-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathmodule.py
172 lines (158 loc) · 7.72 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict
import os
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlenlp.transformers.electra.modeling import ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel
from paddlenlp.transformers.electra.tokenizer import ElectraTokenizer
from paddlenlp.metrics import ChunkEvaluator
from paddlehub.module.module import moduleinfo
from paddlehub.module.nlp_module import TransformerModule
from paddlehub.utils.log import logger
@moduleinfo(
name="electra-small",
version="1.0.2",
summary="electra-small, 12-layer, 256-hidden, 4-heads, 14M parameters. The module is executed as paddle.dygraph.",
author="paddlepaddle",
author_email="",
type="nlp/semantic_model",
meta=TransformerModule,
)
class Electra(nn.Layer):
"""
Electra model
"""
def __init__(
self,
task: str = None,
load_checkpoint: str = None,
label_map: Dict = None,
num_classes: int = 2,
suffix: bool = False,
**kwargs,
):
super(Electra, self).__init__()
if label_map:
self.label_map = label_map
self.num_classes = len(label_map)
else:
self.num_classes = num_classes
if task == 'sequence_classification':
task = 'seq-cls'
logger.warning(
"current task name 'sequence_classification' was renamed to 'seq-cls', "
"'sequence_classification' has been deprecated and will be removed in the future.", )
if task == 'seq-cls':
self.model = ElectraForSequenceClassification.from_pretrained(
pretrained_model_name_or_path='electra-small', num_classes=self.num_classes, **kwargs)
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy()
elif task == 'token-cls':
self.model = ElectraForTokenClassification.from_pretrained(
pretrained_model_name_or_path='electra-small', num_classes=self.num_classes, **kwargs)
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = ChunkEvaluator(label_list=[self.label_map[i] for i in sorted(self.label_map.keys())], suffix=suffix)
elif task == 'text-matching':
self.model = ElectraModel.from_pretrained(pretrained_model_name_or_path='electra-small', **kwargs)
self.dropout = paddle.nn.Dropout(0.1)
self.classifier = paddle.nn.Linear(self.model.config['hidden_size'] * 3, 2)
self.criterion = paddle.nn.loss.CrossEntropyLoss()
self.metric = paddle.metric.Accuracy()
elif task is None:
self.model = ElectraModel.from_pretrained(pretrained_model_name_or_path='electra-small', **kwargs)
else:
raise RuntimeError("Unknown task {}, task should be one in {}".format(task, self._tasks_supported))
self.task = task
if load_checkpoint is not None and os.path.isfile(load_checkpoint):
state_dict = paddle.load(load_checkpoint)
self.set_state_dict(state_dict)
logger.info('Loaded parameters from %s' % os.path.abspath(load_checkpoint))
def forward(self,
input_ids=None,
token_type_ids=None,
position_ids=None,
attention_mask=None,
query_input_ids=None,
query_token_type_ids=None,
query_position_ids=None,
query_attention_mask=None,
title_input_ids=None,
title_token_type_ids=None,
title_position_ids=None,
title_attention_mask=None,
seq_lengths=None,
labels=None):
if self.task != 'text-matching':
result = self.model(input_ids, token_type_ids, position_ids, attention_mask)
else:
query_result = self.model(query_input_ids, query_token_type_ids, query_position_ids, query_attention_mask)
title_result = self.model(title_input_ids, title_token_type_ids, title_position_ids, title_attention_mask)
if self.task == 'seq-cls':
logits = result
probs = F.softmax(logits, axis=1)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, {'acc': acc}
return probs
elif self.task == 'token-cls':
logits = result
token_level_probs = F.softmax(logits, axis=-1)
preds = token_level_probs.argmax(axis=-1)
if labels is not None:
loss = self.criterion(logits, labels.unsqueeze(-1))
num_infer_chunks, num_label_chunks, num_correct_chunks = \
self.metric.compute(None, seq_lengths, preds, labels)
self.metric.update(num_infer_chunks.numpy(), num_label_chunks.numpy(), num_correct_chunks.numpy())
_, _, f1_score = map(float, self.metric.accumulate())
return token_level_probs, loss, {'f1_score': f1_score}
return token_level_probs
elif self.task == 'text-matching':
query_token_embedding = query_result
query_token_embedding = self.dropout(query_token_embedding)
query_attention_mask = paddle.unsqueeze(
(query_input_ids != self.model.pad_token_id).astype(query_token_embedding.dtype), axis=2)
query_token_embedding = query_token_embedding * query_attention_mask
query_sum_embedding = paddle.sum(query_token_embedding, axis=1)
query_sum_mask = paddle.sum(query_attention_mask, axis=1)
query_mean = query_sum_embedding / query_sum_mask
title_token_embedding = title_result
title_token_embedding = self.dropout(title_token_embedding)
title_attention_mask = paddle.unsqueeze(
(title_input_ids != self.model.pad_token_id).astype(title_token_embedding.dtype), axis=2)
title_token_embedding = title_token_embedding * title_attention_mask
title_sum_embedding = paddle.sum(title_token_embedding, axis=1)
title_sum_mask = paddle.sum(title_attention_mask, axis=1)
title_mean = title_sum_embedding / title_sum_mask
sub = paddle.abs(paddle.subtract(query_mean, title_mean))
projection = paddle.concat([query_mean, title_mean, sub], axis=-1)
logits = self.classifier(projection)
probs = F.softmax(logits)
if labels is not None:
loss = self.criterion(logits, labels)
correct = self.metric.compute(probs, labels)
acc = self.metric.update(correct)
return probs, loss, {'acc': acc}
return probs
else:
return result
@staticmethod
def get_tokenizer(*args, **kwargs):
"""
Gets the tokenizer that is customized for this module.
"""
return ElectraTokenizer.from_pretrained(pretrained_model_name_or_path='electra-small', *args, **kwargs)