-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknntest.py
97 lines (81 loc) · 2.93 KB
/
knntest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import csv
import random
import math
import operator
from matplotlib.pylab import plt
def loadDataset(filename, split, trainingSet=[], testSet=[]):
with open(filename, 'r') as csvfile:
lines = csv.reader(csvfile)
dataset = list(lines)
#print(dataset)
print(len(dataset))
for x in range(len(dataset) - 1):
for y in range(784):
dataset[x][y] = float(dataset[x][y])
if random.random() < split:
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x])
def euclideanDistance(instance1, instance2, length):
distance = 0
for x in range(length):
distance += pow((instance1[x] - instance2[x]), 2)
return math.sqrt(distance)
def getNeighbors(trainingSet, testInstance, k):
distances = []
length = len(testInstance) - 1
for x in range(len(trainingSet)):
dist = euclideanDistance(testInstance, trainingSet[x], length)
distances.append((trainingSet[x], dist))
distances.sort(key=operator.itemgetter(1))
neighbors = []
for x in range(k):
neighbors.append(distances[x][0])
return neighbors
def getResponse(neighbors):
classVotes = {}
for x in range(len(neighbors)):
response = neighbors[x][-1]
if response in classVotes:
classVotes[response] += 1
else:
classVotes[response] = 1
sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True)
return sortedVotes[0][0]
def getAccuracy(testSet, predictions):
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] == predictions[x]:
correct += 1
return (correct / float(len(testSet))) * 100.0
def main():
# prepare data
trainingSet = []
testSet = []
split = 0.80
# path = r'C:/Users/ASUS/PycharmProjects/knntest/iris'
loadDataset("C:\\Users\\ASUS\\Desktop\\mnist_test_1.csv", split, trainingSet, testSet)
print('Train set: ' + repr(len(trainingSet)))
print('Test set: ' + repr(len(testSet)))
# generate predictions
predictions = []
k = 5
xvalues=[]
pred=[]
actual=[]
for x in range(len(testSet)):
neighbors = getNeighbors(trainingSet, testSet[x], k)
# print(neighbors)
result = getResponse(neighbors)
predictions.append(result)
print('> predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
xvalues.append(x)
pred.append(result)
actual.append(testSet[x][-1])
#plt.plot(x,repr(testSet[x][-1]),color="chocolate",label="Actual Values")
accuracy = getAccuracy(testSet, predictions)
plt.plot(xvalues,pred,".", color="r",label="Predicted Values")
plt.plot(xvalues, actual,".", color="b", label="Actual Values")
plt.show();
print('Accuracy: ' + repr(accuracy) + '%')
main()