From a14d22132f713c73f5e99d7283c89e8443d74eb7 Mon Sep 17 00:00:00 2001 From: lthoang Date: Mon, 8 Jan 2024 22:44:08 +0800 Subject: [PATCH] Add option to evaluate every next item in next-item evaluation --- cornac/eval_methods/base_method.py | 4 + cornac/eval_methods/next_item_evaluation.py | 108 ++++++++++++-------- 2 files changed, 70 insertions(+), 42 deletions(-) diff --git a/cornac/eval_methods/base_method.py b/cornac/eval_methods/base_method.py index 7904a9e4..8c3a5424 100644 --- a/cornac/eval_methods/base_method.py +++ b/cornac/eval_methods/base_method.py @@ -272,6 +272,7 @@ def __init__( self.val_set = None self.rating_threshold = rating_threshold self.exclude_unknowns = exclude_unknowns + self.mode = kwargs.get("mode", None) self.verbose = verbose self.seed = seed self.rng = get_rng(seed) @@ -663,6 +664,7 @@ def eval( rating_metrics, ranking_metrics, verbose, + **kwargs, ): """Running evaluation for rating and ranking metrics respectively.""" metric_avg_results = OrderedDict() @@ -754,6 +756,7 @@ def evaluate(self, model, metrics, user_based, show_validation=True): rating_metrics=rating_metrics, ranking_metrics=ranking_metrics, user_based=user_based, + mode=self.mode, verbose=self.verbose, ) test_time = time.time() - start @@ -774,6 +777,7 @@ def evaluate(self, model, metrics, user_based, show_validation=True): rating_metrics=rating_metrics, ranking_metrics=ranking_metrics, user_based=user_based, + mode=self.mode, verbose=self.verbose, ) val_time = time.time() - start diff --git a/cornac/eval_methods/next_item_evaluation.py b/cornac/eval_methods/next_item_evaluation.py index bff23f33..d27c4342 100644 --- a/cornac/eval_methods/next_item_evaluation.py +++ b/cornac/eval_methods/next_item_evaluation.py @@ -23,6 +23,11 @@ from . import BaseMethod +EVALUATION_MODES = [ + "last", + "next", +] + def ranking_eval( model, metrics, @@ -30,6 +35,7 @@ def ranking_eval( test_set, user_based=False, exclude_unknowns=True, + mode="last", verbose=False, ): """Evaluate model on provided ranking metrics. @@ -68,10 +74,11 @@ def ranking_eval( return [], [] avg_results = [] - session_results = [{} for _ in enumerate(metrics)] + session_results = [defaultdict(list) for _ in enumerate(metrics)] user_results = [defaultdict(list) for _ in enumerate(metrics)] user_sessions = defaultdict(list) + session_ids = [] for [sid], [mapped_ids], [session_items] in tqdm( test_set.si_iter(batch_size=1, shuffle=False), total=len(test_set.sessions), @@ -79,51 +86,56 @@ def ranking_eval( disable=not verbose, miniters=100, ): - test_pos_items = session_items[-1:] # last item in the session - if len(test_pos_items) == 0: + if len(session_items) < 2: # exclude all session with size smaller than 2 continue user_idx = test_set.uir_tuple[0][mapped_ids[0]] if user_based: user_sessions[user_idx].append(sid) - # binary mask for ground-truth positive items - u_gt_pos_mask = np.zeros(test_set.num_items, dtype="int") - u_gt_pos_mask[test_pos_items] = 1 - - # binary mask for ground-truth negative items, removing all positive items - u_gt_neg_mask = np.ones(test_set.num_items, dtype="int") - u_gt_neg_mask[test_pos_items] = 0 - - # filter items being considered for evaluation - if exclude_unknowns: - u_gt_pos_mask = u_gt_pos_mask[: train_set.num_items] - u_gt_neg_mask = u_gt_neg_mask[: train_set.num_items] - - u_gt_pos_items = np.nonzero(u_gt_pos_mask)[0] - u_gt_neg_items = np.nonzero(u_gt_neg_mask)[0] - item_indices = np.nonzero(u_gt_pos_mask + u_gt_neg_mask)[0] - - item_rank, item_scores = model.rank( - user_idx, - item_indices, - history_items=session_items[:-1], - history_mapped_ids=mapped_ids[:-1], - sessions=test_set.sessions, - session_indices=test_set.session_indices, - extra_data=test_set.extra_data, - ) - - for i, mt in enumerate(metrics): - mt_score = mt.compute( - gt_pos=u_gt_pos_items, - gt_neg=u_gt_neg_items, - pd_rank=item_rank, - pd_scores=item_scores, - item_indices=item_indices, + session_ids.append(sid) + + start_pos = 1 if mode == "next" else len(session_items) - 1 + for test_pos in range(start_pos, len(session_items), 1): + test_pos_items = session_items[test_pos] + + # binary mask for ground-truth positive items + u_gt_pos_mask = np.zeros(test_set.num_items, dtype="int") + u_gt_pos_mask[test_pos_items] = 1 + + # binary mask for ground-truth negative items, removing all positive items + u_gt_neg_mask = np.ones(test_set.num_items, dtype="int") + u_gt_neg_mask[test_pos_items] = 0 + + # filter items being considered for evaluation + if exclude_unknowns: + u_gt_pos_mask = u_gt_pos_mask[: train_set.num_items] + u_gt_neg_mask = u_gt_neg_mask[: train_set.num_items] + + u_gt_pos_items = np.nonzero(u_gt_pos_mask)[0] + u_gt_neg_items = np.nonzero(u_gt_neg_mask)[0] + item_indices = np.nonzero(u_gt_pos_mask + u_gt_neg_mask)[0] + + item_rank, item_scores = model.rank( + user_idx, + item_indices, + history_items=session_items[:test_pos], + history_mapped_ids=mapped_ids[:test_pos], + sessions=test_set.sessions, + session_indices=test_set.session_indices, + extra_data=test_set.extra_data, ) - if user_based: - user_results[i][user_idx].append(mt_score) - else: - session_results[i][sid] = mt_score + + for i, mt in enumerate(metrics): + mt_score = mt.compute( + gt_pos=u_gt_pos_items, + gt_neg=u_gt_neg_items, + pd_rank=item_rank, + pd_scores=item_scores, + item_indices=item_indices, + ) + if user_based: + user_results[i][user_idx].append(mt_score) + else: + session_results[i][sid].append(mt_score) # avg results of ranking metrics for i, mt in enumerate(metrics): @@ -132,7 +144,8 @@ def ranking_eval( user_avg_results = [np.mean(user_results[i][user_idx]) for user_idx in user_ids] avg_results.append(np.mean(user_avg_results)) else: - avg_results.append(sum(session_results[i].values()) / len(session_results[i])) + session_result = [score for sid in session_ids for score in session_results[i][sid]] + avg_results.append(np.mean(session_result)) return avg_results, user_results @@ -163,6 +176,11 @@ class NextItemEvaluation(BaseMethod): seed: int, optional, default: None Random seed for reproducibility. + mode: str, optional, default: 'last' + Evaluation mode is either 'next' or 'last'. + If 'last', only evaluate the last item. + If 'next', evaluate every next item in the sequence, + exclude_unknowns: bool, optional, default: True If `True`, unknown items will be ignored during model evaluation. @@ -178,6 +196,7 @@ def __init__( val_size=0.0, fmt="SIT", seed=None, + mode="last", exclude_unknowns=True, verbose=False, **kwargs, @@ -191,8 +210,11 @@ def __init__( seed=seed, exclude_unknowns=exclude_unknowns, verbose=verbose, + mode=mode, **kwargs, ) + assert mode in EVALUATION_MODES + self.mode = mode self.global_sid_map = kwargs.get("global_sid_map", OrderedDict()) def _build_datasets(self, train_data, test_data, val_data=None): @@ -263,6 +285,7 @@ def eval( ranking_metrics, user_based=False, verbose=False, + mode="last", **kwargs, ): metric_avg_results = OrderedDict() @@ -275,6 +298,7 @@ def eval( test_set=test_set, user_based=user_based, exclude_unknowns=exclude_unknowns, + mode=mode, verbose=verbose, )