-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathconfig_args.py
executable file
·143 lines (120 loc) · 5.9 KB
/
config_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os.path as path
import os
def get_args(parser):
parser.add_argument('-dataroot', type=str, default='/p/qdata/jjl5sw/ChromeGCN/processed_data/')
# parser.add_argument('-results_dir', type=str, default='/bigtemp/jjl5sw/deepENCODE/results/encode/')
parser.add_argument('-results_dir', type=str, default='/p/qdata/jjl5sw/ChromeGCN/results/')
parser.add_argument('-cell_type', type=str, default='GM12878')
parser.add_argument('-window_size', type=str, default='1000')
parser.add_argument('-epochs', type=int, default=100)
parser.add_argument('-batch_size', type=int, default=64)
parser.add_argument('-test_batch_size', type=int, default=-1)
parser.add_argument('-d_model', type=int, default=128)
parser.add_argument('-optim', type=str, choices=['adam', 'sgd'], default='adam')
parser.add_argument('-optim2', type=str, choices=['adam', 'sgd'], default='adam')
parser.add_argument('-lr', type=float, default=0.0002)
parser.add_argument('-lr2', type=float, default=0.002)
parser.add_argument('-weight_decay', type=float, default=5e-5, help='weight decay')
parser.add_argument('-lr_decay', type=float, default=0)
parser.add_argument('-lr_step_size', type=int, default=1)
parser.add_argument('-lr_decay2', type=float, default=0)
parser.add_argument('-lr_step_size2', type=int, default=100)
parser.add_argument('-dropout', type=float, default=0.1)
parser.add_argument('-gcn_dropout', type=float, default=0.2)
parser.add_argument('-save_mode', type=str, choices=['all', 'best'], default='best')
parser.add_argument('-window_model', type=str, choices=['deepsea','expecto','danq'], default='expecto')
parser.add_argument('-loss', type=str, choices=['ce'], default='ce')
parser.add_argument('-br_threshold', type=float, default=0.5)
parser.add_argument('-no_cuda', action='store_true')
parser.add_argument('-shuffle_train', action='store_true')
parser.add_argument('-pretrain', action='store_true')
parser.add_argument('-viz', action='store_true')
parser.add_argument('-gpu_id', type=int, default=-1)
parser.add_argument('-small', action='store_true')
parser.add_argument('-summarize_data', action='store_true')
parser.add_argument('-overwrite', action='store_true')
parser.add_argument('-test_only', action='store_true')
parser.add_argument('-load_pretrained', action='store_true')
parser.add_argument('-seq_length', type=int, default=2000)
parser.add_argument('-gcn_layers', type=int, default=2)
parser.add_argument('-save_feats', action='store_true')
parser.add_argument('-saved_model', type=str, default='')
parser.add_argument('-A_saliency', action='store_true')
parser.add_argument('-chrome_model', type=str, choices=['gcn', 'rnn'], default='gcn')
parser.add_argument('-adj_type', type=str, choices=['constant', 'hic', 'both','random','none',''], default='hic')
parser.add_argument('-hicnorm', type=str, choices=['KR', 'VC','SQRTVC',''], default='SQRTVC')
parser.add_argument('-hicsize', type=str, choices=['125000','250000','500000','1000000'], default='1000000')
parser.add_argument('-gate', action='store_true')
parser.add_argument('-load_gcn', action='store_true')
parser.add_argument('-noeye', action='store_true')
parser.add_argument('-name', type=str, default=None)
parser.add_argument('-name2', type=str, default=None)
opt = parser.parse_args()
return opt
def config_args(opt):
if opt.test_batch_size <= 0:
opt.test_batch_size = opt.batch_size
opt.graph_root = path.join('/p/qdata/jjl5sw/ChromeGCN/processed_data/',opt.cell_type,opt.window_size,'hic')
opt.dec_dropout = opt.dropout
opt.drop_last = True
if opt.test_only:
opt.drop_last = False
opt.model_name = 'graph.'
opt.model_name += opt.window_model
opt.model_name += '.'+str(opt.d_model)
opt.model_name += '.bsz_'+str(opt.batch_size)
opt.model_name += '.loss_'+str(opt.loss)
opt.model_name += '.'+str(opt.optim)
opt.model_name += '.lr_'+str(opt.lr).split('.')[1]
if opt.lr_decay > 0:
opt.model_name += '.decay_'+str(opt.lr_decay).replace('.','')+'_'+str(opt.lr_step_size)
opt.model_name += '.drop_'+("%.2f" % opt.dropout).split('.')[1]+'_'+("%.2f" % opt.dec_dropout).split('.')[1]
if opt.pretrain:
print('PRETRAINING')
if opt.name:
opt.model_name = (opt.model_name+'.'+str(opt.name))
if opt.save_feats:
opt.pretrain = False
opt.shuffle_train = False
opt.epochs = 1
elif opt.load_pretrained:
opt.model_name += '.finetune'
opt.model_name += '.lr2_'+str(opt.lr2).split('.')[1]
opt.model_name += '.gcndrop_'+("%.2f" % opt.gcn_dropout).split('.')[1]
opt.model_name += '.'+str(opt.optim2)
opt.model_name += '.'+str(opt.chrome_model)
opt.model_name += '.layers_'+str(opt.gcn_layers)
if opt.chrome_model == 'gcn' and opt.gate:
opt.model_name += '.gate'
if (opt.chrome_model == 'gcn' or opt.chrome_model == 'ggcn'):
opt.model_name += '.adj_'+opt.adj_type
if opt.adj_type == 'hic' or opt.adj_type == 'both':
opt.model_name += '.norm_'+opt.hicnorm
if opt.noeye:
opt.model_name += '.noeye'
if opt.lr_decay2 > 0:
opt.model_name += '.decay_'+str(opt.lr_decay2).replace('.','')+'_'+str(opt.lr_step_size2)
if opt.name2 != None:
opt.model_name += '.'+opt.name2
opt.model_name = path.join(opt.results_dir,opt.cell_type,opt.model_name)
opt.dataset = path.join(opt.dataroot,opt.cell_type,opt.window_size)
opt.cuda = not opt.no_cuda
opt.d_word_vec = opt.d_model
if opt.small:
opt.data = path.join(opt.dataset,'train_valid_test_small.pt')
else:
opt.data = path.join(opt.dataset,'train_valid_test.pt')
if opt.load_gcn:
opt.model_name +='.load_gcn'
if (not opt.viz) and (not opt.overwrite) and (not 'test' in opt.model_name) and (path.exists(opt.model_name)) and (not opt.load_gcn) and (not opt.save_feats):
print(opt.model_name)
overwrite_status = input('Already Exists. Overwrite?: ')
if overwrite_status == 'rm':
os.system('rm -rf '+opt.model_name)
elif not 'y' in overwrite_status:
exit(0)
if not opt.pretrain:
opt.batch_size = 512
opt.test_batch_size = 512
opt.src_vocab_size = 5 #TODO: fix
return opt