-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathread_earth_io.py
1078 lines (951 loc) · 55.3 KB
/
read_earth_io.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
##########################
# Arjun Datta, August 2013
##########################
import os
import re
import gzip
import sys
import math
import numpy as np
import matplotlib.pyplot as plt
from pdb import set_trace as bp
# Modules written by me
# import read_surf96_io as rs96
##################################################################################################################
def truncate(number, digits):
stepper = pow(10.0, digits)
return math.trunc(stepper * number) / stepper
def plot_mod(plotthese):
mplcol=['k','r','b','y']
mnames=['Regular','Perturbed','Other']
fig=plt.figure()
ax=fig.add_subplot(111)
print("Plotting %d model(s)..." %(len(plotthese)))
for pn,pt in enumerate(plotthese):
dep=[x for x,y in pt]
val=[y for x,y in pt]
#ax.plot(val,dep,label=mnames[pn])
#ax.plot(val,dep,'-',color=mplcol[pn],label=mnames[pn])
try:
ax.plot(val,dep,'-',color=mplcol[pn],label='Medium %d' %(pn+1))
except IndexError:
ax.step(val,dep,'-',label='Medium %d' %(pn+1))
ax.set_xlim(3.5,7)
ax.set_ylim(700,0)
ax.set_xlabel('Vs [km/s]')
ax.set_ylabel('Depth [km]')
plt.legend(loc='best',prop={'size':20})
#plt.grid(True)
plt.show()
#plt.savefig('reo_mod.eps',orientation='portrait')
##################################################################################################################
def plot_pdegn(mode,period,plotcontent,xname,dothis,xmin=0,xmax=0):
""" Function to plot partial derivatives or eigenfunctions, used only when this module is run
as a script by itself
"""
fig=plt.figure()
ax=fig.add_subplot(111)
cnames=['Background Model','Perturbed Region']
for pn,pt in enumerate(plotcontent):
try:
dep=[x for x,y in pt]
val=[y for x,y in pt]
#ax.plot(val,dep,label='File %d' %(pn+1))
ax.plot(val,dep,label=cnames[pn])
except TypeError:
sys.exit('Requested component does not exist')
#print( "Max. depth is: ", dep[-1])
ax.set_ylim([dep[-1],0])
#ax.set_ylim(2000,0)
figinfo = "Mode %d Period %.1f s" %(mode,period)
ax.set_ylabel('Depth [km]')
ax.grid(True,color='0.6')
ax.legend(loc=3)
if dothis=='show':
ax.set_xlabel(xname)
ax.set_title(figinfo)
plt.show()
elif dothis=='save':
locinfo = " %d km" %(location)
ax.set_xlabel(locinfo)
ax.set_xlim([xmin,xmax])
ax.set_title(xname)
ax.text(0.1,0.1,figinfo,transform=ax.transAxes,fontsize=18)
plt.savefig('localeigenfn.jpg')
###################################################################################################################
def plot_disp(modes,firstfig,secondfig=None):
""" Function to plot phase or group velocity dispersion, used only when this module is run
as a script by itself
"""
def singlefig(thisax,plot_content,plot_name=None):
mplcol=['k','r','b','y']
if wvel=='p':
yappropriate='Phase Velocity [km/s]'
else:
yappropriate='Group Velocity [km/s]'
for pn,pt in enumerate(plot_content):
for i,thismode in enumerate(pt):
try:
f = [x for x,y in thismode]
v = [y for x,y in thismode]
except ValueError:
f = [x for x,y,z in thismode]
v = [y for x,y,x in thismode]
if len(plot_content)==1:
curve_name="Mode %d" %modes[i]
ax.plot(f,v,'-',label=curve_name)
else:
if i==0:
ax.plot(f,v,color=mplcol[pn],label='Medium %d' %(pn+1))
else:
ax.plot(f,v,color=mplcol[pn])
thisax.set_xlabel('Frequency [Hz]')
thisax.set_ylabel(yappropriate)
thisax.set_ylim([3,7])
#thisax.set_xlim([0,0.08])
#thisax.set_title('Love')
if not plot_name==None:
thisax.set_title(plot_name)
if plot_name=="Group Velocity" or plot_name==None:
thisax.legend(loc=1)
thisax.grid(True,color='0.6')
if secondfig==None:
ax = plt.subplot(111)
singlefig(ax,firstfig)
else:
for f in range(1,3):
ax = plt.subplot(1,2,f)
if f==1:
singlefig(ax,firstfig,'Phase Velocity')
if f==2:
singlefig(ax,secondfig,'Group Velocity')
plt.suptitle("Dispersion in Model", fontsize=16)
plt.show()
###################################################################################################################
def plot_excitation(x,y1,y2,y3):
""" Function to plot source excitation for all modes, used only when this module is run
as a script by itself
"""
plt.plot(x,y1,'--o',label='py1')
plt.plot(x,y2,'--o',label='py2')
plt.plot(x,y3,'--o',label='py3')
plt.legend(loc=1)
plt.show()
###################################################################################################################
class read_modfile:
def __init__(self,filelist):
self.mnames=filelist
self.struc=range(len(filelist))
for fn,fl in enumerate(filelist):
try:
self.struc[fn]=self.read_single_file(fl)
print( "Reading file as normal: ",fl)
except ValueError:
listforearth=[fl]
#print( "Trying to read file %s using rs96" %(fl))
#rs96obj=rs96.read_models(listforearth)
#self.struc[fn]=rs96obj.vs_struc[0]
print("reo finished reading %d file(s)" %(fn+1))
def read_single_file(self,modfile):
try:
fobj = open(modfile,'r')
except IOError:
sys.exit('Cannot read file %s' %(modfile))
nlayers=int((fobj.readline()).split()[0])
dep=[]
dep.append(0.0)
vp=range(nlayers)
vs=range(nlayers)
rho=range(nlayers)
fcontent=fobj.readlines()
for ln,line in enumerate(fcontent):
if ln==nlayers:
break
else:
thk=float(line.split()[0])
vp[ln]=float(line.split()[1])
vs[ln]=float(line.split()[2])
rho[ln]=float(line.split()[3])
dep.append(dep[-1]+thk)
result=zip(dep,vs)
fobj.close()
del fobj
return result
###################################################################################################################
class read_egnfile:
""" Reads the eigenfunction for a specified mode and period from one or more eigenfunction files
Inputs to class: list of eigenfunction files, mode number, period
NB: If the exact specified period is not present in the file, this class will read the next higher
period that is in the file
"""
def __init__(self,flist,m_concerned,p_concerned):
self.mpp = m_concerned
self.ppp = p_concerned
self.uz=range(len(flist))
self.ur=range(len(flist))
self.tz=range(len(flist))
self.tr=range(len(flist))
self.ut=range(len(flist))
self.tt=range(len(flist))
for fn,fl in enumerate(flist):
allcomp=self.read_single_file(fl)
try:
self.uz[fn]=allcomp[0]
self.ur[fn]=allcomp[1]
self.tz[fn]=allcomp[2]
self.tr[fn]=allcomp[3]
self.ut[fn]=allcomp[4]
self.tt[fn]=allcomp[5]
except TypeError:
# period too long for mode in question
pass
def read_single_file(self,inyifile):
moddep=self.parse_file(inyifile)
x=self.pick_right_slice()
return x
def parse_file(self,egn_file):
""" Goes through the eigen file & reads it into memory. Returns a list containing
the entire file below the lines containing the model at the top
In the eigen file each mode has a header of two lines (specifying number of periods) and each
period has a header of 1 line
"""
if egn_file.endswith('.gz'):
egn_contents = gzip.GzipFile(egn_file,'r')
else:
egn_contents = open(egn_file,'r')
#print( "=================> ",egn_file)
dep=[]
ncol_ph=7
# First line in the file is a string
egn_contents.readline()
# Second line specifies number of layers in model
model_lines = int(egn_contents.readline().split()[0])
# Read the file into memory but get rid of the initial model-specifying part
egn_entire=egn_contents.readlines()
for i,line in enumerate(egn_entire):
if i < model_lines:
values_line = line.split()
dep.append(float(values_line[0]))
else: break
#del egn_entire[:model_lines]
self.whole_egn = egn_entire[model_lines+2:]
# Get the period samples for each mode
self.nps=[]
self.ps=[]
ps_mode=[]
for line in self.whole_egn:
if "samples" in line.split():
self.nps.append(int(line.split()[1]))
if __name__=='__main__':
print( "no. of periods is ", self.nps[-1])
if (len(line.split())==ncol_ph) and (not line.split()[2].isalpha()):
per=float(line.split()[1])
per_lines=int(line.split()[-2])
ps_mode.append([per,per_lines])
# print( "length of ps_mode is ", len(ps_mode))
if len(ps_mode)==self.nps[-1]:
if __name__=='__main__':
print("Found mode %d" %(len(self.ps)))
self.ps.append(ps_mode)
ps_mode=[]
#print self.nps, self.ps
self.modes_lines=[]
for ps_m in self.ps:
m_lines = sum([y for x,y in ps_m]) + (len(ps_m)) + 2
self.modes_lines.append(m_lines)
egn_contents.close()
del egn_contents
return np.array(dep)
def pick_right_slice(self):
result=range(6)
islov = False
isray = False
modes = range(len(self.nps))
prev_mlines = sum([ self.modes_lines[x] for x,y in enumerate(modes) if y<self.mpp ])
if __name__=='__main__':
print( "mpp & ps are ", self.mpp)
prev_ps = [y for x,y in self.ps[self.mpp] if x<self.ppp]
prev_plines = sum(prev_ps) + len(prev_ps)
prev_lines = int(prev_mlines + prev_plines)
try:
self.ppp = float(self.whole_egn[prev_lines+1].split()[1])
print( "Extracting eigenfunctions for mode %d, period %f" %(self.mpp,self.ppp))
except (ValueError, IndexError):
if __name__ == '__main__':
sys.exit("Mode number %d does not exist at this period !!" %(self.mpp))
else:
return 1
rel_lines = self.ps[self.mpp][len(prev_ps)][1]
rel_slice = self.whole_egn[(prev_lines+1):(prev_lines+1+rel_lines+1)]
nfac=1 #float(rel_slice[0].split()[-4])
print( "From reo: nfac is ", nfac)
d=[]
y1=[]
y2=[]
y3=[]
y4=[]
for line in rel_slice[1:]:
values_line = [ float(i) for i in line.split() ]
d.append(values_line[0])
y1.append(nfac*values_line[1])
y2.append(nfac*values_line[2])
try:
y3.append(nfac*values_line[3])
y4.append(nfac*values_line[4])
isray = True
except IndexError:
islov = True
if isray:
result[0]=zip(d,y1)
result[1]=zip(d,y2)
result[2]=zip(d,y3)
result[3]=zip(d,y4)
result[4]=None
result[5]=None
elif islov:
result[4]=zip(d,y1)
result[5]=zip(d,y2)
result[0]=None
result[1]=None
result[2]=None
result[3]=None
return result
####################################################################################################################
class read_egnfile_per:
""" Class to read a single eigenfunction file and extract the eigenfunction FOR ALL MODES AT A SPECIFIED
PERIOD
NB: The difference between this class and the read_egnfile class in terms of operation is that this
class will only work if the EXACT period (exact upto a certain precision) specified as input is
present in the eigenfunction file. This class is NOT capable of improvising to read the closest period
to the one requested """
def __init__(self,infile,p_concerned):
if infile.endswith('.gz'):
egn_contents = gzip.GzipFile(infile,'r')
else:
egn_contents = open(infile,'r')
ncol_ph=7
# First line in the file is a string
egn_contents.readline()
# Second line contains number of layers
model_deps = int(egn_contents.readline().split()[0])
self.dep=np.arange(model_deps,dtype=float)
self.mu=np.arange(model_deps,dtype=float)
self.lamda=np.arange(model_deps,dtype=float)
self.rho=np.arange(model_deps,dtype=float)
alpha=[ii for ii in range(model_deps)]
beta=[ii for ii in range(model_deps)]
#self.rho=range(model_deps)
i=0
j=0
k=0
startreading=False
cptt=0
for line in egn_contents:
cptt=cptt+1
if i < model_deps:
values_line = line.split()
self.dep[i]=float(values_line[0])
alpha[i]=float(values_line[3])
beta[i]=float(values_line[1])
self.rho[i]=float(values_line[2])
self.mu[i]=self.rho[i]*(beta[i]**2)
self.lamda[i]=self.rho[i]*(alpha[i]**2)-(2*self.mu[i])
i+=1
if "modes listed" in line:
self.totm=int(line.split()[0])
self.wavnum=np.zeros(self.totm)
self.uzmat=np.zeros((model_deps,self.totm))
self.urmat=np.zeros((model_deps,self.totm))
self.tzmat=np.zeros((model_deps,self.totm))
self.trmat=np.zeros((model_deps,self.totm))
self.utmat=np.zeros((model_deps,self.totm))
self.ttmat=np.zeros((model_deps,self.totm))
if startreading:
values_line = [ float(i) for i in line.split() ]
y1[j]=values_line[1]
y2[j]=values_line[2]
try:
y3[j]=values_line[3]
y4[j]=values_line[4]
isray=True
islov=False
except IndexError:
islov=True
isray=False
j+=1
if j==lyrsthism:
startreading=False
if isray:
self.uzmat[:len(y1),k]=y1
self.urmat[:len(y2),k]=y2
self.tzmat[:len(y3),k]=y3
self.trmat[:len(y4),k]=y4
self.uzmat[len(y1):len(self.uzmat[:,k]),k]=y1[len(y1)-1]
self.urmat[len(y2):len(self.urmat[:,k]),k]=y2[len(y2)-1]
self.tzmat[len(y3):len(self.tzmat[:,k]),k]=y3[len(y3)-1]
self.trmat[len(y4):len(self.trmat[:,k]),k]=y4[len(y4)-1]
self.utmat=None
self.ttmat=None
elif islov:
self.utmat[:len(y1),k]=y1
self.ttmat[:len(y2),k]=y2
self.uzmat=None
self.urmat=None
self.tzmat=None
self.trmat=None
k+=1
if (len(line.split())==ncol_ph) and (not line.split()[0].isalpha()):
perto5th=round(float(line.split()[1]),5)
perto7th=round(float(line.split()[1]),7)
saveline = line
if perto5th==round(round(p_concerned,6),5) or perto5th==round(p_concerned,5) \
or perto7th==round(p_concerned,7) or perto5th==truncate(p_concerned,5):
if __name__=='__main__':
print( "Extracting eigenfunction for mode %d and period %.6f" %(int(line.split()[0]),float(line.split()[1])))
j=0
self.wavnum[k]=2*np.pi/(p_concerned*float(line.split()[2]))
lyrsthism=int(line.split()[5])
startreading=True
save_mode=int(line.split()[0])
y1=np.arange(lyrsthism,dtype=float)
y2=np.arange(lyrsthism,dtype=float)
y3=np.arange(lyrsthism,dtype=float)
y4=np.arange(lyrsthism,dtype=float)
# At this stage, i.e. after the entire file has been read, the value of k will be equal to the number
# of modes that exist (are present in the file) for the given period. The matrices containing the
# eigenfunctions (each column of matrix = separate mode) should therefore be trimmed down to k
# columns. This is done by the function final_result
try:
self.final_result(k,isray)
except:
bp()
def final_result(self,relm,ray):
extracols=np.arange(relm,self.totm)
self.wavnum=np.delete(self.wavnum,extracols)
if ray:
self.uzmat=np.delete(self.uzmat,extracols,1)
self.urmat=np.delete(self.urmat,extracols,1)
self.tzmat=np.delete(self.tzmat,extracols,1)
self.trmat=np.delete(self.trmat,extracols,1)
else:
self.utmat=np.delete(self.utmat,extracols,1)
self.ttmat=np.delete(self.ttmat,extracols,1)
####################################################################################################################
class read_egnfile_allper:
""" Class to read a single eigenfunction file and extract the eigenfunction FOR ALL MODES AT A SPECIFIED
PERIOD
NB: The difference between this class and the read_egnfile class in terms of operation is that this
class will find all EXACT periods """
def __init__(self,infile, p_concerned_list, Nproc):
if infile.endswith('.gz'):
egn_contents = gzip.GzipFile(infile,'r')
else:
egn_contents = open(infile,'r')
ncol_ph=7
# First line in the file is a string
egn_contents.readline()
# Second line contains number of layers
model_deps = int(egn_contents.readline().split()[0])
self.dep=np.arange(model_deps,dtype=float)
self.mu=np.arange(model_deps,dtype=float)
self.lamda=np.arange(model_deps,dtype=float)
self.rho=np.arange(model_deps,dtype=float)
alpha=[ii for ii in range(model_deps)]
beta=[ii for ii in range(model_deps)]
#self.rho=range(model_deps)
i=0
j=0
k=0
startreading=False
cptt=0
# Build list of eigenfunctions
self.totm = []
self.wavnum = []
self.uzmat = []
self.urmat = []
self.tzmat = []
self.trmat = []
self.utmat = []
self.ttmat = []
done_per_list = [] # List of periods already done
mode_no = np.zeros((len(p_concerned_list)), dtype=int)
for line in egn_contents:
cptt=cptt+1
if i < model_deps:
values_line = line.split()
self.dep[i]=float(values_line[0])
alpha[i]=float(values_line[3])
beta[i]=float(values_line[1])
self.rho[i]=float(values_line[2])
self.mu[i]=self.rho[i]*(beta[i]**2)
self.lamda[i]=self.rho[i]*(alpha[i]**2)-(2*self.mu[i])
i+=1
if "modes listed" in line:
self.totm = int(line.split()[0])
for l in range(0, len(p_concerned_list)):
self.wavnum.append( np.zeros(self.totm) )
self.uzmat.append( np.zeros((model_deps,self.totm)) )
self.urmat.append( np.zeros((model_deps,self.totm)) )
self.tzmat.append( np.zeros((model_deps,self.totm)) )
self.trmat.append( np.zeros((model_deps,self.totm)) )
self.utmat.append( np.zeros((model_deps,self.totm)) )
self.ttmat.append( np.zeros((model_deps,self.totm)) )
# setup toolbar
cptbar = 0
toolbar_width = 40//Nproc
total_length = len(p_concerned_list) * self.totm
#sys.stdout.write("Building eigenfunctions: [%s]" % (" " * toolbar_width))
#sys.stdout.flush()
sys.stdout.write("\b" * (toolbar_width+1)) # return to start of line, after '['
if startreading:
try:
if( len(line.split()[1].split('+')) > 1 and False):
exponent = int(line.split()[1].split('+')[-1])
if exponent > 10:
values_line = [ np.nan for i in line.split() ]
values_line[0] = float(line.split()[0])
else:
values_line = [ float(i) for i in line.split() ]
else:
values_line = [ float(i) for i in line.split() ]
except:
bp()
y1[j]=values_line[1]
y2[j]=values_line[2]
try:
y3[j]=values_line[3]
y4[j]=values_line[4]
isray=True
islov=False
except IndexError:
islov=True
isray=False
j+=1
if j==lyrsthism:
startreading=False
if isray:
self.uzmat[iper][:len(y1),k]=y1
self.urmat[iper][:len(y2),k]=y2
self.tzmat[iper][:len(y3),k]=y3
self.trmat[iper][:len(y4),k]=y4
self.uzmat[iper][len(y1):len(self.uzmat[-1][:,k]),k]=y1[len(y1)-1]
self.urmat[iper][len(y2):len(self.urmat[-1][:,k]),k]=y2[len(y2)-1]
self.tzmat[iper][len(y3):len(self.tzmat[-1][:,k]),k]=y3[len(y3)-1]
self.trmat[iper][len(y4):len(self.trmat[-1][:,k]),k]=y4[len(y4)-1]
self.utmat[iper]=None
self.ttmat[iper]=None
elif islov:
self.utmat[iper][:len(y1),k]=y1
self.ttmat[iper][:len(y2),k]=y2
self.uzmat[iper]=None
self.urmat[iper]=None
self.tzmat[iper]=None
self.trmat[iper]=None
#k+=1
if (len(line.split())==ncol_ph) and (not line.split()[0].isalpha()):
perto5th=round(float(line.split()[1]),5)
perto7th=round(float(line.split()[1]),7)
p_concerned_5th = [round(p_temp,5) for p_temp in p_concerned_list]
p_concerned_6th = [round(round(p_temp,6),5) for p_temp in p_concerned_list]
p_concerned_7th = [round(p_temp,7) for p_temp in p_concerned_list]
p_concerned_trunc = [truncate(p_temp,5) for p_temp in p_concerned_list]
saveline = line
if ( (perto5th in p_concerned_5th \
or perto5th in p_concerned_6th \
or perto5th in p_concerned_trunc \
or perto7th in p_concerned_7th) ):
## If the "done list" already contains a period that we already went through, we reset
if( perto7th in done_per_list ):
k += 1
done_per_list = []
done_per_list.append( perto7th )
iper = len(done_per_list) - 1
mode_no[iper] += 1
#if perto5th==round(round(p_concerned,6),5) or perto5th==round(p_concerned,5) \
# or perto7th==round(p_concerned,7) or perto5th==truncate(p_concerned,5):
if __name__=='__main__':
print( "Extracting eigenfunction for mode %d and period %.6f" %(int(line.split()[0]),float(line.split()[1])))
j=0
#self.wavnum[k]=2*np.pi/(p_concerned*float(line.split()[2]))
self.wavnum[iper][k]=2*np.pi/(perto7th*float(line.split()[2]))
lyrsthism=int(line.split()[5])
startreading=True
save_mode=int(line.split()[0])
y1=np.arange(lyrsthism,dtype=float)
y2=np.arange(lyrsthism,dtype=float)
y3=np.arange(lyrsthism,dtype=float)
y4=np.arange(lyrsthism,dtype=float)
if(int(toolbar_width*(k* len(p_concerned_list) + iper + 1)/total_length) > cptbar):
cptbar = int(toolbar_width*(k* len(p_concerned_list) + iper + 1)/total_length)
sys.stdout.write("-")
sys.stdout.flush()
# At this stage, i.e. after the entire file has been read, the value of k will be equal to the number
# of modes that exist (are present in the file) for the given period. The matrices containing the
# eigenfunctions (each column of matrix = separate mode) should therefore be trimmed down to k
# columns. This is done by the function final_result
#sys.stdout.write("] Done\n")
try:
mode_no = np.array(mode_no, dtype=int)
self.final_result(mode_no,isray)
except:
bp()
def final_result(self,relm,ray):
for i in range(0, len(self.wavnum)):
extracols=np.arange(relm[i],self.totm)
self.wavnum[i]=np.delete(self.wavnum[i],extracols)
if ray:
self.uzmat[i]=np.delete(self.uzmat[i],extracols,1)
self.urmat[i]=np.delete(self.urmat[i],extracols,1)
self.tzmat[i]=np.delete(self.tzmat[i],extracols,1)
self.trmat[i]=np.delete(self.trmat[i],extracols,1)
else:
self.utmat[i]=np.delete(self.utmat[i],extracols,1)
self.ttmat[i]=np.delete(self.ttmat[i],extracols,1)
####################################################################################################################
class read_disp:
""" Class to read the dispersion file (Love or Rayleigh) produced by earthsr, and extract either the:
1. The partial derivatives of phase velocity w.r.t. model parameters for a specified mode & period
OR
2. Phase and Group velocity dispersion curves for all modes in between 2 specified mode numbers
OR
3. The flattened model which is only present in the disp file
Which of these 3 operations is performed depends on the input to the class
If the last argument (2nd integer) is a period (in seconds), the class will perform operation 1,
if it is a higher mode number, the class will perform operation 2.
If the last 2 arguments are both None (i.e. user runs script with disp file(s) as only argument), the class will perform operation 2
Input is: list of dispersion files, first integer, second integer (the 2 'integers' may be = None)
When they are indeed integers, the first one will always be interpreted as a mode number,
2nd integer will be interpreted as higher mode number if it is <=30 or as period if it is > 30 """
def __init__(self,flist,int1,int2):
self.getpd=False
self.getdisp=False
self.getfmod=False
if int1==None and int2==None:
# operation 3 - read flattened model
self.getfmod=True
self.fstruc=range(len(flist))
for fn,fl in enumerate(flist):
self.fstruc[fn]=self.read_single_file(fl)
print( "Finished reading file: ", fl)
elif int2>30:
# operation 1 - reading partial derivatives
self.getpd=True
self.mnum=int1
self.psec=int2
self.modpd=range(len(flist))
for fn,fl in enumerate(flist):
self.modpd[fn]=self.read_single_file(fl)
print( "Finished reading file: ", fl)
else:
# operation 2 - reading dispersion
self.getdisp=True
self.mode_l = int1
self.mode_h = int2
self.modcdisp=range(len(flist))
self.modudisp=range(len(flist))
for fn,fl in enumerate(flist):
try:
[self.modcdisp[fn],self.modudisp[fn]]=self.read_single_file(fl)
except TypeError:
listforrs96=[fl]
#rs96obj=rs96.read_disp(listforrs96)
#self.modcdisp[fn]=rs96obj.disp[0]
self.modudisp[fn]=self.modcdisp[fn] # because with surf96, a particular file will contain either phase or group velocity, not both
self.rel_modes=range(len(self.modcdisp[fn]))
def read_single_file(self,indfile):
self.ncol_ph=8
if self.getpd:
self.parse_filepd(indfile)
return zip(self.deporig,self.reqdpd)
elif self.getdisp:
self.tlm=[] # tlm stands for Total_Lines_Mode - total lines in file before the end of any mode
self.parse_filedisp(indfile)
#print( "tlm is ", self.tlm)
if len(self.tlm)>0:
[cdisp,udisp]=self.pick_right_slice()
return cdisp,udisp
else:
return None
# if __name__=='__main__':
# self.extra_analysis(cdisp)
elif self.getfmod:
self.parse_filepd(indfile,True)
return zip(self.depf,self.vsf)
def parse_filepd(self,disp_file,modonly=False):
""" Reads the file to extract partial derivatives for the required mode & period.
Stops reading once it has found the right mode-period combination and read in
all its partial derivatives
"""
if disp_file.endswith('.gz'):
disp_contents = gzip.GzipFile(disp_file,'r')
else:
disp_contents = open(disp_file,'r')
pd_one_par=[]
pd_par=[]
npar=int(disp_contents.readline().split()[0])
nlo=int(disp_contents.readline().split()[0])
# Second line contains num. of layers in original model
# Number of columns in file for the period headers, and number of model parameters
# w.r.t which partial derivatives are present in the file, need to be known before-hand
self.deporig=[0.0]
self.depf=[0.0]
self.vsf=[]
cl=0
pardone=0
mainreading=False
foundtarget=False
for line in disp_contents:
if not mainreading:
if cl<nlo:
thk=float(line.split()[0])
self.deporig.append(self.deporig[-1]+thk)
cl+=1
else:
try:
thk_fltnd=float(line.split()[0])
vs_fltnd=float(line.split()[-1])
self.vsf.append(vs_fltnd)
try:
#self.depf[cl-nlo]=self.depf[cl-nlo-1]+thk_fltnd
self.depf.append(self.depf[-1]+thk_fltnd)
cl+=1
except IndexError:
pass
except (IndexError, ValueError):
pass
if "modes listed" in line:
mainreading=True
if modonly:
return
print("returning now!")
else:
if foundtarget:
if pardone==npar:
break
else:
if (len(line.split())==self.ncol_ph and line.split()[0].isdigit()):
sys.exit('Partial derivatives for period %d not listed in file' %(self.psec))
values_on_line = [ float(i) for i in line.split() ]
pd_one_par.extend(values_on_line)
if len(pd_one_par)==depsthismp:
pd_par.append(np.array(pd_one_par))
pd_one_par=[]
pardone+=1
else:
if (len(line.split())==self.ncol_ph): #and ("mode" not in line.split()):
# on a period header line
try:
perto5th=round(float(line.split()[1]),5)
except ValueError:
print( "problem with line: ", line)
sys.exit()
if (int(line.split()[0])==self.mnum) and (perto5th==self.psec):
foundtarget=True
depsthismp=int(line.split()[-2])
pardone=0
else:
continue
else:
continue
# out of for loop
if len(pd_par)==0:
sys.exit('Period %d not listed in file' %(self.psec))
print( "Extracted partial derviatives for %d parameters" %(len(pd_par)))
pd_all=np.zeros((nlo,len(pd_par)))
for col,par in enumerate(pd_par):
pd_all[:len(par),col]=par
#print len(self.deporig), len(self.depf), self.vsf
#print pd_par, pd_all
self.reqdpd=pd_all[:,2]
disp_contents.close()
del disp_contents
def parse_filedisp(self,disp_file):
""" Parses the file by first reading all of it into memory
"""
if disp_file.endswith('.gz'):
disp_contents = gzip.GzipFile(disp_file,'r')
else:
disp_contents = open(disp_file,'r')
# Read the file into memory but get rid of the initial model-specifying part
disp_entire=disp_contents.readlines()
if "SURF96" in disp_entire[0]:
# this file is produced by surf96
return
for i,line in enumerate(disp_entire):
if "modes listed" in line:
total_modes = int(line.split()[0])
if total_modes < (self.mode_h+1):
self.mode_h = total_modes-1
break
self.whole_disp = disp_entire[i+1:]
# Get the period samples and number of lines for each mode
per_linescounter=0
#ps_mode=[]
for line in self.whole_disp:
per_linescounter+=1
if "****" in line:
self.tlm.append(per_linescounter)
per_counter=0
disp_contents.close()
del disp_contents
def pick_right_slice(self):
all_modes = range(len(self.tlm))
try:
prev_lines = [ self.tlm[x] for x,y in enumerate(all_modes) if y<self.mode_l ][-1]
except IndexError:
prev_lines = 0
last_rel_line = [ self.tlm[x] for x,y in enumerate(all_modes) if y>=self.mode_l and y <= self.mode_h ][-1]
self.rel_modes = range(self.mode_l,self.mode_h+1)
rel_slice = self.whole_disp[prev_lines:last_rel_line]
#print self.tlm
print( "Reading between lines %d and %d " %(prev_lines, last_rel_line))
pvd=range(len(self.rel_modes)) # pvd stands for phase velocity dispersion
gvd=range(len(self.rel_modes)) # gvd stands for group velocity dispersion
pv=[]
gv=[]
freq=[]
mdone=0
for line in rel_slice:
if "****" in line:
try:
pvd[mdone]=zip(freq,pv)
except IndexError:
break
gvd[mdone]=zip(freq,gv)
print( "Finished reading dispersion of mode ", self.rel_modes[mdone])
mdone+=1
pv=[]
gv=[]
freq=[]
else:
if (len(line.split())==self.ncol_ph) and (line.split()[0].isdigit()) and (line.split()[-1].isdigit()):
values_line = [ i for i in line.split() ]
#print values_line
freq_temp = '%.4f' %(1./float(values_line[1]))
freq.append(float(freq_temp))
pv.append(float(values_line[2]))
gv.append(float(values_line[3]))
return pvd,gvd
####################################################################################################################
class read_excitation:
""" Class to read the Rayleigh wave excitation file produced by earthsr, and
extract excitation amplitudes of all modes (all those considered by earth) at a particular frequency
Input to class: excitation file, period """
def __init__(self,exfile,freq_interest):
self.omega = 2*np.pi*freq_interest
self.rel_modes = []
self.a=[]
self.b=[]
self.c=[]
if exfile.endswith('.gz'):
ex_contents = gzip.GzipFile(exfile,'r')
else:
ex_contents = open(exfile,'r')
mode_exists=0
foundline=False
for line in ex_contents:
if foundline:
print(line)
self.a.append(float(line.split()[0]))
self.b.append(float(line.split()[1]))
self.c.append(float(line.split()[2]))
foundline=False
col1 = float(line.split()[0])
if len(line.split())==1 and not float(line.split()[0])==-1:
self.rel_modes.append(int(float(line.split()[0])))
if abs(col1-self.omega)<0.000001:
foundline=True
mode_exists+=1
self.rel_modes=self.rel_modes[1:mode_exists+1]
####################################################################################################################
""" If running this module as a script by itself, it produces a plot of the eigenfunctions of a particular mode
at a particular period or a plot of phase or group velocity dispersion for a set of specified modes, or of the
excitation amplitudes of all modes at a particular frequency
This module when run by itself also outputs some auxillary information that may be useful for certain applications
"""
if __name__ == '__main__':
nfiles=len(sys.argv)
filenums=range(1,nfiles)
xnames=[]
for fn in filenums:
xnames.append(sys.argv[fn])
egfile=xnames[0]