Regression Testing for Athena++




Introduction Running Writing Discussion

Code testing

@ Reasons

o Keep developers from breaking each other's code
e Or their own code
o Or users' expectations

@ Styles
e Unit testing: make sure each component works
individually
e Hard — not implemented

o Regression testing: make sure the code as a whole does
not lose functionality

o Easy — covered below



Introduction Running Writing Discussion

Directory structure

athena/
| tst/
regression/
| _scripts/
tests/
newtonian/
sr/
gr/
utils/
. _data/
. _ob7j/
. _bin/ regularly deleted
| vis/
L,python/




Introduction Running Writing

How to run regression tests

@ Go to regression test directory

cd tst/regression

@ Run all tests

python run_tests.py

@ Or run suites of tests

python run_tests.py sr gr

@ Or run individual tests

python run_tests.py sr/hydro_shocks_hlle

Discussion



Introduction Running Writing Discussion

What tests tell you

@ Hopefully “passed” for each test

@ Sometimes “failed”
e No further message: test script returned failure
e “unexpected failure in ..."
e prepare (): configuration/compilation
@ run (): Athena++ ran but aborted with error
@ analyze (): problem reading output data

e Final summary at end (25 out of 25 tests passed”)



Introduction Running Writing Discussion

Writing tests: Location

@ Directories under regression/scripts/tests/
correspond to suites

e Examples: GR, viscosity, MPI
o All tests must be in a suite
e Suites cannot be nested

@ Each test is a single Python file in such a directory

@ If creating a new directory, must include __init__.py
(empty file)



Introduction Running Writing Discussion

Writing tests: Making a new test

@ Follow regression/scripts/tests/example.py

@ Three functions must be defined: prepare (), run(),
analyze ()
e Reason: unexpected catastrophic errors can be traced
better

@ Use functions in
regression/scripts/utils/athena.py to interface
with Athena++



Introduction Running Writing Discussion

Writing tests: Compiling/configuring

import scripts.utils.athena as athena

def prepare() :
athena.configure(’'g’, 't’,
prob="shock_tube_rel’,
coord='minkowski’)
athena.make ()

Equivalent to

python configure.py —-gt \
——prob=shock_tube_rel \
——coord=minkowski

make clean

make



Introduction Running Writing

Writing tests: Running Athena++

Discussion

import scripts.utils.athena as athena

def run() :

arguments = [
" job/problem_id=gr_shock_tube’,
"outputl/file_type=vtk’,
"outputl/variable=cons’,
"outputl/dt=0.4",
"time/cfl_number=0.4',
"time/tlim=0.4",
"mesh/nx1=400"]

athena.run (' hydro_sr/athinput.mb_1",

arguments)

Equivalent to
cd bin

./athena —-i ../inputs/hydro_sr/athinput.mb_1 \

Jjob/problem_id=gr_shock_tube



Introduction Running Writing Discussion

Writing tests: Checking the output

import sys
sys.path.insert (0, ’../../vis/python’)
import athena_read

def analyze():

ref_file = ’"data/sr_hydro_shockl_hlle.vtk’
x_ref,_ ,_,data_ref = athena_read.vtk (ref_file)
mx_ref = data_ref[’mom’][0,0,:,0]

new_file = \

"bin/gr_shock_tube.block0.outl1.00001.vtk’
Xx_new,_,_,data_new = athena_read.vtk (new_file)
mx_new = data_new[’mom’][0,0,:,0]




Introduction Running Writing Discussion

Writing tests: Checking the output

import numpy as np
import scripts.utils.comparison as comparison

def analyze () :

error_abs_mx = comparison.ll diff (x_ref, mx_ref,
X_New, mxX_new)
error_rel mx = error_abs_mx \

/ comparison.ll_norm(x_ref, mx_ref)
if error_rel mx > 0.0l or np.isnan(error_rel mx) :
return False
return True

Must return True (test passes) or False



Introduction Running Writing Discussion

Writing tests: Notes

@ regression/bin/ is deleted before and after each test
@ Tests should not (permanently) interfere with other
directories
@ Static data can be stored in regression/data/
e Part of repository — do not make files too large
@ Python utility scripts for analyzing datasets in
regression/scripts/utils/
@ Varieties of regression tests

o Output matches precomputed values
e Convergence tests
o Compilation-only



Introduction Running Writing Discussion

Discussion

@ What tests do we need?

e The problem of permutations

@ How portable should tests be?

o Currently runs on any machine
e Should tests cover icc or multiple nodes?
e If so, should they be part of the default test suite?

@ Should code be committed that breaks tests?



	Introduction
	Running
	Writing
	Discussion

