-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_best_nets.py
186 lines (152 loc) · 4.01 KB
/
run_best_nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python
# coding=utf-8
from __future__ import division, print_function, unicode_literals
from dae import ex
@ex.named_config
def best_bars():
dataset = {
'name': 'bars',
'salt_n_pepper': 0.0
}
training = {
'learning_rate': 0.768014586935404
}
seed = 459182787
network_spec = "Fr100"
net_filename = 'Networks/best_bars_dae.h5'
ex.run(named_configs=['best_bars'])
@ex.named_config
def best_corners():
dataset = {
'name': 'corners',
'salt_n_pepper': 0.0
}
training = {
'learning_rate': 0.0019199822609484764
}
seed = 158253144
network_spec = "Fr100"
net_filename = 'Networks/best_corners_dae.h5'
ex.run(named_configs=['best_corners'])
@ex.named_config
def best_shapes():
dataset = {
'name': 'shapes',
'salt_n_pepper': 0.4
}
training = {
'learning_rate': 0.08314720669724956
}
seed = 845841083
network_spec = "Ft500"
net_filename = 'Networks/best_shapes_dae.h5'
ex.run(named_configs=['best_shapes'])
@ex.named_config
def best_multi_mnist():
dataset = {
'name': 'multi_mnist',
'salt_n_pepper': 0.6
}
training = {
'learning_rate': 0.011361917579645924
}
seed = 498470020
network_spec = "Fr1000"
net_filename = 'Networks/best_multi_mnist_dae.h5'
ex.run(named_configs=['best_multi_mnist'])
@ex.named_config
def best_mnist_shape():
dataset = {
'name': 'mnist_shape',
'salt_n_pepper': 0.6
}
training = {
'learning_rate': 0.0316848152096582
}
seed = 166717815
network_spec = "Fs250"
net_filename = 'Networks/best_mnist_shape_dae.h5'
ex.run(named_configs=['best_mnist_shape'])
@ex.named_config
def best_simple_superpos():
dataset = {
'name': 'simple_superpos',
'salt_n_pepper': 0.1
}
training = {
'learning_rate': 0.36662702472680564
}
seed = 848588405
network_spec = "Fr100"
net_filename = 'Networks/best_simple_superpos_dae.h5'
ex.run(named_configs=['best_simple_superpos'])
@ex.named_config
def best_bars_train_multi():
dataset = {
'name': 'bars',
'train_set': 'train_multi',
'salt_n_pepper': 0.8
}
training = {
'learning_rate': 0.01219213699462807
}
seed = 141786426
network_spec = "Fs100"
net_filename = 'Networks/best_bars_dae_train_multi.h5'
ex.run(named_configs=['best_bars_train_multi'])
@ex.named_config
def best_corners_train_multi():
dataset = {
'name': 'corners',
'train_set': 'train_multi',
'salt_n_pepper': 0.7
}
training = {
'learning_rate': 0.02603487482829947
}
seed = 872544498
network_spec = "Fr100"
net_filename = 'Networks/best_corners_dae_train_multi.h5'
ex.run(named_configs=['best_corners_train_multi'])
@ex.named_config
def best_shapes_train_multi():
dataset = {
'name': 'shapes',
'train_set': 'train_multi',
'salt_n_pepper': 0.9
}
training = {
'learning_rate': 0.049401835193689486
}
seed = 702200962
network_spec = "Fs100"
net_filename = 'Networks/best_shapes_dae_train_multi.h5'
ex.run(named_configs=['best_shapes_train_multi'])
@ex.named_config
def best_multi_mnist_train_multi():
dataset = {
'name': 'multi_mnist',
'train_set': 'train_multi',
'salt_n_pepper': 0.9
}
training = {
'learning_rate': 0.001785591525476118
}
seed = 632224571
network_spec = "Fs250"
net_filename = 'Networks/best_multi_mnist_dae_train_multi.h5'
ex.run(named_configs=['best_multi_mnist_train_multi'])
@ex.named_config
def best_mnist_shape_train_multi():
dataset = {
'name': 'mnist_shape',
'train_set': 'train_multi',
'salt_n_pepper': 0.6
}
training = {
'learning_rate': 0.033199614969711265
}
seed = 900543563
network_spec = "Fr1000"
net_filename = 'Networks/best_mnist_shape_dae_train_multi.h5'
ex.run(named_configs=['best_mnist_shape_train_multi'])