This repository has been archived by the owner on Jul 13, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloader1.py
122 lines (112 loc) · 4.81 KB
/
loader1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from torch.utils.data import Dataset, DataLoader
import torch
import numpy as np
import os
import torch.nn as nn
from random import shuffle
import scipy.signal as sig
from math import sqrt
import pickle
import random
from data_ import filter_data, random_10s_beat_align, aligned
class my_dataset(Dataset):
def __init__(self, path=os.getcwd() + '/data/', test=False, eval=False, all_data=None, all_label=None, index_=None):
self.path = path
self.train = os.listdir(path)
self.train = [i.split('_')[0] for i in self.train]
self.train = list(set(self.train))
self.train.sort()
self.test = test
self.train = self.train
self.data = []
self.label = []
self.eval = eval
# print('path:{}'.format(self.path))
max_R = 169
max_len = 500
####################################_
if index_ == None:
for index in self.train:
data = np.load(self.path + '{}_data.npy'.format(index))
# for lead in range(data.shape[-1]):
# data[:, lead] = filter_data(data[:, lead], average=True)
data = filter_data(data, average=True)
data = data.reshape(1, -1)
label = np.load(self.path + '{}_detect_label.npy'.format(index))
self.data.append(data)
label = [i for i in label if i[1] - i[0] < 1400 and i[-1] != 4 and i[1] - i[0] != 1175]
for j in range(len(label)):
start = label[j][0]
end = label[j][1]
R_loc = label[j][2]
if end - start > 250:
if R_loc - start > 100:
start = R_loc - 100
if end - R_loc > 200:
end = R_loc + 200
elif end - R_loc > 200:
end = R_loc + 200
label[j][0] = start
label[j][1] = end
label[j][2] = R_loc - start
self.label.append(label)
print(max_len)
print(max_R)
tmp_data1, tmp_label1 = random_10s_beat_align(self)
tmp_data1, tmp_label1 = aligned(tmp_data1, tmp_label1, max_R, max_len)
self.data = tmp_data1.copy()
self.label = tmp_label1.copy()
# #
tmp_data = []
for i in self.data:
i = [ii.transpose() for ii in i]
tmp_data.extend(i)
self.data = tmp_data
self.data = [i.reshape(-1) for i in self.data]
index_normal = [i for i in range(len(self.label)) if self.label[i] == 0]
from random import shuffle
shuffle(index_normal)
index2 = [i for i in range(len(self.label)) if self.label[i] != 0]
index3 = index_normal[:int(0.15 * len(index_normal))]
index3.extend(index2)
# normal_data = np.asarray([self.data[i] for i in index_normal])
# normal_label = np.asarray([self.label[i] for i in index_normal])
self.data = [self.data[i] for i in index3]
self.label = [self.label[i] for i in index3]
self.data = np.asarray(self.data)
self.label = np.asarray(self.label)
from imblearn.combine import SMOTETomek
smt = SMOTETomek()
self.data, self.label = smt.fit_resample(self.data, self.label)
#
# self.data = np.vstack([self.data, normal_data])
# self.label = np.hstack([self.label, normal_label])
else:
self.data = all_data
self.label = all_label
total = len(self.label)
if index_ == None:
total = len(self.label)
total_list = list(range(total))
shuffle(total_list)
else:
total_list = index_
self.train_index = total_list[:int(0.8 * total)]
self.test_index = total_list[-int(0.2 * total):]
self.all_data = self.data
self.all_label = self.label
self.index = total_list
if eval or test:
self.data = [self.data[i] for i in self.test_index]
self.label = [self.label[i] for i in self.test_index]
self.data = [i.reshape(500, 1) for i in self.data]
else:
self.data = [self.data[i] for i in self.train_index]
self.label = [self.label[i] for i in self.train_index]
self.data = [i.reshape(500, 1) for i in self.data]
def __getitem__(self, item):
tmp_label = self.label[item]
tmp_data = self.data[item]
return tmp_data, tmp_label
def __len__(self):
return len(self.data)