Skip to content

Latest commit

 

History

History
242 lines (184 loc) · 5.42 KB

README.md

File metadata and controls

242 lines (184 loc) · 5.42 KB

Python Code Snippets

PyCo Snippets is a python library that allows you to execute python snippets directly on a python runtime and catch the output by leveraging a jupyter-notebook runner.

The main idea is simple:

  1. Get a python code snippet as a string.
  2. Programmatically add the snippet to a jupyter-notebook template.
  3. Programmatically execute the notebook and inspect the output cells.

Example:

from pycosnippets.templates import Template

# Python code snippet
code_snippet = """
print("Hello, World")
"""

# Create a notebook from a template
template = Template()
notebook = template.add_snippet(code=code_snippet)

# Execute the notebook and get the output as json
notebook.execute()
print(notebook.get_last_outputs())

Relevant info

Since we attempt to provide a controlled environment, this package is currently only available for a specific python version and only a few libraries are supported.

For this reason, and to reduce compatibility issues, the Python version and default libraries are defined according to the Databricks LTS runtime. We install the runtime via rhdzmota/databricks-runtime library.

  • Current runtime: databricks-runtime==7.3.dev4

Installation

Install with pip:

$ pip install pycosnippets

Test by running:

$ pycosnippets hello-world

Output:

[
    {
        "data": {
            "text/plain": [
                "'Hello, Pythonista!'"
            ]
        },
        "execution_count": 2,
        "metadata": {},
        "output_type": "execute_result"
    }
]

Usage

You can use pycosnippets as a python library or a commandline application.

CLI Application

Once you install pycosnippets, you can call it via the commandline:

  • By running pycosnippets if you install it globally.
  • By running python -m pycosnippets otherwise.
$ pycosnippets run-snippet --code "print('Hello')" 

Expected output:

{
    "timestamp_start": 1633303932.235129,
    "timestamp_final": 1633303942.675125,
    "output": [
        {
            "name": "stdout",
            "output_type": "stream",
            "text": [
                "Hello\n"
            ]
        }
    ],
    "metadata": null
}

We are using a jupyter-notebook runner to execute the python code. The submitted code gets appended to a juypter-notebook template (src/pycosnippets/template/default.ipynb) and placed in a temporal directory defined by the PYCO_NOTEBOOK_TEMPLATE_OUTPUT_PATH environment variable. You can provide your own templates by changing the PYCO_NOTEBOOK_TEMPLATE_PATH and PYCO_NOTEBOOK_TEMPLATE_NAME environment variables.

You can also run github gists by provinding the following info:

  • user: Github user
  • file: Filename to execute
  • gist_id: Gist ID
$ pycosnippets run-gist \
    --user rhdzmota \
    --file hello.py \
    --gist-id 9aa444dfb15b5d8a96d1204bf173309a 

You can also load gists programmatically in your scripts. Consider the following hello.py script:

pyco.load_gist(
    u="rhdzmota",
    g="9aa444dfb15b5d8a96d1204bf173309a",
    f="hello.py",
)

hello(world="world")

Running the following command should load the gist code and execute the function call:

$ pycosnippets run-script --filepath hello.py

Expected output:

{
    "timestamp_start": 1633305459.1752648,
    "timestamp_final": 1633305463.0998662,
    "output": [
        {
            "data": {
                "text/plain": [
                    "'Hello, world!'"
                ]
            },
            "execution_count": 2,
            "metadata": {},
            "output_type": "execute_result"
        }
    ],
    "metadata": null
}

Python library

There are two relevant classes:

  • Template: This class allows you to register code in a jupyter notebook template, execute it, and get the output.
    • Import: from pycosnippets.templates import Template
  • (recommended) PyCo: This is a high-level singleton that attempts to provide all the relevant functionality for executing python snippets.

Template usage example:

from pycosnippets.templates import Template

# Python code snippet
code_snippet = """
print("Hello, World")
"""

# Create a notebook from a template
template = Template()
notebook = template.add_snippet(code=code_snippet)

# Execute the notebook and get the output as json
notebook.execute()
print(notebook.get_last_outputs())

PyCo usage example:

from pycosnippets.pyco import PyCo

# Python code snippet
code_snippet = """
print("Hello, World")
"""

# Get PyCo singleton
pyco = PyCo.instance()

# Execute the code
output = pyco.run_code(
  code_snippet=code_snippet
)

print(output)

Development

Clone this repo and install locally with pip:

$ pip install -e .

Test by running:

$ pycosnippets hello-world

Output:

[
    {
        "data": {
            "text/plain": [
                "'Hello, Pythonista!'"
            ]
        },
        "execution_count": 2,
        "metadata": {},
        "output_type": "execute_result"
    }
]