-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path03_2_best_models_comparison_fig2.py
159 lines (133 loc) · 3.85 KB
/
03_2_best_models_comparison_fig2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:percent
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.16.2
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# %%
import yaml
from pathlib import Path
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import pimmslearn.plotting
import pimmslearn.pandas
import pimmslearn.nb
import logging
from pimmslearn.logging import setup_logger
logger = setup_logger(logger=logging.getLogger('pimmslearn'), level=10)
# %%
# parameters
FOLDER = Path('runs/mnar_mcar/')
SIZE = 'l'
files_in = {
'protein groups': FOLDER / 'pg_l_25MNAR/figures/2_1_performance_test_sel.csv',
'peptides': FOLDER / 'pep_l_25MNAR/figures/2_1_performance_test.csv',
'precursors': FOLDER / 'evi_l_25MNAR/figures/2_1_performance_test.csv'
}
# %%
FOLDER = Path('runs/mnar_mcar/')
SIZE = 'm'
files_in = {
'protein groups': FOLDER / 'pg_m_25MNAR/figures/2_1_performance_test_sel.csv',
'peptides': FOLDER / 'pep_m_25MNAR/figures/2_1_performance_test_sel.csv',
'precursors': FOLDER / 'evi_m_25MNAR/figures/2_1_performance_test_sel.csv'
}
# %%
METRIC = 'MAE'
# %%
df = list()
for key, file_in in files_in.items():
_ = pd.read_csv(file_in)
_['data level'] = key
df.append(_)
df = pd.concat(df, axis=0)
df.columns = ['model', *df.columns[1:]]
df = df.set_index(list(df.columns[:2]))
df
# %% [markdown]
# color mapping globally defined for article figures
# %%
COLORS_TO_USE_MAPPTING = pimmslearn.plotting.defaults.color_model_mapping
print(COLORS_TO_USE_MAPPTING.keys())
sns.color_palette(palette=COLORS_TO_USE_MAPPTING.values())
# %%
data_levels_annotated = dict()
for key, fname in files_in.items():
fname = fname.parents[1] / 'data_config.yaml'
with open(fname) as f:
data_config = yaml.safe_load(f)
data_levels_annotated[key] = f"{key} \n (N={data_config['N']:,d}, M={data_config['M']:,d})"
# print(pd.read_csv(file).mean())
# data_levels_annotated
ORDER_DATA = list(data_levels_annotated.values())
df = df.rename(index=data_levels_annotated)
df
# %%
fname = FOLDER / f'best_models_{SIZE}_test_mpl.pdf'
metrics = df['metric_value'].unstack('model')
ORDER_MODELS = metrics.mean().sort_values().index.to_list()
metrics = metrics.loc[ORDER_DATA, ORDER_MODELS]
plt.rcParams['figure.figsize'] = [4.0, 2.0]
matplotlib.rcParams.update({'font.size': 6})
ax = (metrics
.plot
.bar(rot=0,
xlabel='',
ylabel=f"{METRIC} (log2 intensities)",
color=COLORS_TO_USE_MAPPTING,
width=.85,
fontsize=7
))
ax = pimmslearn.plotting.add_height_to_barplot(ax, size=6, rotated=True)
ax.set_ylim((0, 0.75))
ax.legend(fontsize=5, loc='lower right')
text = (
df['text']
.unstack()
.fillna('')
.stack().loc[pd.IndexSlice[ORDER_MODELS, ORDER_DATA]]
)
ax = pimmslearn.plotting.add_text_to_barplot(ax, text, size=6)
fig = ax.get_figure()
fig.tight_layout()
pimmslearn.savefig(fig, fname)
# %%
df = metrics.fillna(0.0).stack().to_frame(
'metric_value').join(text.rename('text'))
df.to_excel(fname.with_suffix('.xlsx'))
# %% [markdown]
# # aggregate all mean results
# %%
files_perf = {k: f.parent.parent /
'01_2_performance_summary.xlsx' for k, f in files_in.items()}
files_perf
# %%
perf = dict()
for k, f in files_perf.items():
df = pd.read_excel(f, index_col=0, sheet_name=1)
perf[(k, 'val')] = df.loc['mean']
df = pd.read_excel(f, index_col=0, sheet_name=2)
perf[(k, 'test')] = df.loc['mean']
perf = pd.DataFrame(perf)
order = (perf
.loc[:, pd.IndexSlice[:, 'val']]
.mean(axis=1)
.sort_values()
.index)
perf = perf.loc[order]
perf
# %%
fname = FOLDER / f'performance_summary_{SIZE}.xlsx'
perf.to_excel(fname)
fname.as_posix()
# %%