-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathmodule.py
181 lines (157 loc) · 7.07 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
from collections import deque
from typing import List, Union
import numpy as np
import paddle
import paddle.nn as nn
from paddlehub.module.module import moduleinfo, serving
from paddlenlp.data import Pad
from paddlenlp.transformers import UnifiedTransformerLMHeadModel, UnifiedTransformerTokenizer
from unified_transformer_12L_cn_luge.utils import select_response
@moduleinfo(
name="unified_transformer_12L_cn_luge",
version="1.0.0",
summary="",
author="paddlepaddle",
author_email="",
type="nlp/text_generation",
)
class UnifiedTransformer(nn.Layer):
def __init__(self):
super(UnifiedTransformer, self).__init__()
self.model = UnifiedTransformerLMHeadModel.from_pretrained('unified_transformer-12L-cn-luge')
self.tokenizer = UnifiedTransformerTokenizer.from_pretrained('unified_transformer-12L-cn-luge')
self._interactive_mode = False
def _convert_text_to_input(self, texts: List[str], max_seq_len: int):
"""
Convert input strings to tokens.
"""
return self.tokenizer.dialogue_encode(
texts, max_seq_len=max_seq_len, add_start_token_as_response=True, is_split_into_words=False)
def _batchify(self, data: List[List[str]], max_seq_len: int, batch_size: int):
"""
Generate input batches.
"""
padding = False if batch_size == 1 else True
pad_func = Pad(pad_val=self.tokenizer.pad_token_id, pad_right=False, dtype=np.int64)
def pad_mask(batch_attention_mask):
batch_size = len(batch_attention_mask)
max_len = max(map(len, batch_attention_mask))
attention_mask = np.ones((batch_size, max_len, max_len), dtype='float32') * -1e9
for i, mask_data in enumerate(attention_mask):
seq_len = len(batch_attention_mask[i])
mask_data[-seq_len:, -seq_len:] = np.array(batch_attention_mask[i], dtype='float32')
# In order to ensure the correct broadcasting mechanism, expand one
# dimension to the second dimension (n_head of Transformer).
attention_mask = np.expand_dims(attention_mask, axis=1)
return attention_mask
def _parse_batch(batch_examples):
if padding:
input_ids = pad_func([example['input_ids'] for example in batch_examples])
token_type_ids = pad_func([example['token_type_ids'] for example in batch_examples])
position_ids = pad_func([example['position_ids'] for example in batch_examples])
attention_mask = pad_mask([example['attention_mask'] for example in batch_examples])
else:
input_ids = np.asarray([example['input_ids'] for example in batch_examples], dtype=np.int64)
token_type_ids = np.asarray([example['token_type_ids'] for example in batch_examples], dtype=np.int64)
position_ids = np.asarray([example['position_ids'] for example in batch_examples], dtype=np.int64)
attention_mask = np.asarray([example['attention_mask'] for example in batch_examples])
attention_mask = np.expand_dims(attention_mask, 0)
return input_ids, token_type_ids, position_ids, attention_mask
examples = []
for texts in data:
examples.append(self._convert_text_to_input(texts, max_seq_len))
# Seperates data into some batches.
one_batch = []
for example in examples:
one_batch.append(example)
if len(one_batch) == batch_size:
yield _parse_batch(one_batch)
one_batch = []
if one_batch:
yield _parse_batch(one_batch)
@contextlib.contextmanager
def interactive_mode(self, max_turn=3):
"""
Enter the interactive mode.
"""
self._interactive_mode = True
self.max_turn = max_turn
self.context = deque(maxlen=self.max_turn)
yield
self.context.clear()
self._interactive_mode = False
def forward(self,
input_ids,
token_type_ids,
position_ids,
attention_mask,
max_length=64,
min_length=1,
decode_strategy='sampling',
temperature=1.0,
top_k=5,
top_p=1.0,
num_beams=0,
length_penalty=1.0,
early_stopping=False,
num_return_sequences=1):
ids, scores = self.model.generate(
input_ids=input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
attention_mask=attention_mask,
max_length=max_length,
min_length=min_length,
decode_strategy=decode_strategy,
temperature=temperature,
top_k=top_k,
top_p=top_p,
num_beams=num_beams,
length_penalty=length_penalty,
early_stopping=early_stopping,
num_return_sequences=num_return_sequences)
return ids, scores
@serving
def predict(self,
data: Union[List[List[str]], str],
max_seq_len: int = 512,
batch_size: int = 1,
use_gpu: bool = False,
**kwargs):
if self._interactive_mode:
if isinstance(data, str):
self.context.append(data.strip())
data = [list(self.context)]
else:
raise ValueError("In the interactive mode, the input data should be a string.")
elif not isinstance(data, list):
raise ValueError("If not in the interactive mode, the input data should be a list.")
paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
batches = self._batchify(data, max_seq_len, batch_size)
results = []
self.eval()
for batch in batches:
input_ids, token_type_ids, position_ids, attention_mask = map(paddle.to_tensor, batch)
ids, scores = self(input_ids, token_type_ids, position_ids, attention_mask, **kwargs)
num_return_sequences = 1 if 'num_return_sequences' not in kwargs\
else kwargs['num_return_sequences']
results.extend(
select_response(
ids, scores, self.tokenizer, num_return_sequences=num_return_sequences, keep_space=False))
if self._interactive_mode:
self.context.append(results[0].strip())
return results