-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplotting.py
111 lines (83 loc) · 3.64 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#!/usr/bin/env python
import os, sys
import torch
import numpy as np
import re
import seaborn as sns
#matplotlib.use('agg')
import matplotlib
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
### Functions
def plot_error(log_steps, cat_loss, con_loss, cat_dataset_names, con_dataset_names, cols, path, version = 'v1', analysis_type='all'):
fig = plt.figure()
for l in range(cat_loss.shape[1]):
plt.plot(log_steps, cat_loss[:,l], cols[l], label=cat_dataset_names[l])
plt.legend()
plt.savefig(path + "evaluation/loss_" + version + "_" + analysis_type + "_cat.png")
plt.clf()
fig = plt.figure()
for l in range(con_loss.shape[1]):
plt.plot(log_steps, con_loss[:,l], cols[l], label=con_dataset_names[l])
plt.legend()
plt.savefig(path + "evaluation/loss_" + version + "_" + analysis_type + "_con.png")
plt.clf()
def embedding_plot_discrete(embedding, type, name, file, palette=None):
fig = plt.figure(figsize=(12,8))
if palette == None:
palette = sns.color_palette('colorblind', len(np.unique(type)))
ax = sns.scatterplot(x=embedding[:,0], y=embedding[:,1], hue=type,
palette = palette,
linewidth=0.1, alpha = 0.8, s=40, edgecolor = 'black')
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.80, box.height]) # resize position
legend_format = {name: np.unique(type)}
leg = subtitle_legend(ax, legend_format=legend_format)
plt.xlabel('Dim1')
plt.ylabel('Dim2')
plt.style.use('default')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(True)
ax.spines['bottom'].set_visible(True)
plt.savefig(file)
def embedding_plot_float(embedding, type, name, file):
fig, ax = plt.subplots(figsize=(12,8))
points = ax.scatter(x=embedding[:,0], y=embedding[:,1], c=type, s=40, cmap="Spectral_r",
edgecolor = 'black', linewidth=0.1)
cbar = fig.colorbar(points, fraction=0.03, pad=0.03)
cbar.ax.set_title(name, rotation=0, fontsize = 16)
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.90, box.height])
plt.xlabel('Dim1')
plt.ylabel('Dim2')
plt.style.use('default')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(True)
ax.spines['bottom'].set_visible(True)
plt.savefig(file)
def subtitle_legend(ax, legend_format):
new_handles = []
handles, labels = ax.get_legend_handles_labels()
label_dict = dict(zip(labels, handles))
#Means 2 labels were the same
if len(label_dict) != len(labels):
raise ValueError("Can not have repeated levels in labels!")
for subtitle, level_order in legend_format.items():
#Roll a blank handle to add in the subtitle
blank_handle = matplotlib.patches.Patch(visible=False, label=subtitle)
new_handles.append(blank_handle)
for level in level_order:
handle = label_dict[level]
new_handles.append(handle)
#Labels are populated from handle.get_label() when we only supply handles as an arg
legend = ax.legend(handles=new_handles, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,
fontsize = 14)
#, title_fontsize = 16
#Turn off DrawingArea visibility to left justify the text if it contains a subtitle
for draw_area in legend.findobj(matplotlib.offsetbox.DrawingArea):
for handle in draw_area.get_children():
if handle.get_label() in legend_format:
draw_area.set_visible(False)
return legend