-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
391 lines (329 loc) · 15.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import os
import sys
import argparse
from datetime import datetime
import pandas as pd
import torch
from torch import nn
from torch.nn import DataParallel
from torch.nn import functional as F
from torch.optim import AdamW
from tqdm import tqdm, trange
# from accelerate import Accelerator
import transformers
from sklearn.metrics import f1_score
import wandb
from model import CLS_model
from process import Processor
import utils
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.dirname(BASE_DIR))
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--is_train", type=str, default="False")
parser.add_argument("--gpu", type=str, default="0")
parser.add_argument("--epochs", type=int, default=30)
parser.add_argument("--batch_size", type=int, default=192)
parser.add_argument("--lr", type=float, default=1e-3, required=False)
parser.add_argument("--eps", type=float, default=1e-8, required=False, help="AdamW中的eps")
parser.add_argument("--seed", type=int, default=20220924)
parser.add_argument("--max_seq_length", type=int, default=512)
parser.add_argument("--num_classes", type=int, default=2)
parser.add_argument("--pretrained_path", type=str, default="./saved_models/exp0/best_model_epoch_7_f1_0.7499305362600722")
parser.add_argument("--pretrained_tokenizer_path", type=str, default="./bart-base-chinese")
parser.add_argument("--train_path", type=str, default="../Data/Dataset/CCL2018_data_3_train.json")
parser.add_argument("--dev_path", type=str, default="../Data/Dataset/CCL2018_data_3_valid.json")
parser.add_argument("--test_path", type=str, default="../Data/Dataset/CCL2018_data_3_valid.json", required=False)
parser.add_argument("--output", type=str, default="./saved_models")
parser.add_argument("--label", type=str, default="exp2")
parser.add_argument("--train_num", type=int, default=-1, required=False)
parser.add_argument("--dev_num", type=int, default=-1, required=False)
parser.add_argument('--gradient_accumulation_steps', default=1, type=int, required=False, help='梯度积累')
parser.add_argument('--warmup_steps', type=int, default=600, help='warm up steps')
parser.add_argument('--max_grad_norm', default=2.0, type=float, required=False)
parser.add_argument('--log_step', default=10, type=int, required=False, help='多少步汇报一次loss')
parser.add_argument("--is_resume", type=str, default="False", help="是否重新恢复训练")
parser.add_argument("--resume_checkpoint_path", type=str, default="", required=False, help="训练断点文件的路径")
parser.add_argument("--num_workers", type=int, default=0)
args = parser.parse_args()
# output = os.path.join(args.output, args.label)
# utils.create_dir(output)
# logger = utils.Logger(output + "/args.txt")
# for arg in vars(args):
# logger.write("%s: %s" % (arg, getattr(args, arg)))
return args
def load_data(logger, config):
"""
load train_dataset and dev_dataset
Return (train_dataloader, dev_dataloader)
"""
logger.info("loading training dataset and validating dataset!")
processor = Processor(config=config)
train_data, train_labels = processor.get_data(mode="train")
dev_data, dev_labels = processor.get_data(mode="dev")
if config.train_num > 0:
train_data = train_data[:config.train_num]
if config.dev_num > 0:
dev_data = dev_data[:config.dev_num]
logger.info("train_length: %d" % len(train_data))
logger.info("valid_length: %d" % len(dev_data))
train_loader = processor.create_dataloader(
train_data, train_labels, batch_size=config.batch_size, shuffle=True
)
valid_loader = processor.create_dataloader(
dev_data, dev_labels, batch_size=config.batch_size, shuffle=False
)
return train_loader, valid_loader
def load_test_data(logger, config, mode="same"):
"""
load test_dataset
Return test_dataloader, tokenizer
"""
logger.info("loading test dataset!")
processor = Processor(config = config)
if mode == "same":
test_data, test_labels = processor.get_data(mode="test")
logger.info("test_length: %d" % len(test_data))
test_loader = processor.create_dataloader(
test_data, test_labels, batch_size=config.batch_size, shuffle=False
)
else:
ugc = pd.read_csv("../Data/ugc_funny.csv")
content = ugc["online_content"]
test_data = [i[3:-4] for i in content]
test_labels = [0 for _ in test_data]
logger.info("test_length: %d" % len(test_data))
test_loader = processor.create_dataloader(
test_data, test_labels, batch_size=config.batch_size, shuffle=False
)
return test_loader, processor.tokenizer
def train_epoch(model:CLS_model, train_dataloader, optimizer, scheduler, logger, epoch, config, device):
"""
train model one epoch
"""
model.train()
epoch_start_time = datetime.now()
# 记录下整个epoch的每个batch的loss总和
total_loss = 0
# 记录下整个epoch的pred和label
preds_epoch, labels_epoch = [], []
for batch_idx, (input_ids, labels, attention_mask) in enumerate(tqdm(train_dataloader, desc="Training Epoch %d:" % (epoch + 1))):
# 捕获cuda out of memory exception
try:
input_ids = input_ids.to(device) # (batch_size, seq_len)
labels = labels.to(device) # (batch_size,)
attention_mask = attention_mask.to(device)
outputs = model(input_ids, labels=labels, attention_mask=attention_mask)
loss = outputs.loss
logits = outputs.logits # (batch_size, num_labels)
pred = torch.argmax(F.softmax(logits, dim = 1), dim = 1) # (batch_size,)
# 对多块显卡计算的loss取平均
loss = loss.mean()
preds_epoch.append(pred)
labels_epoch.append(labels)
batch_macro_f1 = f1_score(labels.cpu().numpy(), pred.cpu().numpy(), average="macro")
total_loss += loss.item()
# 对loss平均
if config.gradient_accumulation_steps > 1:
loss = loss / config.gradient_accumulation_steps
loss.backward()
# 梯度裁剪
torch.nn.utils.clip_grad_norm_(model.parameters(), config.max_grad_norm)
# 进行一定step的梯度累积后,更新参数
if (batch_idx + 1) % config.gradient_accumulation_steps == 0:
# 更新参数
optimizer.step()
# 更新学习率
scheduler.step()
# 清空梯度
optimizer.zero_grad()
wandb.log({"lr": scheduler.get_last_lr()[0]})
if (batch_idx + 1) % config.log_step == 0:
logger.info(
"batch {} of epoch {}, loss: {}, batch_macro_f1: {}, lr: {}".format(
batch_idx + 1, epoch + 1, loss.item() * config.gradient_accumulation_steps, batch_macro_f1, scheduler.get_last_lr()
)
)
except RuntimeError as exc:
if "out of memory" in str(exc):
logger.info("WARNING: ran out of memory")
if hasattr(torch.cuda, "empty_cache"):
torch.cuda.empty_cache()
else:
logger.info(str(exc))
raise exc
# 记录当前epoch的macro_f1和平均loss
preds_epoch = torch.cat(preds_epoch, dim = 0)
labels_epoch = torch.cat(labels_epoch, dim = 0)
epoch_mean_loss = total_loss / len(train_dataloader)
epoch_macro_f1 = f1_score(labels_epoch.cpu().numpy(), preds_epoch.cpu().numpy(), average="macro")
logger.info(
"epoch {}: loss: {}, macro_f1: {}".format(epoch + 1, epoch_mean_loss, epoch_macro_f1)
)
wandb.log({"epoch": epoch + 1, "train_loss":epoch_mean_loss, "train_macro_f1":epoch_macro_f1})
# save model
# model_path = os.path.join(config.output, "epoch{}".format(epoch + 1))
# if not os.path.exists(model_path):
# utils.create_dir(model_path)
# model.save_model(model_path)
logger.info("epoch {} finished".format(epoch + 1))
epoch_finish_time = datetime.now()
logger.info("time for one epoch: {}".format(epoch_finish_time - epoch_start_time))
return epoch_mean_loss
def validate_epoch(model, validate_dataloader, logger, epoch, config, device):
logger.info("start validating")
model.eval()
epoch_start_time = datetime.now()
total_loss = 0
preds_epoch, labels_epoch = [], []
try:
with torch.no_grad():
for batch_idx, (input_ids, labels, attention_mask) in enumerate(tqdm(validate_dataloader, desc="Validation: ")):
input_ids = input_ids.to(device)
labels = labels.to(device)
attention_mask = attention_mask.to(device)
outputs = model(input_ids, labels=labels, attention_mask=attention_mask)
loss = outputs.loss
logits = outputs.logits
loss = loss.mean()
pred = torch.argmax(F.softmax(logits, dim = 1), dim = 1)
preds_epoch.append(pred)
labels_epoch.append(labels)
total_loss += loss.item()
# 记录当前epoch的平均loss
preds_epoch = torch.cat(preds_epoch, dim = 0)
labels_epoch = torch.cat(labels_epoch, dim = 0)
epoch_macro_f1 = f1_score(labels_epoch.cpu().numpy(), preds_epoch.cpu().numpy(), average="macro")
epoch_mean_loss = total_loss / len(validate_dataloader)
logger.info(
"validate epoch {}: loss {}, macro_f1 {}".format(epoch + 1, epoch_mean_loss, epoch_macro_f1)
)
wandb.log({"dev_loss":epoch_mean_loss, "dev_macro_f1": epoch_macro_f1})
epoch_finish_time = datetime.now()
logger.info("time for validating one epoch: {}".format(epoch_finish_time - epoch_start_time))
return epoch_mean_loss, epoch_macro_f1
except RuntimeError as exc:
if "out of memory" in str(exc):
logger.info("WARNING: ran out of memory")
if hasattr(torch.cuda, "empty_cache"):
torch.cuda.empty_cache()
else:
logger.info(str(exc))
raise exc
def train(model, logger, train_dataloader, dev_dataloader, config, device):
# 计算总共更新多少次梯度
t_total = len(train_dataloader) // config.gradient_accumulation_steps * config.epochs
optimizer = AdamW(model.parameters(), lr=config.lr, eps=config.eps)
scheduler = transformers.get_linear_schedule_with_warmup(
optimizer, num_warmup_steps = config.warmup_steps, num_training_steps = t_total
)
# loading checkpoint if resume
if eval(config.is_resume):
checkpoint = torch.load(config.resume_checkpoint_path)
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
logger.info("starting training")
# 记录每个epoch的训练和验证loss
train_losses, dev_losses = [], []
# 记录验证集最高的f1
best_dev_f1 = -1e9
for epoch in trange(config.epochs, desc="Epoch"):
# train
train_loss = train_epoch(
model=model, train_dataloader=train_dataloader,
optimizer=optimizer, scheduler=scheduler,
logger=logger, epoch=epoch, config=config, device=device
)
train_losses.append(train_loss)
# validate
dev_loss, dev_f1 = validate_epoch(
model=model, validate_dataloader=dev_dataloader,
logger=logger, epoch=epoch, config=config, device=device
)
dev_losses.append(dev_loss)
# 保存当前f1最高的模型
if dev_f1 > best_dev_f1:
best_dev_f1 = dev_f1
logger.info("saving current best model for epoch {}".format(epoch + 1))
model_path = os.path.join(config.output, config.label, "best_model_epoch_{}_f1_{}".format(epoch+ 1, dev_f1))
utils.create_dir(model_path)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_model(model_path)
logger.info("training finished!")
logger.info("train_losses:{}".format(train_losses))
logger.info("dev_losses:{}".format(dev_losses))
def test(model, logger, test_dataloader, config, device, tokenizer):
logger.info("starting testing!")
model.eval()
epoch_start_time = datetime.now()
preds, texts = [], []
try:
with torch.no_grad():
for batch_idx, (input_ids, labels, attention_mask) in enumerate(tqdm(test_dataloader, desc="Testing ")):
input_ids = input_ids.to(device) # [batch_size, seq_len]
labels = labels.to(device)
attention_mask = attention_mask.to(device)
outputs = model(input_ids, labels = labels, attention_mask=attention_mask)
logits = outputs.logits # [batch_size, num_classes]
text = tokenizer.batch_decode(input_ids, skip_special_tokens=True) # [batch_size, text_len]. the text without special tokens
pred = torch.argmax(F.softmax(logits, dim = 1), dim = 1) # [batch_size, ]
preds.append(pred.tolist())
texts.append(text)
logger.info("Test Finished!")
# 将所有sentence集中到一个大列表中
texts = [sentence for batch in texts for sentence in batch]
preds = [i for pred in preds for i in pred]
return list(map(lambda x:"".join(x.split(" ")), texts)), preds
except RuntimeError as exc:
if "out of memory" in str(exc):
logger.info("WARNING: ran out of memory")
if hasattr(torch.cuda, "empty_cache"):
torch.cuda.empty_cache()
else:
logger.info(str(exc))
raise exc
if __name__ == "__main__":
# args
config = parse_args()
if eval(config.is_train):
wandb.init(project="pun_detection", name=config.label)
wandb.config.update(config)
# set random seed
utils.set_random_seed(config.seed)
# set visible devices
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
logger = utils.create_logger(config)
# 创建模型的输出目录
utils.create_dir(config.output)
# build model
model = CLS_model(config)
logger.info("model config:\n{}".format(model.return_model_config()))
if len(config.gpu) > 1 and torch.cuda.device_count() > 1:
device = "cuda:%s" % config.gpu[0]
model = model.to(device)
model = DataParallel(model, device_ids=[int(i) for i in config.gpu.split(',')])
else:
device = "cuda:%s" % config.gpu
model = model.to(device)
logger.info("using device: %s" % config.gpu)
# compute the amount of model's parameters
num_parameters = 0
parameters = model.parameters()
for parameter in parameters:
num_parameters += parameter.numel()
logger.info("number of model parameters: {}".format(num_parameters))
# notes the config
logger.info("config: {}".format(config))
if eval(config.is_train):
wandb.watch(model, log="all")
# loading the train_dataloader and dev_dataloader
train_dataloader, dev_dataloader = load_data(logger=logger, config=config)
train(model, logger, train_dataloader, dev_dataloader, config, device)
else:
# loading the test_dataloader
test_dataloader, tokenizer = load_test_data(logger=logger, config=config, mode="different")
text_list, pred_list = test(model, logger, test_dataloader, config, device, tokenizer)
with open(config.pretrained_path + "_output1.txt", "w") as f:
for i in range(len(text_list)):
f.write(text_list[i] + "\t" + str(pred_list[i]) + "\n")