This repository has been archived by the owner on Jul 13, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_test_1.py
88 lines (73 loc) · 4.02 KB
/
train_test_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import sys
from collections import OrderedDict
import time
import sys
import os
sys.path.append(os.getcwd())
from torch import save, load
from torch.optim import SGD, Adam, Adadelta
from torch.utils.data import Dataset, DataLoader
import torch
from data_loader import loader
from detection_collate_mit import call_back
from rpn_tool_d import rpn_tool_d
from backbone_ import get_paprams, adjust_learning_rate, adjust_learning_rate2
from eval_1sg import rpn_evalor
class model(rpn_evalor):
def train_stage_1(self):
data_set = loader(None, {"seed": 10, "mode": "training"})
data_set_test = loader(None, {"seed": 10, "mode": "test"}, data_set.index)
data_set_eval = loader(None, {"seed": 10, "mode": "eval"}, data_set.index)
data_loader = DataLoader(data_set, self.batch, True, collate_fn=call_back.detection_collate_RPN, num_workers=0)
data_loader_test = DataLoader(data_set_test, self.batch, False, collate_fn=call_back.detection_collate_RPN,
num_workers=0, )
# optim = Adadelta(self.RPN.parameters(), lr=lr1, weight_decay=1e-5)
optim = Adadelta(self.RPN.parameters(), lr=self.lr1, weight_decay=1e-5)
tool = rpn_tool_d()
start_time = time.time()
# print(optim.state_dict())
for epoch in range(3000):
runing_losss = 0.0
cls_loss = 0
coor_loss = 0
for data in data_loader:
y = data[1]
x = data[0].cuda()
optim.zero_grad()
with torch.no_grad():
x1, x2, x3, x4 = self.features(x)
predict_confidence, box_predict = self.RPN(x1, x2, x3, x4)
cross_entropy, loss_box = tool.get_proposal(predict_confidence, box_predict, y)
loss_total = cross_entropy + loss_box
loss_total.backward()
optim.step()
runing_losss += loss_total.item()
cls_loss += cross_entropy.item()
coor_loss += loss_box.item()
end_time = time.time()
# self.vis.line(np.asarray([cls_loss, coor_loss]).reshape(1, 2),
# np.asarray([epoch] * 2).reshape(1, 2), win="loss-epoch", update='append',
# opts=dict(title='loss', legend=['cls_loss', 'cor_loss']))
print("epoch:{a}: loss:{b:.4f} spend_time:{c:.4f} cls:{d:.4f} cor{e:.4f} date:{ff}".format(a=epoch,
b=runing_losss,
c=int(
end_time - start_time),
d=cls_loss,
e=coor_loss,
ff=time.asctime()))
start_time = end_time
# if self.add_eval:
# p = self.RPN_eval(self,data_loader_eval, epoch, eval=True, seed=self.seed)
self.RPN_eval(data_loader_test, {"epoch": epoch})
save(self.RPN.module.state_dict(),
os.path.join(os.getcwd(), str(epoch) + 'rpn_a1.p'))
save(self.RPN.module.state_dict(),
os.path.join(os.getcwd(), str(epoch) + 'base_a1.p'))
if epoch % 10 == 0 and epoch > 0:
adjust_learning_rate(optim, 0.9, epoch, 50, 0.3)
# save(self.RPN.state_dict(), para.RPN.save_path + str(_) + str("%.4f" % (runing_losss)))
# save(self.RPN.module.state_dict(), para.stage1.save_path1)
if __name__ == '__main__':
a = model()
a.train_stage_1()
# a.test(a)