-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathlayers.py
185 lines (145 loc) · 6.53 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
def SyncBatchNorm(*args, **kwargs):
"""In cpu environment nn.SyncBatchNorm does not have kernel so use nn.BatchNorm2D instead"""
if paddle.get_device() == 'cpu' or os.environ.get('PADDLESEG_EXPORT_STAGE'):
return nn.BatchNorm2D(*args, **kwargs)
else:
return nn.SyncBatchNorm(*args, **kwargs)
class ConvBNReLU(nn.Layer):
"""Basic conv bn relu layer."""
def __init__(self, in_channels: int, out_channels: int, kernel_size: int, padding: str = 'same', **kwargs):
super().__init__()
self._conv = nn.Conv2D(in_channels, out_channels, kernel_size, padding=padding, **kwargs)
self._batch_norm = SyncBatchNorm(out_channels)
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
x = self._conv(x)
x = self._batch_norm(x)
x = F.relu(x)
return x
class ConvBN(nn.Layer):
"""Basic conv bn layer."""
def __init__(self, in_channels: int, out_channels: int, kernel_size: int, padding: str = 'same', **kwargs):
super().__init__()
self._conv = nn.Conv2D(in_channels, out_channels, kernel_size, padding=padding, **kwargs)
self._batch_norm = SyncBatchNorm(out_channels)
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
x = self._conv(x)
x = self._batch_norm(x)
return x
class ConvReLUPool(nn.Layer):
"""Basic conv bn pool layer."""
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self.conv = nn.Conv2D(in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1)
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
x = self.conv(x)
x = F.relu(x)
x = F.pool2d(x, pool_size=2, pool_type="max", pool_stride=2)
return x
class SeparableConvBNReLU(nn.Layer):
"""Basic separable Convolution layer."""
def __init__(self, in_channels: int, out_channels: int, kernel_size: int, padding: str = 'same', **kwargs):
super().__init__()
self.depthwise_conv = ConvBN(
in_channels,
out_channels=in_channels,
kernel_size=kernel_size,
padding=padding,
groups=in_channels,
**kwargs)
self.piontwise_conv = ConvBNReLU(in_channels, out_channels, kernel_size=1, groups=1)
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
x = self.depthwise_conv(x)
x = self.piontwise_conv(x)
return x
class DepthwiseConvBN(nn.Layer):
"""Depthwise Convolution."""
def __init__(self, in_channels: int, out_channels: int, kernel_size: int, padding: str = 'same', **kwargs):
super().__init__()
self.depthwise_conv = ConvBN(
in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding,
groups=in_channels,
**kwargs)
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
x = self.depthwise_conv(x)
return x
class AuxLayer(nn.Layer):
"""
The auxiliary layer implementation for auxiliary loss.
Args:
in_channels (int): The number of input channels.
inter_channels (int): The intermediate channels.
out_channels (int): The number of output channels, and usually it is num_classes.
dropout_prob (float, optional): The drop rate. Default: 0.1.
"""
def __init__(self, in_channels: int, inter_channels: int, out_channels: int, dropout_prob: float = 0.1):
super().__init__()
self.conv_bn_relu = ConvBNReLU(in_channels=in_channels, out_channels=inter_channels, kernel_size=3, padding=1)
self.dropout = nn.Dropout(p=dropout_prob)
self.conv = nn.Conv2D(in_channels=inter_channels, out_channels=out_channels, kernel_size=1)
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
x = self.conv_bn_relu(x)
x = self.dropout(x)
x = self.conv(x)
return x
class Activation(nn.Layer):
"""
The wrapper of activations.
Args:
act (str, optional): The activation name in lowercase. It must be one of ['elu', 'gelu',
'hardshrink', 'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid',
'softmax', 'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax',
'hsigmoid']. Default: None, means identical transformation.
Returns:
A callable object of Activation.
Raises:
KeyError: When parameter `act` is not in the optional range.
Examples:
from paddleseg.models.common.activation import Activation
relu = Activation("relu")
print(relu)
# <class 'paddle.nn.layer.activation.ReLU'>
sigmoid = Activation("sigmoid")
print(sigmoid)
# <class 'paddle.nn.layer.activation.Sigmoid'>
not_exit_one = Activation("not_exit_one")
# KeyError: "not_exit_one does not exist in the current dict_keys(['elu', 'gelu', 'hardshrink',
# 'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid', 'softmax',
# 'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax', 'hsigmoid'])"
"""
def __init__(self, act: str = None):
super(Activation, self).__init__()
self._act = act
upper_act_names = nn.layer.activation.__dict__.keys()
lower_act_names = [act.lower() for act in upper_act_names]
act_dict = dict(zip(lower_act_names, upper_act_names))
if act is not None:
if act in act_dict.keys():
act_name = act_dict[act]
self.act_func = eval("nn.layer.activation.{}()".format(act_name))
else:
raise KeyError("{} does not exist in the current {}".format(act, act_dict.keys()))
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
if self._act is not None:
return self.act_func(x)
else:
return x