-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathCollect_from_image.py
105 lines (78 loc) · 3.09 KB
/
Collect_from_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import csv
import copy
import itertools
import os
import cv2
import mediapipe as mp
def encode_label(label_name,category):
for i in category:
if i == label_name:
return category.index(i)
def calc_landmark_list(image, landmarks):
image_width, image_height = image.shape[1], image.shape[0]
landmark_point = []
# Keypoint
for _, landmark in enumerate(landmarks.landmark):
landmark_x = min(int(landmark.x * image_width), image_width - 1)
landmark_y = min(int(landmark.y * image_height), image_height - 1)
landmark_point.append([landmark_x, landmark_y])
return landmark_point
def pre_process_landmark(landmark_list):
temp_landmark_list = copy.deepcopy(landmark_list)
# Convert to relative coordinates
base_x, base_y = 0, 0
for index, landmark_point in enumerate(temp_landmark_list):
if index == 0:
base_x, base_y = landmark_point[0], landmark_point[1]
temp_landmark_list[index][0] = temp_landmark_list[index][0] - base_x
temp_landmark_list[index][1] = temp_landmark_list[index][1] - base_y
# Convert to a one-dimensional list
temp_landmark_list = list(
itertools.chain.from_iterable(temp_landmark_list))
# Normalization
max_value = max(list(map(abs, temp_landmark_list)))
def normalize_(n):
return n / max_value
temp_landmark_list = list(map(normalize_, temp_landmark_list))
return temp_landmark_list
def logging_csv(number, landmark_list):
if 0 <= number <= 5:
csv_path = 'model/keypoint_classifier/keypoint.csv'
with open(csv_path, 'a', newline="") as f:
writer = csv.writer(f)
writer.writerow([number, *landmark_list])
return
root = "Your dataset dir"
IMAGE_FILES = []
category = ['Anger','Happy','Neutral','Sad','Surprise']
for path, subdirs, files in os.walk(root):
for name in files:
IMAGE_FILES.append(os.path.join(path, name))
use_brect = True
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.7,
static_image_mode=True)
for idx, file in enumerate(IMAGE_FILES):
label_name = file.rsplit("/",1)[-1]
label_name = label_name.rsplit("\\",1)[0]
label = encode_label(label_name,category)
image = cv2.imread(file)
image = cv2.flip(image, 1) # Mirror display
debug_image = copy.deepcopy(image)
# Detection implementation
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = face_mesh.process(image)
image.flags.writeable = True
if results.multi_face_landmarks is not None:
for face_landmarks in results.multi_face_landmarks:
# Landmark calculation
landmark_list = calc_landmark_list(debug_image, face_landmarks)
# Conversion to relative coordinates / normalized coordinates
pre_processed_landmark_list = pre_process_landmark(
landmark_list)
# Write to the dataset file
logging_csv(label, pre_processed_landmark_list)