-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathmodule.py
372 lines (340 loc) · 16.9 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# -*- coding:utf-8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import ast
import os
import os.path as osp
import cv2
import numpy as np
import paddle.jit
import paddle.static
from paddle.inference import Config
from paddle.inference import create_predictor
from .data_feed import preprocess_v
from .data_feed import reader
from .optimal import postprocess_v
from .optimal import threshold_mask
from .processor import base64_to_cv2
from .processor import check_dir
from .processor import cv2_to_base64
from .processor import postprocess
from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable
from paddlehub.module.module import serving
@moduleinfo(name="humanseg_server",
type="CV/semantic_segmentation",
author="baidu-vis",
author_email="",
summary="DeepLabv3+ is a semantic segmentation model.",
version="1.4.0")
class DeeplabV3pXception65HumanSeg:
def __init__(self):
self.default_pretrained_model_path = os.path.join(self.directory, "humanseg_server_inference", "model")
self._set_config()
def _set_config(self):
"""
predictor config setting
"""
model = self.default_pretrained_model_path + '.pdmodel'
params = self.default_pretrained_model_path + '.pdiparams'
cpu_config = Config(model, params)
cpu_config.disable_glog_info()
cpu_config.disable_gpu()
self.cpu_predictor = create_predictor(cpu_config)
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
use_gpu = True
except:
use_gpu = False
if use_gpu:
gpu_config = Config(model, params)
gpu_config.disable_glog_info()
gpu_config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
if paddle.get_cudnn_version() == 8004:
gpu_config.delete_pass('conv_elementwise_add_act_fuse_pass')
gpu_config.delete_pass('conv_elementwise_add2_act_fuse_pass')
self.gpu_predictor = create_predictor(gpu_config)
def segment(self,
images=None,
paths=None,
batch_size=1,
use_gpu=False,
visualization=False,
output_dir='humanseg_server_output'):
"""
API for human segmentation.
Args:
images (list(numpy.ndarray)): images data, shape of each is [H, W, C], the color space is BGR.
paths (list[str]): The paths of images.
batch_size (int): batch size.
use_gpu (bool): Whether to use gpu.
visualization (bool): Whether to save image or not.
output_dir (str): The path to store output images.
Returns:
res (list[dict]): each element in the list is a dict, the keys and values are:
save_path (str, optional): the path to save images. (Exists only if visualization is True)
data (numpy.ndarray): data of post processed image.
"""
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
# compatibility with older versions
all_data = list()
for yield_data in reader(images, paths):
all_data.append(yield_data)
total_num = len(all_data)
loop_num = int(np.ceil(total_num / batch_size))
res = list()
for iter_id in range(loop_num):
batch_data = list()
handle_id = iter_id * batch_size
for image_id in range(batch_size):
try:
batch_data.append(all_data[handle_id + image_id])
except:
pass
# feed batch image
batch_image = np.array([data['image'] for data in batch_data])
predictor = self.gpu_predictor if use_gpu else self.cpu_predictor
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
input_handle.copy_from_cpu(batch_image.copy())
predictor.run()
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[1])
output = output_handle.copy_to_cpu()
output = np.expand_dims(output[:, 1, :, :], axis=1)
# postprocess one by one
for i in range(len(batch_data)):
out = postprocess(data_out=output[i],
org_im=batch_data[i]['org_im'],
org_im_shape=batch_data[i]['org_im_shape'],
org_im_path=batch_data[i]['org_im_path'],
output_dir=output_dir,
visualization=visualization)
res.append(out)
return res
def video_stream_segment(self, frame_org, frame_id, prev_gray, prev_cfd, use_gpu=False):
"""
API for human video segmentation.
Args:
frame_org (numpy.ndarray): frame data, shape of each is [H, W, C], the color space is BGR.
frame_id (int): index of the frame to be decoded.
prev_gray (numpy.ndarray): gray scale image of last frame, shape of each is [H, W]
prev_cfd (numpy.ndarray): fusion image from optical flow image and segment result, shape of each is [H, W]
use_gpu (bool): Whether to use gpu.
Returns:
img_matting (numpy.ndarray): data of segmentation mask.
cur_gray (numpy.ndarray): gray scale image of current frame, shape of each is [H, W]
optflow_map (numpy.ndarray): optical flow image of current frame, shape of each is [H, W]
"""
resize_h = 512
resize_w = 512
is_init = True
width = int(frame_org.shape[0])
height = int(frame_org.shape[1])
disflow = cv2.DISOpticalFlow_create(cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
frame = preprocess_v(frame_org, resize_w, resize_h)
predictor = self.gpu_predictor if use_gpu else self.cpu_predictor
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
input_handle.copy_from_cpu(frame.copy()[None, ...])
predictor.run()
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[1])
score_map = output_handle.copy_to_cpu()
frame = np.transpose(frame, axes=[1, 2, 0])
score_map = np.transpose(np.squeeze(score_map, 0), axes=[1, 2, 0])
cur_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cur_gray = cv2.resize(cur_gray, (resize_w, resize_h))
score_map = 255 * score_map[:, :, 1]
if frame_id == 1:
prev_gray = np.zeros((resize_h, resize_w), np.uint8)
prev_cfd = np.zeros((resize_h, resize_w), np.float32)
optflow_map = postprocess_v(cur_gray, score_map, prev_gray, prev_cfd, disflow, is_init)
else:
optflow_map = postprocess_v(cur_gray, score_map, prev_gray, prev_cfd, disflow, is_init)
optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
optflow_map = threshold_mask(optflow_map, thresh_bg=0.2, thresh_fg=0.8)
img_matting = cv2.resize(optflow_map, (height, width), cv2.INTER_LINEAR)
return [img_matting, cur_gray, optflow_map]
def video_segment(self, video_path=None, use_gpu=False, save_dir='humanseg_server_video_result'):
resize_h = 512
resize_w = 512
if not video_path:
cap_video = cv2.VideoCapture(0)
else:
cap_video = cv2.VideoCapture(video_path)
if not cap_video.isOpened():
raise IOError("Error opening video stream or file, "
"--video_path whether existing: {}"
" or camera whether working".format(video_path))
width = int(cap_video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
disflow = cv2.DISOpticalFlow_create(cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
prev_gray = np.zeros((resize_h, resize_w), np.uint8)
prev_cfd = np.zeros((resize_h, resize_w), np.float32)
is_init = True
fps = cap_video.get(cv2.CAP_PROP_FPS)
if video_path is not None:
print('Please wait. It is computing......')
if not osp.exists(save_dir):
os.makedirs(save_dir)
save_path = osp.join(save_dir, 'result' + '.avi')
cap_out = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, (width, height))
while cap_video.isOpened():
ret, frame_org = cap_video.read()
if ret:
frame = preprocess_v(frame_org, resize_w, resize_h)
predictor = self.gpu_predictor if use_gpu else self.cpu_predictor
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
input_handle.copy_from_cpu(frame.copy()[None, ...])
predictor.run()
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[1])
score_map = output_handle.copy_to_cpu()
frame = np.transpose(frame, axes=[1, 2, 0])
score_map = np.transpose(np.squeeze(score_map, 0), axes=[1, 2, 0])
cur_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cur_gray = cv2.resize(cur_gray, (resize_w, resize_h))
score_map = 255 * score_map[:, :, 1]
optflow_map = postprocess_v(cur_gray, score_map, prev_gray, prev_cfd, disflow, is_init)
prev_gray = cur_gray.copy()
prev_cfd = optflow_map.copy()
optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
optflow_map = threshold_mask(optflow_map, thresh_bg=0.2, thresh_fg=0.8)
img_matting = cv2.resize(optflow_map, (width, height), cv2.INTER_LINEAR)
img_matting = np.repeat(img_matting[:, :, np.newaxis], 3, axis=2)
bg_im = np.ones_like(img_matting) * 255
comb = (img_matting * frame_org + (1 - img_matting) * bg_im).astype(np.uint8)
cap_out.write(comb)
else:
break
cap_video.release()
cap_out.release()
else:
while cap_video.isOpened():
ret, frame_org = cap_video.read()
if ret:
frame = preprocess_v(frame_org, resize_w, resize_h)
predictor = self.gpu_predictor if use_gpu else self.cpu_predictor
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
input_handle.copy_from_cpu(frame.copy()[None, ...])
predictor.run()
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[1])
score_map = output_handle.copy_to_cpu()
frame = np.transpose(frame, axes=[1, 2, 0])
score_map = np.transpose(np.squeeze(score_map, 0), axes=[1, 2, 0])
cur_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
cur_gray = cv2.resize(cur_gray, (resize_w, resize_h))
score_map = 255 * score_map[:, :, 1]
optflow_map = postprocess_v(cur_gray, score_map, prev_gray, prev_cfd, disflow, is_init)
prev_gray = cur_gray.copy()
prev_cfd = optflow_map.copy()
optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
optflow_map = threshold_mask(optflow_map, thresh_bg=0.2, thresh_fg=0.8)
img_matting = cv2.resize(optflow_map, (width, height), cv2.INTER_LINEAR)
img_matting = np.repeat(img_matting[:, :, np.newaxis], 3, axis=2)
bg_im = np.ones_like(img_matting) * 255
comb = (img_matting * frame_org + (1 - img_matting) * bg_im).astype(np.uint8)
cv2.imshow('HumanSegmentation', comb)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
cap_video.release()
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.segment(images=images_decode, **kwargs)
results = [{'data': cv2_to_base64(result['data'])} for result in results]
return results
@runnable
def run_cmd(self, argvs):
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
args = self.parser.parse_args(argvs)
results = self.segment(paths=[args.input_path],
batch_size=args.batch_size,
use_gpu=args.use_gpu,
output_dir=args.output_dir,
visualization=args.visualization)
if args.save_dir is not None:
check_dir(args.save_dir)
self.save_inference_model(args.save_dir)
return results
def add_module_config_arg(self):
"""
Add the command config options.
"""
self.arg_config_group.add_argument('--use_gpu',
type=ast.literal_eval,
default=False,
help="whether use GPU or not")
self.arg_config_group.add_argument('--output_dir',
type=str,
default='humanseg_server_output',
help="The directory to save output images.")
self.arg_config_group.add_argument('--save_dir',
type=str,
default='humanseg_server_model',
help="The directory to save model.")
self.arg_config_group.add_argument('--visualization',
type=ast.literal_eval,
default=False,
help="whether to save output as images.")
self.arg_config_group.add_argument('--batch_size', type=ast.literal_eval, default=1, help="batch size.")
def add_module_input_arg(self):
"""
Add the command input options.
"""
self.arg_input_group.add_argument('--input_path', type=str, help="path to image.")
def create_gradio_app(self):
import gradio as gr
import tempfile
import os
from PIL import Image
def inference(image, use_gpu=False):
with tempfile.TemporaryDirectory() as temp_dir:
self.segment(paths=[image], use_gpu=use_gpu, visualization=True, output_dir=temp_dir)
return Image.open(os.path.join(temp_dir, os.listdir(temp_dir)[0]))
interface = gr.Interface(
inference,
[gr.inputs.Image(type="filepath"), gr.Checkbox(label='use_gpu')],
gr.outputs.Image(type="ndarray"),
title='humanseg_server')
return interface