-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathKNN_bruteforce.cpp
92 lines (82 loc) · 2.48 KB
/
KNN_bruteforce.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#include "KNN_bruteforce.h"
#include "MatMul.h"
#include "misc.h"
#include <algorithm>
#include <math.h>
struct greater
{
template<class T>
bool operator()(T const &a, T const &b) const { return a > b; }
};
/* M vs N (all vectors). */
void KNN_sparse(float *AtA, int *data_indice, float *data_val, int *data_marker_M, int *data_marker_N,
unsigned int M, unsigned int N) {
std::cout << "AtA ";
/* Compute AtA. */
unsigned int startA, endA, startB, endB;
#pragma omp parallel private(startA, endA, startB, endB)
#pragma omp parallel for
for (int i = 0; i < M; i++) {
startA = data_marker_M[i];
endA = data_marker_M[i + 1];
for (int j = 0; j < N; j++) { // Versus all.
startB = data_marker_N[j];
endB = data_marker_N[j + 1];
AtA[(unsigned)(i * N + j)] =
SparseVecMul(data_indice + startA,
data_val + startA,
endA - startA,
data_indice + startB,
data_val + startB,
endB - startB);
}
}
std::cout << "normM " << std::endl;
/* Compute norms. */
float *M_norm = new float[M];
#pragma omp parallel private(startA, endA, startB, endB)
#pragma omp parallel for
for (int i = 0; i < M; i++) {
startA = data_marker_M[i];
endA = data_marker_M[i + 1];
M_norm[(unsigned)i] = SparseVecMul(
data_indice + startA, data_val + startA, endA - startA,
data_indice + startA, data_val + startA, endA - startA);
}
float *N_norm = new float[N];
std::cout << "normN " << std::endl;
auto begin = Clock::now();
#pragma omp parallel private(startA, endA, startB, endB)
#pragma omp parallel for
for (int i = 0; i < N; i++) {
startA = data_marker_N[i];
endA = data_marker_N[i + 1];
N_norm[(unsigned)i] = SparseVecMul(
data_indice + startA, data_val + startA, endA - startA,
data_indice + startA, data_val + startA, endA - startA);
}
auto end = Clock::now();
float etime_0 = (end - begin).count() / 1000000;
std::cout << "normN(repeat) Used " << etime_0 << "ms. \n";
std::cout << "cosined " << std::endl;
/* Cosine dists. */
#pragma omp parallel for
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
AtA[(unsigned)(i * N + j)] /= (sqrtf(M_norm[i]) * sqrtf(N_norm[j]));
}
}
std::cout << "sorting" << std::endl;
/* Sorting. */
#pragma omp parallel for
for (int i = 0; i < M; i++) {
std::sort(AtA + N * i, AtA + N * i + N, greater());
}
/* Print some of the outputs. */
//for (int i = 0; i < 10; i++) {
// for (int j = 0; j < 10; j++)
// std::cout << AtA[i * N + j] << ' ';
// std::cout << std::endl << std::endl;
//}
//system("pause");
}