-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
80 lines (62 loc) · 2.66 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import matplotlib.pyplot as plt
import numpy as np
import argparse
import torch
from torch import nn
from model import TrafficSignNet
from data import get_test_loader
from torchvision.utils import make_grid
from train import valid_batch
from tqdm import tqdm
def evaluate(model, loss_func, dl):
model.eval()
with torch.no_grad():
losses, corrects, nums = zip(
*[valid_batch(model, loss_func, x, y) for x, y in tqdm(dl)])
test_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums)
test_accuracy = np.sum(corrects) / np.sum(nums) * 100
print(f"Test loss: {test_loss:.6f}\t"
f"Test accruacy: {test_accuracy:.3f}%")
def convert_image_np(img):
img = img.numpy().transpose((1, 2, 0)).squeeze()
return img
def visualize_stn(dl, outfile):
with torch.no_grad():
data = next(iter(dl))[0]
input_tensor = data.cpu()
transformed_tensor = model.stn(data).cpu()
input_grid = convert_image_np(make_grid(input_tensor))
transformed_grid = convert_image_np(make_grid(transformed_tensor))
# Plot the results side-by-side
fig, ax = plt.subplots(1, 2)
fig.set_size_inches((16, 16))
ax[0].imshow(input_grid)
ax[0].set_title('Dataset Images')
ax[0].axis('off')
ax[1].imshow(transformed_grid)
ax[1].set_title('Transformed Images')
ax[1].axis('off')
plt.savefig(outfile)
if __name__ == "__main__":
# Evaluation settings
parser = argparse.ArgumentParser(
description='Traffic sign recognition evaluation script')
parser.add_argument('--data', type=str, default='data', metavar='D',
help="folder where data is located. test.p need to be found in the folder (default: data)")
parser.add_argument('--model', type=str, default='model.pt', metavar='M',
help="the model file to be evaluated. (default: model.pt)")
parser.add_argument('--outfile', type=str, default='visualize_stn.png', metavar='O',
help="visualize the STN transformation on some input batch (default: visualize_stn.png)")
args = parser.parse_args()
# Load model checkpoint
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
checkpoint = torch.load(args.model, map_location=device)
# Neural Network and Loss Function
model = TrafficSignNet().to(device)
model.load_state_dict(checkpoint)
model.eval()
criterion = nn.CrossEntropyLoss()
# Data Initialization and Loading
test_loader = get_test_loader(args.data, device)
evaluate(model, criterion, test_loader)
visualize_stn(test_loader, args.outfile)