-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
494 lines (396 loc) · 23.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import shutil
import warnings
import argparse
import torch
import os
import os.path as osp
import yaml
warnings.simplefilter('ignore')
# load packages
import random
from meldataset import build_dataloader
from modules.commons import *
from losses import *
from optimizers import build_optimizer
import time
from accelerate import Accelerator
from accelerate.utils import LoggerType
from accelerate import DistributedDataParallelKwargs
from torch.utils.tensorboard import SummaryWriter
import torchaudio
# from torchmetrics.classification import MulticlassAccuracy
import logging
from accelerate.logging import get_logger
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from dac.nn.loss import MultiScaleSTFTLoss, MelSpectrogramLoss, GANLoss, L1Loss
from audiotools import AudioSignal
import nemo.collections.asr as nemo_asr
import glob
logger = get_logger(__name__, log_level="INFO")
# torch.autograd.set_detect_anomaly(True)
def main(args):
config_path = args.config_path
config = yaml.safe_load(open(config_path))
log_dir = config['log_dir']
if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True, broadcast_buffers=True)
accelerator = Accelerator(project_dir=log_dir, split_batches=True, kwargs_handlers=[ddp_kwargs])
if accelerator.is_main_process:
writer = SummaryWriter(log_dir + "/tensorboard")
# write logs
file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
logger.logger.addHandler(file_handler)
batch_size = config.get('batch_size', 10)
batch_length = config.get('batch_length', 120)
device = accelerator.device if accelerator.num_processes > 1 else torch.device('cpu')
epochs = config.get('epochs', 200)
log_interval = config.get('log_interval', 10)
saving_epoch = config.get('save_freq', 2)
save_interval = config.get('save_interval', 1000)
data_params = config.get('data_params', None)
sr = config['preprocess_params'].get('sr', 24000)
train_path = data_params['train_data']
val_path = data_params['val_data']
root_path = data_params['root_path']
max_frame_len = config.get('max_len', 80)
discriminator_iter_start = config['loss_params'].get('discriminator_iter_start', 0)
loss_params = config.get('loss_params', {})
hop_length = config['preprocess_params']['spect_params'].get('hop_length', 300)
win_length = config['preprocess_params']['spect_params'].get('win_length', 1200)
n_fft = config['preprocess_params']['spect_params'].get('n_fft', 2048)
norm_f0 = config['model_params'].get('norm_f0', True)
frame_rate = sr // hop_length
train_dataloader = build_dataloader(batch_size=batch_size,
num_workers=4,
rank=accelerator.local_process_index,
world_size=accelerator.num_processes,
prefetch_factor=8,
)
with accelerator.main_process_first():
pitch_extractor = load_F0_models(config['F0_path']).to(device)
# load model and processor
w2v_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
w2v_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft").to(device)
w2v_model.eval()
speaker_model = nemo_asr.models.EncDecSpeakerLabelModel.from_pretrained("nvidia/speakerverification_en_titanet_large")
speaker_model = speaker_model.to(device)
speaker_model.eval()
scheduler_params = {
"warmup_steps": 200,
"base_lr": 0.0001,
}
model_params = recursive_munch(config['model_params'])
model = build_model(model_params)
for k in model:
model[k] = accelerator.prepare(model[k])
_ = [model[key].to(device) for key in model]
# initialize optimizers after preparing models for compatibility with FSDP
optimizer = build_optimizer({key: model[key] for key in model},
scheduler_params_dict={key: scheduler_params.copy() for key in model},
lr=float(scheduler_params['base_lr']))
for k, v in optimizer.optimizers.items():
optimizer.optimizers[k] = accelerator.prepare(optimizer.optimizers[k])
optimizer.schedulers[k] = accelerator.prepare(optimizer.schedulers[k])
# find latest checkpoint with name pattern of 'T2V_epoch_*_step_*.pth'
available_checkpoints = glob.glob(osp.join(log_dir, "FAcodec_epoch_*_step_*.pth"))
if len(available_checkpoints) > 0:
# find the checkpoint that has the highest step number
latest_checkpoint = max(
available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0])
)
earliest_checkpoint = min(
available_checkpoints, key=lambda x: int(x.split("_")[-1].split(".")[0])
)
# delete the earliest checkpoint
if (
earliest_checkpoint != latest_checkpoint
and accelerator.is_main_process
and len(available_checkpoints) > 4
):
os.remove(earliest_checkpoint)
print(f"Removed {earliest_checkpoint}")
else:
latest_checkpoint = config.get("pretrained_model", "")
with accelerator.main_process_first():
if latest_checkpoint != '':
model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, latest_checkpoint,
load_only_params=config.get('load_only_params', True), ignore_modules=[], is_distributed=accelerator.num_processes > 1)
else:
start_epoch = 0
iters = 0
content_criterion = FocalLoss(gamma=2).to(device)
stft_criterion = MultiScaleSTFTLoss().to(device)
mel_criterion = MelSpectrogramLoss(
n_mels=[5, 10, 20, 40, 80, 160, 320],
window_lengths=[32, 64, 128, 256, 512, 1024, 2048],
mel_fmin=[0, 0, 0, 0, 0, 0, 0],
mel_fmax=[None, None, None, None, None, None, None],
pow=1.0,
mag_weight=0.0,
clamp_eps=1e-5,
).to(device)
l1_criterion = L1Loss().to(device)
for epoch in range(start_epoch, epochs):
start_time = time.time()
# train_dataloader.set_epoch(epoch)
_ = [model[key].train() for key in model]
last_time = time.time()
for i, batch in enumerate(train_dataloader):
optimizer.zero_grad()
# torch.save(batch, f"latest_batch_{device}.pt")
# train time count start
train_start_time = time.time()
batch = [b.to(device, non_blocking=True) for b in batch]
waves, mels, wave_lengths, mel_input_length = batch
# extract semantic latent with w2v model
waves_16k = torchaudio.functional.resample(waves, 24000, 16000)
w2v_input = w2v_processor(waves_16k, sampling_rate=16000, return_tensors="pt").input_values.to(device)
with torch.no_grad():
w2v_outputs = w2v_model(w2v_input.squeeze(0)).logits
predicted_ids = torch.argmax(w2v_outputs, dim=-1)
phone_ids = F.interpolate(predicted_ids.unsqueeze(0).float(), mels.size(-1), mode='nearest').long().squeeze(0)
# get clips
mel_seg_len = min([int(mel_input_length.min().item()), max_frame_len])
gt_mel_seg = []
wav_seg = []
w2v_seg = []
for bib in range(len(mel_input_length)):
mel_length = int(mel_input_length[bib].item())
random_start = np.random.randint(0, mel_length - mel_seg_len) if mel_length != mel_seg_len else 0
gt_mel_seg.append(mels[bib, :, random_start:random_start + mel_seg_len])
# w2v_seg.append(w2v_latent[bib, :, random_start:random_start + mel_seg_len])
w2v_seg.append(phone_ids[bib, random_start:random_start + mel_seg_len])
y = waves[bib][random_start * 300:(random_start + mel_seg_len) * 300]
wav_seg.append(y.to(device))
gt_mel_seg = torch.stack(gt_mel_seg).detach()
wav_seg = torch.stack(wav_seg).float().detach().unsqueeze(1)
w2v_seg = torch.stack(w2v_seg).float().detach()
with torch.no_grad():
real_norm = log_norm(gt_mel_seg.unsqueeze(1)).squeeze(1).detach()
F0_real, _, _ = pitch_extractor(gt_mel_seg.unsqueeze(1))
# normalize f0
# Remove unvoiced frames (replace with -1)
gt_glob_f0s = []
if not norm_f0:
f0_targets = F0_real
else:
f0_targets = []
for bib in range(len(F0_real)):
voiced_indices = F0_real[bib] > 5.0
f0_voiced = F0_real[bib][voiced_indices]
if len(f0_voiced) != 0:
# Convert to log scale
log_f0 = f0_voiced.log2()
# Calculate mean and standard deviation
mean_f0 = log_f0.mean()
std_f0 = log_f0.std()
# Normalize the F0 sequence
normalized_f0 = (log_f0 - mean_f0) / std_f0
# Create the normalized F0 sequence with unvoiced frames
normalized_sequence = torch.zeros_like(F0_real[bib])
normalized_sequence[voiced_indices] = normalized_f0
normalized_sequence[~voiced_indices] = -10 # Assign -10 to unvoiced frames
gt_glob_f0s.append(mean_f0)
else:
normalized_sequence = torch.zeros_like(F0_real[bib]) - 10.0
gt_glob_f0s.append(torch.tensor(0.0).to(device))
# f0_targets.append(normalized_sequence[single_side_context // 200:-single_side_context // 200])
f0_targets.append(normalized_sequence)
f0_targets = torch.stack(f0_targets).to(device)
# fill nan with -10
f0_targets[torch.isnan(f0_targets)] = -10.0
# fill inf with -10
f0_targets[torch.isinf(f0_targets)] = -10.0
# if frame_rate not equal to 80, interpolate f0 from frame rate of 80 to target frame rate
if frame_rate != 80:
f0_targets = F.interpolate(f0_targets.unsqueeze(1), mel_seg_len // 80 * frame_rate, mode='nearest').squeeze(1)
w2v_seg = F.interpolate(w2v_seg, mel_seg_len // 80 * frame_rate, mode='nearest')
wav_seg_input = wav_seg
wav_seg_target = wav_seg
z = model.encoder(wav_seg_input)
z, quantized, commitment_loss, codebook_loss, timbre = model.quantizer(z, wav_seg_input,
n_c=2,
full_waves=waves,
wave_lens=wave_lengths)
preds, rev_preds = model.fa_predictors(quantized, timbre)
pred_wave = model.decoder(z)
len_diff = wav_seg_target.size(-1) - pred_wave.size(-1)
if len_diff > 0:
wav_seg_target = wav_seg_target[..., len_diff // 2:-len_diff // 2]
# discriminator loss
d_fake = model.discriminator(pred_wave.detach())
d_real = model.discriminator(wav_seg_target)
loss_d = 0
for x_fake, x_real in zip(d_fake, d_real):
loss_d += torch.mean(x_fake[-1] ** 2)
loss_d += torch.mean((1 - x_real[-1]) ** 2)
optimizer.zero_grad()
accelerator.backward(loss_d)
grad_norm_d = torch.nn.utils.clip_grad_norm_(model.discriminator.parameters(), 10.0)
optimizer.step('discriminator')
optimizer.scheduler(key='discriminator')
# generator loss
signal = AudioSignal(wav_seg_target, sample_rate=24000)
recons = AudioSignal(pred_wave, sample_rate=24000)
stft_loss = stft_criterion(recons, signal)
mel_loss = mel_criterion(recons, signal)
waveform_loss = l1_criterion(recons, signal)
d_fake = model.discriminator(pred_wave)
d_real = model.discriminator(wav_seg_target)
loss_g = 0
for x_fake in d_fake:
loss_g += torch.mean((1 - x_fake[-1]) ** 2)
loss_feature = 0
for i in range(len(d_fake)):
for j in range(len(d_fake[i]) - 1):
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())
pred_f0, pred_uv = preds['f0'], preds['uv']
rev_pred_f0, rev_pred_uv = rev_preds['rev_f0'], rev_preds['rev_uv']
common_min_size = min(pred_f0.size(-2), f0_targets.size(-1))
f0_targets = f0_targets[..., :common_min_size]
real_norm = real_norm[..., :common_min_size]
f0_loss = F.smooth_l1_loss(f0_targets, pred_f0.squeeze(-1)[..., :common_min_size])
uv_loss = F.smooth_l1_loss(real_norm, pred_uv.squeeze(-1)[..., :common_min_size])
rev_f0_loss = F.smooth_l1_loss(f0_targets, rev_pred_f0.squeeze(-1)[..., :common_min_size]) if rev_pred_f0 is not None else torch.FloatTensor([0]).to(device)
rev_uv_loss = F.smooth_l1_loss(real_norm, rev_pred_uv.squeeze(-1)[..., :common_min_size]) if rev_pred_uv is not None else torch.FloatTensor([0]).to(device)
tot_f0_loss = f0_loss + rev_f0_loss
tot_uv_loss = uv_loss + rev_uv_loss
pred_content = preds['content']
rev_pred_content = rev_preds['rev_content']
target_content_latents = w2v_seg[..., :common_min_size]
content_loss = content_criterion(pred_content.transpose(1, 2)[..., :common_min_size], target_content_latents.long())
rev_content_loss = content_criterion(rev_pred_content.transpose(1, 2)[..., :common_min_size], target_content_latents.long()) \
if rev_pred_content is not None else torch.FloatTensor([0]).to(device)
tot_content_loss = content_loss + rev_content_loss
spk_logits = torch.cat([speaker_model.infer_segment(w16.cpu()[..., :wl])[1] for w16, wl in zip(waves_16k, wave_lengths)], dim=0)
spk_labels = spk_logits.argmax(dim=-1)
spk_pred_logits = preds['timbre']
spk_loss = F.cross_entropy(spk_pred_logits, spk_labels)
x_spk_pred_logits = rev_preds['x_timbre']
x_spk_loss = F.cross_entropy(x_spk_pred_logits, spk_labels) if x_spk_pred_logits is not None else torch.FloatTensor([0]).to(device)
tot_spk_loss = spk_loss + x_spk_loss
# # global f0 loss
# # get average f0
# gt_glob_f0s = torch.stack(gt_glob_f0s)
# global_f0_loss = F.smooth_l1_loss(gt_glob_f0s.unsqueeze(1), preds['global_f0'])
# rev_global_f0_loss = F.smooth_l1_loss(gt_glob_f0s.unsqueeze(1), rev_preds['rev_global_f0']) if rev_preds['rev_global_f0'] is not None else torch.FloatTensor([0]).to(device)
loss_gen_all = mel_loss * 15.0 + loss_feature * 1.0 + loss_g * 1.0 + commitment_loss * 0.25 + codebook_loss * 1.0 \
+ tot_f0_loss * 1.0 + tot_uv_loss * 1.0 + tot_content_loss * 5.0 + tot_spk_loss * 1.0# + global_f0_loss * 1.0 + rev_global_f0_loss * 1.0
optimizer.zero_grad()
accelerator.backward(loss_gen_all)
grad_norm_g = torch.nn.utils.clip_grad_norm_(model.encoder.parameters(), 1000.0)
grad_norm_g2 = torch.nn.utils.clip_grad_norm_(model.decoder.parameters(), 1000.0)
grad_norm_g3 = torch.nn.utils.clip_grad_norm_(model.quantizer.parameters(), 1000.0)
grad_norm_g4 = torch.nn.utils.clip_grad_norm_(model.fa_predictors.parameters(), 1000.0)
optimizer.step('encoder')
optimizer.step('decoder')
optimizer.step('quantizer')
optimizer.step('fa_predictors')
optimizer.scheduler(key='encoder')
optimizer.scheduler(key='decoder')
optimizer.scheduler(key='quantizer')
optimizer.scheduler(key='fa_predictors')
# optimizer.step()
# train time count end
train_time_per_step = time.time() - train_start_time
if iters % log_interval == 0 and accelerator.is_main_process:
with torch.no_grad():
cur_lr = optimizer.schedulers['encoder'].get_last_lr()[0] if i != 0 else 0
# log print and tensorboard
print("Epoch %d, Iteration %d, Gen Loss: %.4f, Disc Loss: %.4f, mel Loss: %.4f, Time: %.4f" % (
epoch, iters, loss_gen_all.item(), loss_d.item(), mel_loss.item(), train_time_per_step))
print("f0 Loss: %.4f, uv Loss: %.4f, content Loss: %.4f, spk Loss: %.4f, global_f0_loss: %.4f" % (
f0_loss.item(), uv_loss.item(), content_loss.item(), spk_loss.item(), 0.))
print("rev f0 Loss: %.4f, rev uv Loss: %.4f, rev content Loss: %.4f, x spk Loss: %.4f, rev global f0 Loss: %.4f" % (
rev_f0_loss.item(), rev_uv_loss.item(), rev_content_loss.item(), x_spk_loss.item(), 0.)
)
writer.add_scalar('train/lr', cur_lr, iters)
writer.add_scalar('train/time', train_time_per_step, iters)
writer.add_scalar('grad_norm/encoder', grad_norm_g, iters)
writer.add_scalar('grad_norm/decoder', grad_norm_g2, iters)
writer.add_scalar('grad_norm/fa_quantizer', grad_norm_g3, iters)
writer.add_scalar('grad_norm/fa_predictors', grad_norm_g4, iters)
writer.add_scalar('train/loss_gen_all', loss_gen_all.item(), iters)
writer.add_scalar('train/loss_disc_all', loss_d.item(), iters)
writer.add_scalar('train/wav_loss', waveform_loss.item(), iters)
writer.add_scalar('train/mel_loss', mel_loss.item(), iters)
writer.add_scalar('train/stft_loss', stft_loss.item(), iters)
writer.add_scalar('train/feat_loss', loss_feature.item(), iters)
writer.add_scalar('train/commit_loss', commitment_loss.item(), iters)
writer.add_scalar('train/codebook_loss', codebook_loss.item(), iters)
writer.add_scalar('pred/f0_loss', f0_loss.item(), iters)
writer.add_scalar('pred/uv_loss', uv_loss.item(), iters)
writer.add_scalar('pred/content_loss', content_loss.item(), iters)
writer.add_scalar('pred/spk_loss', spk_loss.item(), iters)
writer.add_scalar('rev_pred/rev_f0_loss', rev_f0_loss.item(), iters)
writer.add_scalar('rev_pred/rev_uv_loss', rev_uv_loss.item(), iters)
writer.add_scalar('rev_pred/rev_content_loss', rev_content_loss.item(), iters)
writer.add_scalar('rev_pred/x_spk_loss', x_spk_loss.item(), iters)
print('Time elasped:', time.time() - start_time)
if iters % (log_interval * 10) == 0 and accelerator.is_main_process:
with torch.no_grad():
writer.add_audio('train/gt_audio', wav_seg_input[0], iters, sample_rate=24000)
writer.add_audio('train/pred_audio', pred_wave[0], iters, sample_rate=24000)
if iters % (log_interval * 1000) == 0 and accelerator.is_main_process:
with torch.no_grad():
# put ground truth audio
writer.add_audio('full/gt_audio', waves[0], iters, sample_rate=16000)
# without timbre norm
z = model.encoder(waves[0, :wave_lengths[0]][None, None, ...].to(device).float())
z, quantized, commitment_loss, codebook_loss, timbre = model.quantizer(z, waves[0, :wave_lengths[0]][None, None, ...],
torch.zeros(1).to(device).bool(), torch.zeros(1).to(device).bool())
z2 = model.encoder(waves[1, :wave_lengths[1]][None, None, ...].to(device).float())
z2, quantized2, commitment_loss2, codebook_loss2, timbre2 = model.quantizer(z2, waves[1, :wave_lengths[1]][None, None, ...],
torch.zeros(1).to(device).bool(), torch.zeros(1).to(device).bool())
p_pred_wave = model.decoder(quantized[0])
c_pred_wave = model.decoder(quantized[1])
r_pred_wave = model.decoder(quantized[2])
pc_pred_wave = model.decoder(quantized[0] + quantized[1])
pr_pred_wave = model.decoder(quantized[0] + quantized[2])
pcr_pred_wave = model.decoder(quantized[0] + quantized[1] + quantized[2])
full_pred_wave = model.decoder(z)
x = quantized[0] + quantized[1] + quantized[2]
style2 = model.quantizer.module.timbre_linear(timbre2).unsqueeze(2) # (B, 2d, 1)
gamma, beta = style2.chunk(2, 1) # (B, d, 1)
x = x.transpose(1, 2)
x = model.quantizer.module.timbre_norm(x)
x = x.transpose(1, 2)
x = x * gamma + beta
vc_pred_wave = model.decoder(x)
writer.add_audio('partial/pred_audio_p', p_pred_wave[0], iters, sample_rate=sr)
writer.add_audio('partial/pred_audio_c', c_pred_wave[0], iters, sample_rate=sr)
writer.add_audio('partial/pred_audio_r', r_pred_wave[0], iters, sample_rate=sr)
writer.add_audio('partial/pred_audio_pc', pc_pred_wave[0], iters, sample_rate=sr)
writer.add_audio('partial/pred_audio_pr', pr_pred_wave[0], iters, sample_rate=sr)
writer.add_audio('partial/pred_audio_pcr', pcr_pred_wave[0], iters, sample_rate=sr)
writer.add_audio('full/pred_audio', full_pred_wave[0], iters, sample_rate=sr)
writer.add_audio('vc/ref_audio', waves[1], iters, sample_rate=sr)
writer.add_audio('vc/pred_audio', vc_pred_wave[0], iters, sample_rate=sr)
if iters % save_interval == 0 and accelerator.is_main_process:
print('Saving..')
state = {
'net': {key: model[key].state_dict() for key in model},
'optimizer': optimizer.state_dict(),
'scheduler': optimizer.scheduler_state_dict(),
'iters': iters,
'epoch': epoch,
}
save_path = osp.join(log_dir, 'FAcodec_epoch_%05d_step_%05d.pth' % (epoch, iters))
torch.save(state, save_path)
# find all checkpoints and remove old ones
checkpoints = glob.glob(osp.join(log_dir, 'FAcodec_epoch_*.pth'))
if len(checkpoints) > 5:
# sort by step
checkpoints.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
# remove all except last 5
for cp in checkpoints[:-5]:
os.remove(cp)
iters = iters + 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config_path', type=str, default='configs/config.yml')
args = parser.parse_args()
main(args)