cache_dir)
bleu_metric = evaluate.load("sacrebleu", cache_dir=model_args.cache_dir)
chrf_metric = evaluate.load("chrf", cache_dir=model_args.cache_dir)
# These needs to be modified if we finetune for large v3 and turbo
language_ids = {
"fa": 50300,
"de": 50261,
"es": 50262,
"it": 50274,
"fr": 50265,
"nl": 50271,
"pt": 50267,
}
task_to_id = {
"transcribe": 50359,
"translate": 50358
}
def compute_metrics(pred):
pred_ids = pred.predictions
# Replace padding tokens with pad_token_id
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
# Get language IDs and task IDs from the first and second tokens of each sequence
sequence_lang_ids = pred.label_ids[:, 0] # First token of each sequence
sequence_task_ids = pred.label_ids[:, 1] # Second token of each sequence (task)
# Create reverse mappings for language codes and tasks
lang_id_to_code = {token_id: code for code, token_id in language_ids.items()}
code_to_name = {code: name for name, code in languages.items()}
task_id_to_name = {v: k for k, v in task_to_id.items()}
# Decode predictions and labels
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
pred_str = [preprocess_func(s) for s in pred_str]
label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
label_str = [preprocess_func(s) for s in label_str]
# Calculate metrics per language and task
metrics = {}
for lang_token_id in set(sequence_lang_ids):
if lang_token_id in lang_id_to_code:
lang_code = lang_id_to_code[lang_token_id]
lang_name = code_to_name[lang_code]
for task_token_id in set(sequence_task_ids):
if task_token_id in task_id_to_name:
task_name = task_id_to_name[task_token_id]
# Create mask for this language and task combination
mask = (sequence_lang_ids == lang_token_id) & (sequence_task_ids == task_token_id)
# Get predictions and references for this language and task
task_preds = [pred_str[i] for i, m in enumerate(mask) if m]
task_refs = [label_str[i] for i, m in enumerate(mask) if m]
if task_preds: # Only compute if we have predictions
if task_name == "transcribe":
# For transcription, compute WER and CER
wer = wer_metric.compute(predictions=task_preds, references=task_refs)
cer = cer_metric.compute(predictions=task_preds, references=task_refs)
metrics[f"{lang_name}_wer"] = wer
metrics[f"{lang_name}_cer"] = cer
else: # task_name == "translate"
# For translation, compute BLEU and chrF scores
bleu = bleu_metric.compute(predictions=task_preds, references=[[r] for r in task_refs])
chrf = chrf_metric.compute(predictions=task_preds, references=task_refs)
metrics[f"{lang_name}_bleu"] = bleu["score"]
metrics[f"{lang_name}_chrf"] = chrf["score"]
# Calculate average metrics per task
transcribe_wer = [v for k, v in metrics.items() if "transcribe_wer" in k]
transcribe_cer = [v for k, v in metrics.items() if "transcribe_cer" in k]
translate_bleu = [v for k, v in metrics.items() if "translate_bleu" in k]
translate_chrf = [v for k, v in metrics.items() if "translate_chrf" in k]
if transcribe_wer:
metrics["avg_transcribe_wer"] = np.mean(transcribe_wer)
if transcribe_cer:
metrics["avg_transcribe_cer"] = np.mean(transcribe_cer)
if translate_bleu:
metrics["avg_translate_bleu"] = np.mean(translate_bleu)
if translate_chrf:
metrics["avg_translate_chrf"] = np.mean(translate_chrf)
return metrics
# 9. Create a single speech processor
# make sure all processes wait until data is saved
with training_args.main_process_first():
# only the main process saves them
if is_main_process(training_args.local_rank):
# save feature extractor, tokenizer and config
feature_extractor.save_pretrained(training_args.output_dir)
tokenizer.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
processor = AutoProcessor.from_pretrained(training_args.output_dir)
# 10. Define data collator
data_collator = DataCollatorSpeechSeq2SeqWithPadding(
processor=processor,
decoder_start_token_id=model.config.decoder_start_token_id,
forward_attention_mask=forward_attention_mask,
)
# 11. Initialize Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
processing_class=feature_extractor,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
)
# 12. Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the feature extractor too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples
if data_args.max_train_samples is not None
else len(vectorized_datasets["train"])
)
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# 13. Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(
metric_key_prefix="eval",
max_length=training_args.generation_max_length,
num_beams=training_args.generation_num_beams,
)
max_eval_samples = (
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
)
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# 14. Write Training Stats
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "automatic-speech-recognition"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset_args"] = data_args.dataset_config_name
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
kwargs["dataset"] = data_args.dataset_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
return results
if __name__ == "__main__":
main()