-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
265 lines (208 loc) · 10.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
import colorama
import argparse
import torch
import numpy as np
from tqdm import tqdm
from torch.nn import MSELoss
from torch.nn.functional import interpolate
from network.video_super_resolution import VSR
from utils import tools
from utils.tools import MakeCuda, transpose1312, transpose1323
from utils.video_utils import VideoDataset
def ArgmentsParser():
parser = argparse.ArgumentParser()
parser.add_argument('--start_epoch', type=int, default=1)
parser.add_argument('--total_epochs', type=int, default=10000)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--train_n_batches', type=int, default=100)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--load_optimizer', action='store_true')
parser.add_argument('--load_lr', action='store_true')
parser.add_argument('--number_gpus', '-ng', type=int, default=-1, help='number of GPUs to use')
parser.add_argument('--no_cuda', action='store_true')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--save', default='./work', type=str, help='directory for saving')
parser.add_argument('--model_name', default='SRmodel', type=str)
parser.add_argument('--validation_frequency', type=int, default=5, help='validate every n epochs')
parser.add_argument('--validation_n_batches', type=int, default=-1)
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--skip_training', action='store_true')
parser.add_argument('--skip_validation', action='store_true')
parser.add_argument('--training_dataset_root', type=str)
parser.add_argument('--validation_dataset_root', type=str)
parser.add_argument('--ignore_warning', action='store_true')
with tools.TimerBlock("Parsing Arguments") as block:
args = parser.parse_args()
if args.number_gpus < 0:
args.number_gpus = torch.cuda.device_count()
parser.add_argument('--IGNORE', action='store_true')
defaults = vars(parser.parse_args(['--IGNORE']))
for argument, value in sorted(vars(args).items()):
reset = colorama.Style.RESET_ALL
color = reset if value == defaults[argument] else colorama.Fore.MAGENTA
block.log('{}{}: {}{}'.format(color, argument, value, reset))
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda and args.number_gpus > 0:
args.cuda_available = True
else:
args.cuda_available = False
if args.ignore_warning:
import warnings
warnings.filterwarnings(action='ignore')
return args
def InitalizingTrainingAndTestDataset(args):
def InitalizingTrainingDataset(block):
if os.path.exists(args.training_dataset_root) and not args.skip_training:
train_dataset = VideoDataset(args.training_dataset_root)
block.log('Training Dataset: {}'.format(args.training_dataset_root))
block.log('Training Input: {}'.format(np.array(train_dataset[0][0]).shape))
block.log('Training Targets: {}'.format(train_dataset[0][0][1].shape))
return train_dataset
def InitalizingValidationDataset(block):
if os.path.exists(args.validation_dataset_root) and not args.skip_validation:
validation_dataset = VideoDataset(args.validation_dataset_root)
block.log('Validataion Dataset: {}'.format(args.validation_dataset_root))
block.log('Validataion Input: {}'.format(np.array(validation_dataset[0][0]).shape))
block.log('Validataion Targets: {}'.format(validation_dataset[0][0][1].shape))
return validation_dataset
with tools.TimerBlock("Initializing Datasets") as block:
train_dataset = InitalizingTrainingDataset(block)
validation_dataset = InitalizingValidationDataset(block)
return train_dataset, validation_dataset
def BuildMainModelAndOptimizer(args):
def BuildMainModel(args, block):
block.log('Building Model')
SRmodel = VSR()
if args.cuda_available:
block.log('Initializing CUDA')
SRmodel = MakeCuda(SRmodel)
else:
block.log("CUDA not being used")
return SRmodel
def InitializingCheckpoint(args):
if args.resume and os.path.isfile(args.resume):
block.log("Loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
else:
checkpoint = False
return checkpoint
def LoadModelFromCheckpoint(SRmodel, checkpoint, args, block):
if checkpoint:
SRmodel.model.load_state_dict(checkpoint['state_dict'])
block.log("Loaded checkpoint '{}' (at epoch {})".format(args.resume, checkpoint['epoch']))
else:
block.log("Random initialization")
return SRmodel
def InitializingSaveDirectory(args, block):
block.log("Initializing save directory: {}".format(args.save))
if not os.path.exists(args.save):
os.makedirs(args.save)
def BuildOptimizer(checkpoint, args, block):
if checkpoint and args.load_optimizer:
optimizer = checkpoint['optimizer']
if not args.load_lr:
optimizer.param_groups[0]['lr'] = args.lr
block.log("Set learning rate '{}'".format(args.lr))
block.log("Loaded checkpoint '{}'".format(args.resume))
else:
optimizer = torch.optim.Adam(SRmodel.parameters(), lr=args.lr)
block.log("Random initialization")
return optimizer
with tools.TimerBlock("Building {} model".format(args.model_name)) as block:
SRmodel = BuildMainModel(args, block)
torch.cuda.manual_seed(args.seed)
checkpoint = InitializingCheckpoint(args)
SRmodel = LoadModelFromCheckpoint(SRmodel, checkpoint, args, block)
InitializingSaveDirectory(args, block)
with tools.TimerBlock("Initializing Optimizer") as block:
optimizer = BuildOptimizer(checkpoint, args, block)
return SRmodel, optimizer
def TrainAllProgress(SRmodel, optimizer, train_dataset, validation_dataset, args):
def MakeDataDatasetToTensor(datas):
data = torch.stack([transpose1312(
interpolate(transpose1323(d.type(torch.float32)), (int(d.shape[1] / 4), int(d.shape[2] / 4)))) for d in
datas])
return data
def MakeTargetDatasetToTensor(datas):
target = datas[:, 1:2].type(torch.float32)
return target
def MakeHFDatasetToTensor(datas):
datas = datas.type(torch.float32)
return datas
def TrainMainModel(args, dataset, model, optimizer, is_validate=False):
fakeloss = MSELoss()
if is_validate:
model.eval()
args.validation_n_batches = np.inf if args.validation_n_batches < 0 else args.validation_n_batches
else:
model.train()
args.train_n_batches = np.inf if args.train_n_batches < 0 else args.train_n_batches
total_loss = []
progress = tqdm(list(range(0, len(dataset))), miniters=1, ncols=100,
desc='Overall Progress', leave=True, position=True)
for batch_idx in progress:
datas = torch.tensor(dataset[batch_idx])
data = MakeDataDatasetToTensor(datas)
target = MakeTargetDatasetToTensor(datas)
high_frames = MakeHFDatasetToTensor(datas)
if args.cuda_available:
data = MakeCuda(data)
target = MakeCuda(target)
high_frames = MakeCuda(high_frames)
estimated_image = None
optimizer.zero_grad() if not is_validate else None
for x, y, high_frame in zip(data, target, high_frames):
with torch.no_grad():
output, real_loss = model(x, y, high_frame, estimated_image)
estimated_image = output
total_loss.append(real_loss.data)
if not is_validate and batch_idx % dataset.splitvideonum == 0 and batch_idx > 0:
output, real_loss = model(x, y, high_frame, estimated_image)
loss = fakeloss(output.cpu(), torch.tensor(target, dtype=torch.float32).cpu())
loss.data = sum(total_loss) / len(total_loss)
loss.backward()
optimizer.step()
print(loss)
total_loss = []
if (is_validate and (batch_idx == args.validation_n_batches)) or \
((not is_validate) and (batch_idx == (args.train_n_batches))):
break
progress.close()
return sum(total_loss) / float(batch_idx + 1), (batch_idx + 1)
progress = tqdm(list(range(args.start_epoch, args.total_epochs + 1)), miniters=1, ncols=100,
desc='Overall Progress', leave=True, position=True)
global_iteration = 0
for epoch in progress:
if not args.skip_validation and ((epoch - 1) % args.validation_frequency) == 0:
validation_loss, _ = TrainMainModel(args=args, dataset=validation_dataset, model=SRmodel,
optimizer=optimizer, is_validate=True)
checkpoint_progress = tqdm(ncols=100, desc='Saving Checkpoint')
tools.save_checkpoint({'arch': args.model_name,
'epoch': epoch,
'state_dict': SRmodel.model.state_dict(),
'optimizer': optimizer},
False, args.save, args.model_name)
checkpoint_progress.update(1)
checkpoint_progress.close()
if not args.skip_training:
train_loss, iterations = TrainMainModel(args=args, dataset=train_dataset, model=SRmodel,
optimizer=optimizer)
global_iteration += iterations
if ((epoch - 1) % args.validation_frequency) == 0:
checkpoint_progress = tqdm(ncols=100, desc='Saving Checkpoint')
tools.save_checkpoint({'arch': args.model_name,
'epoch': epoch,
'state_dict': SRmodel.model.state_dict(),
'optimizer': optimizer},
False, args.save, args.model_name, filename='train-checkpoint.pth.tar')
checkpoint_progress.update(1)
checkpoint_progress.close()
def main():
args = ArgmentsParser()
train_dataset, validation_dataset = InitalizingTrainingAndTestDataset(args)
SRmodel, optimizer = BuildMainModelAndOptimizer(args)
TrainAllProgress(SRmodel, optimizer, train_dataset, validation_dataset, args)
if __name__ == '__main__':
main()