diff --git a/easybuild/easyconfigs/e/ebGSEA/ebGSEA-0.1.0-foss-2022a-R-4.2.1.eb b/easybuild/easyconfigs/e/ebGSEA/ebGSEA-0.1.0-foss-2022a-R-4.2.1.eb new file mode 100644 index 00000000000..56647181edb --- /dev/null +++ b/easybuild/easyconfigs/e/ebGSEA/ebGSEA-0.1.0-foss-2022a-R-4.2.1.eb @@ -0,0 +1,49 @@ +easyblock = 'Bundle' + +name = 'ebGSEA' +version = '0.1.0' +versionsuffix = '-R-%(rver)s' + +local_commit = 'b307931' + +homepage = 'https://github.com/aet21/ebGSEA' +description = """Gene Set Enrichment Analysis is one of the most common tasks in the analysis of omic data, + and is critical for biological interpretation. In the context of Epigenome Wide Association Studies (EWAS), + which typically rank individual cytosines according to the level of differential methylation, enrichment + analysis of biological pathways is challenging due to differences in CpG/probe density between genes.""" + +toolchain = {'name': 'foss', 'version': '2022a'} + +dependencies = [ + ('R', '4.2.1'), + ('R-bundle-Bioconductor', '3.15', versionsuffix), +] + +exts_defaultclass = 'RPackage' +exts_default_options = { + 'sources': ['%(name)s_%(version)s.tar.gz'], + 'source_urls': [ + 'https://cran.r-project.org/src/contrib/Archive/%(name)s', # package archive + 'https://cran.r-project.org/src/contrib/', # current version of packages + 'https://cran.freestatistics.org/src/contrib', # mirror alternative for current packages + ], +} + +exts_list = [ + ('kpmt', '0.1.0', { + 'checksums': ['6342ad02c93bfa7a764d028821bb6115bb8bc8c55b057a5860736cc0e034a295'], + }), + (name, version, { + 'source_urls': ['https://github.com/aet21/ebGSEA/raw/%s/' % local_commit], + 'checksums': ['a7cb470a884d4455e2754b40bd010b43a0f048e968ab00101d11f91310fab380'], + }), +] + +modextrapaths = {'R_LIBS_SITE': ''} + +sanity_check_paths = { + 'files': [], + 'dirs': [name], +} + +moduleclass = 'bio'