UNet trains, UNETR does not on same data and augmentations #1731
Unanswered
theskywalker1
asked this question in
Q&A
Replies: 1 comment
-
Hi @theskywalker1, this is not to say that a more complex network will always yield better results; in your example, unet can only achieve an accuracy of roughly 0.4. When switching to a more complex UNETR, you should adjust the parameters appropriately. Even so, it frequently happens that we overfit a basic network before attempting to intentionally alter it. Thanks. |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
Hello Monai community.
![image](https://private-user-images.githubusercontent.com/70293407/341873578-73ade543-a51f-44d5-80c0-56a95283223b.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkwMzE0NzcsIm5iZiI6MTczOTAzMTE3NywicGF0aCI6Ii83MDI5MzQwNy8zNDE4NzM1NzgtNzNhZGU1NDMtYTUxZi00NGQ1LTgwYzAtNTZhOTUyODMyMjNiLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMDglMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjA4VDE2MTI1N1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTU5ZmQwZTdkOGM3NzQzNjA2N2U0MzAxYjYxOTdmYTlkYjY0Nzg3NTUzMDkxNGQ4YzE5ZjE3YmE5NjgxZWMxYmMmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.CJnsFt5yt3SUccQzFr4E41dS_eoZSRRPdvvcqcgZROo)
![image](https://private-user-images.githubusercontent.com/70293407/341874264-e7a38bb1-b793-4868-a32c-b0084e29df1e.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkwMzE0NzcsIm5iZiI6MTczOTAzMTE3NywicGF0aCI6Ii83MDI5MzQwNy8zNDE4NzQyNjQtZTdhMzhiYjEtYjc5My00ODY4LWEzMmMtYjAwODRlMjlkZjFlLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMDglMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjA4VDE2MTI1N1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTk0N2NjZjBmYmFlM2Y2ZmYwZjYxZGY1Zjc2NGRmMzBjYjkxOGIwYjI5MzcyODlmZGExOTI2YmFhMTk5Zjg3MDQmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.R9Rwose57raNPtBx0g_2nt1I_tKvKdbapGnYDngrBOw)
I am attempting to train a UNETR model using this tutorial for vertebral segmentation.
Using this tutorial, I was able to sucessfully train a regular UNet on the VerSe dataset. I chose 25 high quality, full body volumes with a 70/30 split for training and validation.
Here is an example sagittal slice of this dataset:
Here is my config for this project:
In the code snippets I provide below, you will see model1 as a UNETR model and model2 as the regular UNet.
Below this, I provide a graph of the regular UNet's performance and a screenshot of the UNETR's lack of change.
Could anyone explain why a more complex and supposedly better performing model is behaving much worse on the same dataset?
Thanks for anything.
Here is the performance over 6k iterations on the regular UNet:
![image](https://private-user-images.githubusercontent.com/70293407/341874843-1ed1271f-b2a2-4ab2-930a-9aa51df89c4d.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkwMzE0NzcsIm5iZiI6MTczOTAzMTE3NywicGF0aCI6Ii83MDI5MzQwNy8zNDE4NzQ4NDMtMWVkMTI3MWYtYjJhMi00YWIyLTkzMGEtOWFhNTFkZjg5YzRkLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMDglMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjA4VDE2MTI1N1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWMzYThiNmQ1MWExNWY2YmE2MTc0ZGE4MTJhMTRiN2U1Y2QxNDc0NDY0MTczOWE0MmE0NDY2Nzg4NjNjNmNjYWMmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.wAD3nCvAyEq4iOwzqeBlfZbWWqqW9cP_NC4AlO7hCEE)
![image](https://private-user-images.githubusercontent.com/70293407/341875842-263058ce-4979-41a8-9a28-c66979cae8c5.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkwMzE0NzcsIm5iZiI6MTczOTAzMTE3NywicGF0aCI6Ii83MDI5MzQwNy8zNDE4NzU4NDItMjYzMDU4Y2UtNDk3OS00MWE4LTlhMjgtYzY2OTc5Y2FlOGM1LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMDglMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjA4VDE2MTI1N1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWJhNDIxZTE2ZTg0Yjk0MjYyNjIwMWUxZTQ4NzIyYTg3YjMzNzg2Y2FlMmRlNWUwYjlkN2Q1ZmQ1YTU3NTk2NzImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.GsMORBnJirHQ_hhI1mAjXjquOUrhg9j0UtoFht2I11I)
Unfortunately, I do not have a graph of the UNETR's training. But I do have this screenshot of the console showing no change in the loss or mean dice:
Beta Was this translation helpful? Give feedback.
All reactions