forked from doc-doc/HQGA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_vocab.py
84 lines (70 loc) · 2.73 KB
/
build_vocab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import nltk
# nltk.download('punkt')
import pickle
import argparse
from utils import load_file, save_file
from collections import Counter
import string
class Vocabulary(object):
"""Simple vocabulary wrapper."""
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0
def add_word(self, word):
if not word in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1
def __call__(self, word):
if not word in self.word2idx:
return self.word2idx['<unk>']
return self.word2idx[word]
def __len__(self):
return len(self.word2idx)
def build_vocab(anno_file, threshold):
"""Build a simple vocabulary wrapper."""
annos = load_file(anno_file)
print('total QA pairs', len(annos))
counter = Counter()
for (qns, ans) in zip(annos['question'], annos['answer']):
qns, ans = str(qns), str(ans)
# text = qns # qns +' ' +ans
# qns = qns.translate(qns.maketrans('', '', string.punctuation))
ans = ans.translate(ans.maketrans('', '', string.punctuation))
# text = qns + ' ' + ans
tokens = nltk.tokenize.word_tokenize(ans.lower())
counter.update(tokens)
counter = sorted(counter.items(), key=lambda item:item[1], reverse=True)
save_file(dict(counter), 'dataset/msvd/ans_count_train.json')
# If the word frequency is less than 'threshold', then the word is discarded.
words = [item[0] for item in counter if item[1] >= threshold]
print(len(words))
# Create a vocab wrapper and add some special tokens.
vocab = Vocabulary()
vocab.add_word('<pad>')
vocab.add_word('<start>')
vocab.add_word('<end>')
vocab.add_word('<unk>')
# Add the words to the vocabulary.
for i, word in enumerate(words):
vocab.add_word(word)
return vocab
def main(args):
vocab = build_vocab(args.caption_path, args.threshold)
vocab_path = args.vocab_path
with open(vocab_path, 'wb') as f:
pickle.dump(vocab, f)
print("Total vocabulary size: {}".format(len(vocab)))
print("Saved the vocabulary wrapper to '{}'".format(vocab_path))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--caption_path', type=str,
default='dataset/msvd/train.csv',
help='path for train annotation file')
parser.add_argument('--vocab_path', type=str, default='dataset/msvd/vocab.pkl',
help='path for saving vocabulary wrapper')
parser.add_argument('--threshold', type=int, default=1,
help='minimum word count threshold')
args = parser.parse_args()
main(args)