-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDataloader.py
366 lines (312 loc) · 15.1 KB
/
Dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
from torchvision import transforms
import torch
from torch.utils.data import Dataset, DataLoader
from natsort import natsorted
import os
from glob import glob
import cv2
import pandas as pd
import numpy as np
import scipy.io
import json
import h5py
class DeepFashionDataset(Dataset):
def __init__(self, size, train=True, mix=False):
super(DeepFashionDataset, self).__init__()
self.size = size
self.train = train
self.basepath = "/export/scratch/compvis/datasets/deepfashion_inshop/Img/img/"
self.csv_path = "/export/scratch/compvis/datasets/compvis-datasets/deepfashion_allJointsVisible/data_"
self.annotations = "/export/scratch/compvis/datasets/compvis-datasets/deepfashion_allJointsVisible/data_"
self.use_keypoints = np.array([0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])
if self.train:
subdir_name = "train"
else:
subdir_name = "test"
self.img_path = pd.read_csv(os.path.join(self.csv_path + subdir_name + ".csv"))['filename'].tolist()
self.keypoints = np.flip(np.array(pd.read_json(os.path.join(self.annotations + subdir_name + ".json"))['keypoints'].tolist()), 2).copy()[:, self.use_keypoints] * size / 256.
self.transforms = transforms.Compose([transforms.ToTensor()])
self.mix = mix
def __len__(self):
return len(self.keypoints)
def __getitem__(self, index):
# Select Image
image = cv2.imread(os.path.join(self.basepath, self.img_path[index]))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (self.size, self.size))
image = self.transforms(image)
#Select Keypoint
keypoint = self.keypoints[index]
keypoint = self.transforms(keypoint)
# make additional keypoints
if self.mix:
extra_kp = 0.5 * self.size * torch.ones([1, 15, 2])
keypoint = torch.cat([keypoint, extra_kp], dim=1)
return image, keypoint
class Human36MDataset(Dataset):
def __init__(self, size, mix=False):
super(Human36MDataset, self).__init__()
self.size = size
self.img_shape = [1002, 1000, 3]
self.base_path = "/export/scratch/compvis/datasets/human3.6M/"
self.annot_path = "/export/home/phuber/BA/annot_small.json" if mix == False else "/export/home/phuber/BA/annot_very_small.json"
self.use_keypoints = np.array([1, 2, 3, 6, 7, 8, 15, 17, 18, 22, 25, 26, 30])
with open(self.annot_path, "r") as json_file:
f = json.load(json_file)
self.images = [path for path in list(f['frame_path'])]
self.keypoints = [np.flip(np.array(keypoint)[self.use_keypoints]).copy() for keypoint in list(f['keypoints'])]
self.bboxes = [self.make_bbox(keypoint) for keypoint in self.keypoints]
# with h5py.File("/export/scratch/compvis/datasets/human3.6M/processed/all/annot.h5", "r") as f:
# self.images = [path.decode('UTF-8') for path in list(f['frame_path'])]
# self.keypoints = [np.flip(np.array(keypoint)[self.use_keypoints]).copy() for keypoint in list(f['keypoints'])]
# self.bboxes = [self.make_bbox(keypoint) for keypoint in self.keypoints]
self.transforms = transforms.Compose([transforms.ToTensor()])
self.mix = mix
def make_bbox(self, keypoints):
# bbox should have shape [left, up, right, low]
h, w, c = self.img_shape
padd = 30
key_y = keypoints[:, 0]
key_x = keypoints[:, 1]
up = np.min(key_y).astype(int)
up -= min(padd, up)
low = np.max(key_y).astype(int)
low += min(padd, h)
left = np.min(key_x).astype(int)
left -= min(padd, left)
right = np.max(key_x).astype(int)
right += min(padd, w)
bbox = [left, up, right, low]
return bbox
def transform_keypoints(self, bbox, keypoint):
h, w, c = self.img_shape
h_, w_ = int(bbox[3]) - int(bbox[1]), int(bbox[2]) - int(bbox[0])
long_side = max(h_, w_)
# Don't just use bounding box but also a little bit more (else heads are cut off in TPS)
padd_add = 30
if long_side == h_:
padd_long = min(h - h_, padd_add)
if padd_long % 2 != 0:
padd_long += 1
padd_up = min(int(bbox[1]), padd_long / 2)
padd_down = min(h - int(bbox[3]), padd_long - padd_up)
if padd_up + padd_down < padd_long:
padd_up += padd_long - (padd_up + padd_down)
bbox[1] -= padd_up
bbox[3] += padd_down
h_, w_ = int(bbox[3]) - int(bbox[1]), int(bbox[2]) - int(bbox[0])
long_side = max(h_, w_)
else:
padd_long = min(w - w_, padd_add)
if padd_long % 2 != 0:
padd_long += 1
padd_left = min(int(bbox[0]), padd_long / 2)
padd_right = min(h - int(bbox[2]), padd_long - padd_left)
if padd_left + padd_right < padd_long:
padd_left += padd_long - (padd_left + padd_right)
bbox[0] -= padd_left
bbox[2] += padd_right
h_, w_ = int(bbox[3]) - int(bbox[1]), int(bbox[2]) - int(bbox[0])
long_side = max(h_, w_)
# Padd the sides to make it quadratic
diff = max(h_, w_) - min(h_, w_)
if diff % 2 != 0:
diff += 1
padding = diff / 2
if long_side == h_:
left_padding = min(padding, int(bbox[0]))
right_padding = min(long_side - left_padding - w_, w - int(bbox[2]))
if left_padding + w_ + right_padding < long_side:
left_padding += long_side - (left_padding + w_ + right_padding)
upper_padding = 0
under_padding = 0
else:
upper_padding = min(padding, int(bbox[1]))
under_padding = min(long_side - upper_padding - h_, h - int(bbox[3]))
if upper_padding + h_ + under_padding < long_side:
upper_padding += long_side - (upper_padding + h_ + under_padding)
left_padding = 0
right_padding = 0
# Adjust boundaries
left_bound = int(bbox[0]) - int(left_padding)
right_bound = int(bbox[2]) + int(right_padding)
upper_bound = int(bbox[1]) - int(upper_padding)
under_bound = int(bbox[3]) + int(under_padding)
boundaries = [left_bound, right_bound, upper_bound, under_bound]
# Adjust keypoints
keypoint[:, 1] -= left_bound
keypoint[:, 0] -= upper_bound
scale = self.size / long_side
keypoint *= scale
return keypoint, boundaries, True
def __len__(self):
return len(self.images)
def __getitem__(self, index):
# Select Image
image = cv2.imread(self.base_path + self.images[index])
# Transform Image (crop and resize) and Keypoints
init_bbox = self.bboxes[index]
init_keypoints = self.keypoints[index]
keypoint, bbox, _ = self.transform_keypoints(init_bbox, init_keypoints)
left_bound, right_bound, upper_bound, under_bound = bbox
image = image[upper_bound:under_bound, left_bound:right_bound, :]
image = cv2.resize(image, (self.size, self.size))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = self.transforms(image)
keypoint = self.transforms(keypoint)
return image, keypoint
class PennAction(Dataset):
def __init__(self, size, pose_req=None, action_req=None, mix=False):
super(PennAction, self).__init__()
self.size = size
self.pose_req = pose_req
self.action_req = action_req
self.sequencepath = "/export/scratch/compvis/datasets/Penn_Action/frames/"
self.labelpath = "/export/scratch/compvis/datasets/Penn_Action/labels/"
sequences = natsorted(glob(os.path.join(self.sequencepath, "*")))
annotations = natsorted(glob(os.path.join(self.labelpath, "*.mat")))
poses = [[pose for pose in scipy.io.loadmat(annotations[i])['pose'] if annotations[i]] for i in
range(len(annotations))]
poses = [pose for seq in poses for pose in seq]
actions = [[action for action in scipy.io.loadmat(annotations[i])['action'] if annotations[i]] for i in
range(len(annotations))]
actions = [action for seq in actions for action in seq]
# Choose relevant poses
if self.pose_req is not None:
self.indices = [i for i in range(len(poses)) if poses[i] in self.pose_req]
sequences = [sequences[i] for i in self.indices]
annotations = [annotations[i] for i in self.indices]
# Choose relevant actions
if self.action_req is not None:
self.indices = [i for i in range(len(actions)) if actions[i] in self.action_req]
sequences = [sequences[i] for i in self.indices]
annotations = [annotations[i] for i in self.indices]
# Get Images and Keypoints
images = [[img for img in natsorted(glob(os.path.join(sequence_path, "*.jpg")))] for sequence_path in sequences]
images = [img for seq in images for img in seq]
dimensions = [[dim for dim in scipy.io.loadmat(annotations[i])['shape'] if annotations[i]] for i in
range(len(annotations))]
dimensions = [dim for seq in dimensions for dim in seq]
bboxes = [[bb for bb in scipy.io.loadmat(annotations[i])['bbox'] if annotations[i]] for i in
range(len(annotations))]
bboxes = [bb for seq in bboxes for bb in seq]
kp_y = [[kp for kp in scipy.io.loadmat(annotations[i])['y'] if annotations[i]] for i in range(len(annotations))]
kp_y = [kp for seq in kp_y for kp in seq]
kp_x = [[kp for kp in scipy.io.loadmat(annotations[i])['x'] if annotations[i]] for i in range(len(annotations))]
kp_x = [kp for seq in kp_x for kp in seq]
keypoints = np.array([[[y, x] for (y, x) in zip(kp_y[i], kp_x[i])] for i in range(len(kp_x))])
images_valid = []
bboxes_valid = []
boundaries_valid = []
keypoints_t = []
for index in range(len(images)):
image, dimension, bbox, keypoint = images[index], dimensions[index], bboxes[index], keypoints[index]
keypoint_t, boundaries, valid = self.transform_keypoints(dimension, bbox, keypoint)
if not valid:
continue
kp_values = [j for i in keypoint_t for j in i]
if min(kp_values) < 0 or max(kp_values) > self.size:
continue
else:
images_valid.append(image)
bboxes_valid.append(bbox)
boundaries_valid.append(boundaries)
keypoints_t.append(keypoint_t)
self.images = np.array([images_valid])[0]
self.bboxes = np.array([bboxes_valid])[0]
self.keypoints = np.array([keypoints_t])[0]
self.boundaries = boundaries_valid
self.transforms = transforms.Compose([transforms.ToTensor()])
self.mix = mix
def __len__(self):
return len(self.images)
def transform_keypoints(self, dimension, bbox, keypoint):
h, w, c = dimension
h_, w_ = int(bbox[3]) - int(bbox[1]), int(bbox[2]) - int(bbox[0])
long_side = max(h_, w_)
# Don't use too small images
if long_side < 50:
return None, None, False
# Don't just use bounding box but also a little bit more (else heads are cut off in TPS)
padd_add = 30
if long_side == h_:
padd_long = min(h-h_, padd_add)
if padd_long % 2 != 0:
padd_long += 1
padd_up = min(int(bbox[1]), padd_long / 2)
padd_down = min(h-int(bbox[3]), padd_long-padd_up)
if padd_up + padd_down < padd_long:
padd_up += padd_long - (padd_up + padd_down)
bbox[1] -= padd_up
bbox[3] += padd_down
h_, w_ = int(bbox[3]) - int(bbox[1]), int(bbox[2]) - int(bbox[0])
long_side = max(h_, w_)
else:
padd_long = min(w-w_, padd_add)
if padd_long % 2 != 0:
padd_long += 1
padd_left = min(int(bbox[0]), padd_long / 2)
padd_right = min(h-int(bbox[2]), padd_long-padd_left)
if padd_left + padd_right < padd_long:
padd_left += padd_long - (padd_left + padd_right)
bbox[0] -= padd_left
bbox[2] += padd_right
h_, w_ = int(bbox[3]) - int(bbox[1]), int(bbox[2]) - int(bbox[0])
long_side = max(h_, w_)
# Padd the sides to make it quadratic
diff = max(h_, w_) - min(h_, w_)
if diff % 2 != 0:
diff += 1
padding = diff / 2
if long_side == h_:
left_padding = min(padding, int(bbox[0]))
right_padding = min(long_side - left_padding - w_, w - int(bbox[2]))
if left_padding + w_ + right_padding < long_side:
left_padding += long_side - (left_padding + w_ + right_padding)
upper_padding = 0
under_padding = 0
else:
upper_padding = min(padding, int(bbox[1]))
under_padding = min(long_side - upper_padding - h_, h - int(bbox[3]))
if upper_padding + h_ + under_padding < long_side:
upper_padding += long_side - (upper_padding + h_ + under_padding)
left_padding = 0
right_padding = 0
# Adjust boundaries
left_bound = int(bbox[0]) - int(left_padding)
right_bound = int(bbox[2]) + int(right_padding)
upper_bound = int(bbox[1]) - int(upper_padding)
under_bound = int(bbox[3]) + int(under_padding)
boundaries = [left_bound, right_bound, upper_bound, under_bound]
# Adjust keypoints
keypoint[:, 1] -= left_bound
keypoint[:, 0] -= upper_bound
scale = self.size / long_side
keypoint *= scale
# Sometimes boundaries are outside the image -> skip these images
if ((right_bound - left_bound) - (under_bound - upper_bound) != 0) or any(bound < 0 for bound in boundaries) \
or right_bound > w or under_bound > h:
return None, None, False
return keypoint, boundaries, True
def __getitem__(self, index):
# Select Image
image = cv2.imread(self.images[index])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Blur
# filterSize = 5
# image = cv2.medianBlur(image, filterSize)
left_bound, right_bound, upper_bound, under_bound = self.boundaries[index]
image = image[upper_bound:under_bound, left_bound:right_bound, :]
image = cv2.resize(image, (self.size, self.size))
keypoint = self.keypoints[index]
image = self.transforms(image)
keypoint = self.transforms(keypoint)
if self.mix:
extra_kp = 0.5 * self.size * torch.ones([1, 19, 2])
keypoint = torch.cat([keypoint, extra_kp], dim=1)
return image, keypoint
__datasets__ = {'deepfashion': DeepFashionDataset,
'human36': Human36MDataset,
'pennaction': PennAction}
def get_dataset(dataset_name):
return __datasets__[dataset_name]