-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathsampler.py
284 lines (251 loc) · 12.1 KB
/
sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import numpy as np
from tqdm import tqdm
from paddlehub.common.logger import logger
from lda_news.document import LDADoc, SLDADoc, Token, Sentence
from lda_news.vose_alias import VoseAlias
from lda_news.util import rand, rand_k
class Sampler(object):
def __init__(self):
pass
def sample_doc(self, doc):
"""Sample LDA or SLDA topics for documents.
"""
raise NotImplementedError
class MHSampler(Sampler):
def __init__(self, model):
super().__init__()
self.__model = model
self.__topic_indexes = None
self.__alias_tables = None
self.__prob_sum = None
self.__beta_alias = VoseAlias()
self.__beta_prior_sum = None
self.__mh_steps = 2
self.__construct_alias_table()
def __construct_alias_table(self):
"""Construct alias table for all words.
"""
logger.info("Construct alias table for alias sampling method.")
vocab_size = self.__model.vocab_size()
self.__topic_indexes = [[] for _ in range(vocab_size)]
self.__alias_tables = [VoseAlias() for _ in range(vocab_size)]
self.__prob_sum = np.zeros(vocab_size)
# Construct each word's alias table (prior is not included).
for i in tqdm(range(vocab_size)):
dist = []
prob_sum = 0
for key in self.__model.word_topic(i):
topic_id = key
word_topic_count = self.__model.word_topic(i)[key]
topic_sum = self.__model.topic_sum_value(topic_id)
self.__topic_indexes[i].append(topic_id)
q = word_topic_count / (topic_sum + self.__model.beta_sum())
dist.append(q)
prob_sum += q
self.__prob_sum[i] = prob_sum
if len(dist) > 0:
dist = np.array(dist, dtype=np.float)
self.__alias_tables[i].initialize(dist)
# Build prior parameter beta's alias table.
beta_dist = self.__model.beta() / (self.__model.topic_sum() + self.__model.beta_sum())
self.__beta_prior_sum = np.sum(beta_dist)
self.__beta_alias.initialize(beta_dist)
def sample_doc(self, doc):
if isinstance(doc, LDADoc) and not isinstance(doc, SLDADoc):
for i in range(doc.size()):
new_topic = self.__sample_token(doc, doc.token(i))
doc.set_topic(i, new_topic)
elif isinstance(doc, SLDADoc):
for i in range(doc.size()):
new_topic = self.__sample_sentence(doc, doc.sent(i))
doc.set_topic(i, new_topic)
def __sample_token(self, doc, token):
new_topic = token.topic
for i in range(self.__mh_steps):
doc_proposed_topic = self.__doc_proposal(doc, token)
new_topic = self.__word_proposal(doc, token, doc_proposed_topic)
return new_topic
def __sample_sentence(self, doc, sent):
new_topic = sent.topic
for i in range(self.__mh_steps):
doc_proposed_topic = self.__doc_proposal(doc, sent)
new_topic = self.__word_proposal(doc, sent, doc_proposed_topic)
return new_topic
def __doc_proposal(self, doc, token):
if isinstance(doc, LDADoc) and isinstance(token, Token):
old_topic = token.topic
dart = rand() * (doc.size() + self.__model.alpha_sum())
if dart < doc.size():
token_index = int(dart)
new_topic = doc.token(token_index).topic
else:
new_topic = rand_k(self.__model.num_topics())
if new_topic != old_topic:
proposal_old = self.__doc_proposal_distribution(doc, old_topic)
proposal_new = self.__doc_proposal_distribution(doc, new_topic)
proportion_old = self.__proportional_function(doc, token, old_topic)
proportion_new = self.__proportional_function(doc, token, new_topic)
transition_prob = float((proportion_new * proposal_old) / (proportion_old * proposal_new))
rejection = rand()
mask = -(rejection < transition_prob)
return (new_topic & mask) | (old_topic & ~mask)
return new_topic
elif isinstance(doc, SLDADoc) and isinstance(token, Sentence):
sent = token
old_topic = sent.topic
dart = rand() * (doc.size() + self.__model.alpha_sum())
if dart < doc.size():
token_index = int(dart)
new_topic = doc.sent(token_index).topic
else:
new_topic = rand_k(self.__model.num_topics())
if new_topic != old_topic:
proportion_old = self.__proportional_function(doc, sent, old_topic)
proportion_new = self.__proportional_function(doc, sent, new_topic)
proposal_old = self.__doc_proposal_distribution(doc, old_topic)
proposal_new = self.__doc_proposal_distribution(doc, new_topic)
transition_prob = float((proportion_new * proposal_old) / (proportion_old * proposal_new))
rejection = rand()
mask = -(rejection < transition_prob)
return (new_topic & mask) | (old_topic & ~mask)
return new_topic
def __word_proposal(self, doc, token, old_topic):
if isinstance(doc, LDADoc) and isinstance(token, Token):
new_topic = self.__propose(token.id)
if new_topic != old_topic:
proposal_old = self.__word_proposal_distribution(token.id, old_topic)
proposal_new = self.__word_proposal_distribution(token.id, new_topic)
proportion_old = self.__proportional_function(doc, token, old_topic)
proportion_new = self.__proportional_function(doc, token, new_topic)
transition_prob = float((proportion_new * proposal_old) / (proportion_old * proposal_new))
rejection = rand()
mask = -(rejection < transition_prob)
return (new_topic & mask) | (old_topic & ~mask)
return new_topic
elif isinstance(doc, SLDADoc) and isinstance(token, Sentence):
sent = token
new_topic = old_topic
for word_id in sent.tokens:
new_topic = self.__propose(word_id)
if new_topic != old_topic:
proportion_old = self.__proportional_function(doc, sent, old_topic)
proportion_new = self.__proportional_function(doc, sent, new_topic)
proposal_old = self.__word_proposal_distribution(word_id, old_topic)
proposal_new = self.__word_proposal_distribution(word_id, new_topic)
transition_prob = float((proportion_new * proposal_old) / (proportion_old * proposal_new))
rejection = rand()
mask = -(rejection < transition_prob)
new_topic = (new_topic & mask) | (old_topic & ~mask)
return new_topic
def __proportional_function(self, doc, token, new_topic):
if isinstance(doc, LDADoc) and isinstance(token, Token):
old_topic = token.topic
dt_alpha = doc.topic_sum(new_topic) + self.__model.alpha()
wt_beta = self.__model.word_topic_value(token.id, new_topic) + self.__model.beta()
t_sum_beta_sum = self.__model.topic_sum_value(new_topic) + self.__model.beta_sum()
if new_topic == old_topic and wt_beta > 1:
if dt_alpha > 1:
dt_alpha -= 1
wt_beta -= 1
t_sum_beta_sum -= 1
return dt_alpha * wt_beta / t_sum_beta_sum
elif isinstance(doc, SLDADoc) and isinstance(token, Sentence):
sent = token
old_topic = sent.topic
result = doc.topic_sum(new_topic) + self.__model.alpha()
if new_topic == old_topic:
result -= 1
for word_id in sent.tokens:
wt_beta = self.__model.word_topic_value(word_id, new_topic) + self.__model.beta()
t_sum_beta_sum = self.__model.topic_sum_value(new_topic) + self.__model.beta_sum()
if new_topic == old_topic and wt_beta > 1:
wt_beta -= 1
t_sum_beta_sum -= 1
result *= wt_beta / t_sum_beta_sum
return result
else:
logger.error("Wrong input argument type!")
def __word_proposal_distribution(self, word_id, topic):
wt_beta = self.__model.word_topic_value(word_id, topic) + self.__model.beta()
t_sum_beta_sum = self.__model.topic_sum_value(topic) + self.__model.beta_sum()
return wt_beta / t_sum_beta_sum
def __doc_proposal_distribution(self, doc, topic):
return doc.topic_sum(topic) + self.__model.alpha()
def __propose(self, word_id):
dart = rand() * (self.__prob_sum[word_id] + self.__beta_prior_sum)
if dart < self.__prob_sum[word_id]:
idx = self.__alias_tables[word_id].generate()
topic = self.__topic_indexes[word_id][idx]
else:
topic = self.__beta_alias.generate()
return topic
class GibbsSampler(Sampler):
def __init__(self, model):
super().__init__()
self.__model = model
def sample_doc(self, doc):
if isinstance(doc, LDADoc) and not isinstance(doc, SLDADoc):
for i in range(doc.size()):
new_topic = self.__sample_token(doc, doc.token(i))
doc.set_topic(i, new_topic)
elif isinstance(doc, SLDADoc):
for i in range(doc.size()):
new_topic = self.__sample_sentence(doc, doc.sent(i))
doc.set_topic(i, new_topic)
def __sample_token(self, doc, token):
old_topic = token.topic
num_topics = self.__model.num_topics()
accum_prob = np.zeros(num_topics)
prob = np.zeros(num_topics)
sum_ = 0
for i in range(num_topics):
dt_alpha = doc.topic_sum(i) + self.__model.alpha()
wt_beta = self.__model.word_topic_value(token.id, i) + self.__model.beta()
t_sum_beta_sum = self.__model.topic_sum(i) + self.__model.beta_sum()
if i == old_topic and wt_beta > 1:
if dt_alpha > 1:
dt_alpha -= 1
wt_beta -= 1
t_sum_beta_sum -= 1
prob[i] = dt_alpha * wt_beta / t_sum_beta_sum
sum_ += prob[i]
accum_prob[i] = prob[i] if i == 0 else accum_prob[i - 1] + prob[i]
dart = rand() * sum_
if dart <= accum_prob[0]:
return 0
for i in range(1, num_topics):
if accum_prob[i - 1] < dart <= accum_prob[i]:
return i
return num_topics - 1
def __sample_sentence(self, doc, sent):
old_topic = sent.topic
num_topics = self.__model.num_topics()
accum_prob = np.zeros(num_topics)
prob = np.zeros(num_topics)
sum_ = 0
for t in range(num_topics):
dt_alpha = doc.topic_sum(t) + self.__model.alpha()
t_sum_beta_sum = self.__model.topic_sum(t) + self.__model.beta_sum()
if t == old_topic:
if dt_alpha > 1:
dt_alpha -= 1
if t_sum_beta_sum > 1:
t_sum_beta_sum -= 1
prob[t] = dt_alpha
for i in range(len(sent.tokens)):
w = sent.tokens[i]
wt_beta = self.__model.word_topic_value(w, t) + self.__model.beta()
if t == old_topic and wt_beta > 1:
wt_beta -= 1
# Note: if the length of the sentence is too long, the probability will be
# too small and the accuracy will be lost if there are too many multiply items
prob[t] *= wt_beta / t_sum_beta_sum
sum_ += prob[t]
accum_prob[t] = prob[t] if t == 0 else accum_prob[t - 1] + prob[t]
dart = rand() * sum
if dart <= accum_prob[0]:
return 0
for t in range(1, num_topics):
if accum_prob[t - 1] < dart <= accum_prob[t]:
return t
return num_topics - 1