forked from Cadene/pretrained-models.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoc2007_extract.py
185 lines (148 loc) · 8.42 KB
/
voc2007_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from __future__ import print_function, division, absolute_import
import os
import argparse
from tqdm import tqdm
import torch
from torch.autograd import Variable
from torch.utils import model_zoo
# http://scikit-learn.org
from sklearn.metrics import accuracy_score
from sklearn.metrics import average_precision_score
from sklearn.svm import LinearSVC
from sklearn.svm import SVC
import sys
sys.path.append('.')
import pretrainedmodels
import pretrainedmodels.utils
import pretrainedmodels.datasets
model_names = sorted(name for name in pretrainedmodels.__dict__
if not name.startswith("__")
and name.islower()
and callable(pretrainedmodels.__dict__[name]))
def extract_features_targets(model, features_size, loader, path_data, cuda=False):
if os.path.isfile(path_data):
print('Load features from {}'.format(path_data))
return torch.load(path_data)
print('\nExtract features on {}set'.format(loader.dataset.set))
features = torch.Tensor(len(loader.dataset), features_size)
targets = torch.Tensor(len(loader.dataset), len(loader.dataset.classes))
for batch_id, batch in enumerate(tqdm(loader)):
img = batch[0]
target = batch[2]
current_bsize = img.size(0)
from_ = int(batch_id * loader.batch_size)
to_ = int(from_ + current_bsize)
if cuda:
img = img.cuda(async=True)
input = Variable(img, requires_grad=False)
output = model(input)
features[from_:to_] = output.data.cpu()
targets[from_:to_] = target
os.system('mkdir -p {}'.format(os.path.dirname(path_data)))
print('save ' + path_data)
torch.save((features, targets), path_data)
print('')
return features, targets
def train_multilabel(features, targets, classes, train_split, test_split, C=1.0, ignore_hard_examples=True, after_ReLU=False, normalize_L2=False):
print('\nHyperparameters:\n - C: {}\n - after_ReLU: {}\n - normL2: {}'.format(C, after_ReLU, normalize_L2))
train_APs = []
test_APs = []
for class_id in range(len(classes)):
classifier = SVC(C=C, kernel='linear') # http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
if ignore_hard_examples:
train_masks = (targets[train_split][:,class_id] != 0).view(-1, 1)
train_features = torch.masked_select(features[train_split], train_masks.expand_as(features[train_split])).view(-1,features[train_split].size(1))
train_targets = torch.masked_select(targets[train_split], train_masks.expand_as(targets[train_split])).view(-1,targets[train_split].size(1))
test_masks = (targets[test_split][:,class_id] != 0).view(-1, 1)
test_features = torch.masked_select(features[test_split], test_masks.expand_as(features[test_split])).view(-1,features[test_split].size(1))
test_targets = torch.masked_select(targets[test_split], test_masks.expand_as(targets[test_split])).view(-1,targets[test_split].size(1))
else:
train_features = features[train_split]
train_targets = targets[train_split]
test_features = features[test_split]
test_targets = features[test_split]
if after_ReLU:
train_features[train_features < 0] = 0
test_features[test_features < 0] = 0
if normalize_L2:
train_norm = torch.norm(train_features, p=2, dim=1).unsqueeze(1)
train_features = train_features.div(train_norm.expand_as(train_features))
test_norm = torch.norm(test_features, p=2, dim=1).unsqueeze(1)
test_features = test_features.div(test_norm.expand_as(test_features))
train_X = train_features.numpy()
train_y = (train_targets[:,class_id] != -1).numpy() # uses hard examples if not ignored
test_X = test_features.numpy()
test_y = (test_targets[:,class_id] != -1).numpy()
classifier.fit(train_X, train_y) # train parameters of the classifier
train_preds = classifier.predict(train_X)
train_acc = accuracy_score(train_y, train_preds) * 100
train_AP = average_precision_score(train_y, train_preds) * 100
train_APs.append(train_AP)
test_preds = classifier.predict(test_X)
test_acc = accuracy_score(test_y, test_preds) * 100
test_AP = average_precision_score(test_y, test_preds) * 100
test_APs.append(test_AP)
print('class "{}" ({}/{}):'.format(classes[class_id], test_y.sum(), test_y.shape[0]))
print(' - {:8}: acc {:.2f}, AP {:.2f}'.format(train_split, train_acc, train_AP))
print(' - {:8}: acc {:.2f}, AP {:.2f}'.format(test_split, test_acc, test_AP))
print('all classes:')
print(' - {:8}: mAP {:.4f}'.format(train_split, sum(train_APs)/len(classes)))
print(' - {:8}: mAP {:.4f}'.format(test_split, sum(test_APs)/len(classes)))
##########################################################################
# main
##########################################################################
parser = argparse.ArgumentParser(
description='Train/Evaluate models',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dir_outputs', default='/tmp/outputs', type=str, help='')
parser.add_argument('--dir_datasets', default='/tmp/datasets', type=str, help='')
parser.add_argument('--C', default=1, type=float, help='')
parser.add_argument('-b', '--batch_size', default=50, type=float, help='')
parser.add_argument('-a', '--arch', default='alexnet', choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: alexnet)')
parser.add_argument('--train_split', default='train', type=str, help='')
parser.add_argument('--test_split', default='val', type=str, help='')
parser.add_argument('--cuda', const=True, nargs='?', type=bool, help='')
def main ():
global args
args = parser.parse_args()
print('\nCUDA status: {}'.format(args.cuda))
print('\nLoad pretrained model on Imagenet')
model = pretrainedmodels.__dict__[args.arch](num_classes=1000, pretrained='imagenet')
model.eval()
if args.cuda:
model.cuda()
features_size = model.last_linear.in_features
model.last_linear = pretrainedmodels.utils.Identity() # Trick to get inputs (features) from last_linear
print('\nLoad datasets')
tf_img = pretrainedmodels.utils.TransformImage(model)
train_set = pretrainedmodels.datasets.Voc2007Classification(args.dir_datasets, 'train', transform=tf_img)
val_set = pretrainedmodels.datasets.Voc2007Classification(args.dir_datasets, 'val', transform=tf_img)
test_set = pretrainedmodels.datasets.Voc2007Classification(args.dir_datasets, 'test', transform=tf_img)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=False, num_workers=2)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=2)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=2)
print('\nLoad features')
dir_features = os.path.join(args.dir_outputs, 'data/{}'.format(args.arch))
path_train_data = '{}/{}set.pth'.format(dir_features, 'train')
path_val_data = '{}/{}set.pth'.format(dir_features, 'val')
path_test_data = '{}/{}set.pth'.format(dir_features, 'test')
features = {}
targets = {}
features['train'], targets['train'] = extract_features_targets(model, features_size, train_loader, path_train_data, args.cuda)
features['val'], targets['val'] = extract_features_targets(model, features_size, val_loader, path_val_data, args.cuda)
features['test'], targets['test'] = extract_features_targets(model, features_size, test_loader, path_test_data, args.cuda)
features['trainval'] = torch.cat([features['train'], features['val']], 0)
targets['trainval'] = torch.cat([targets['train'], targets['val']], 0)
print('\nTrain Support Vector Machines')
if args.train_split == 'train' and args.test_split == 'val':
print('\nHyperparameters search: train multilabel classifiers (on-versus-all) on train/val')
elif args.train_split == 'trainval' and args.test_split == 'test':
print('\nEvaluation: train a multilabel classifier on trainval/test')
else:
raise ValueError('Trying to train on {} and eval on {}'.format(args.train_split, args.test_split))
train_multilabel(features, targets, train_set.classes, args.train_split, args.test_split, C=args.C)
if __name__ == '__main__':
main()