-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathmodule.py
104 lines (91 loc) · 4.36 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# coding=utf-8
from __future__ import absolute_import
import ast
import argparse
import os
from functools import partial
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub
from paddle.fluid.core import PaddleTensor, AnalysisConfig, create_paddle_predictor
from paddlehub.module.module import moduleinfo, runnable, serving
from paddlehub.common.paddle_helper import add_vars_prefix
from yolov3_darknet53_venus.darknet import DarkNet
from yolov3_darknet53_venus.processor import load_label_info, postprocess, base64_to_cv2
from yolov3_darknet53_venus.data_feed import reader
from yolov3_darknet53_venus.yolo_head import MultiClassNMS, YOLOv3Head
@moduleinfo(
name="yolov3_darknet53_venus",
version="1.0.0",
type="CV/object_detection",
summary="Baidu's YOLOv3 model for object detection, with backbone DarkNet53, trained with Baidu self-built dataset.",
author="paddlepaddle",
author_email="[email protected]")
class YOLOv3DarkNet53Venus(hub.Module):
def _initialize(self):
self.default_pretrained_model_path = os.path.join(self.directory, "yolov3_darknet53_model")
def context(self, trainable=True, pretrained=True, get_prediction=False):
"""
Distill the Head Features, so as to perform transfer learning.
Args:
trainable (bool): whether to set parameters trainable.
pretrained (bool): whether to load default pretrained model.
get_prediction (bool): whether to get prediction.
Returns:
inputs(dict): the input variables.
outputs(dict): the output variables.
context_prog (Program): the program to execute transfer learning.
"""
context_prog = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(context_prog, startup_program):
with fluid.unique_name.guard():
# image
image = fluid.layers.data(name='image', shape=[3, 608, 608], dtype='float32')
# backbone
backbone = DarkNet(norm_type='bn', norm_decay=0., depth=53)
# body_feats
body_feats = backbone(image)
# im_size
im_size = fluid.layers.data(name='im_size', shape=[2], dtype='int32')
# yolo_head
yolo_head = YOLOv3Head(num_classes=708)
# head_features
head_features, body_features = yolo_head._get_outputs(body_feats, is_train=trainable)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
# var_prefix
var_prefix = '@HUB_{}@'.format(self.name)
# name of inputs
inputs = {'image': var_prefix + image.name, 'im_size': var_prefix + im_size.name}
# name of outputs
if get_prediction:
bbox_out = yolo_head.get_prediction(head_features, im_size)
outputs = {'bbox_out': [var_prefix + bbox_out.name]}
else:
outputs = {
'head_features': [var_prefix + var.name for var in head_features],
'body_features': [var_prefix + var.name for var in body_features]
}
# add_vars_prefix
add_vars_prefix(context_prog, var_prefix)
add_vars_prefix(fluid.default_startup_program(), var_prefix)
# inputs
inputs = {key: context_prog.global_block().vars[value] for key, value in inputs.items()}
# outputs
outputs = {
key: [context_prog.global_block().vars[varname] for varname in value]
for key, value in outputs.items()
}
# trainable
for param in context_prog.global_block().iter_parameters():
param.trainable = trainable
# pretrained
if pretrained:
def _if_exist(var):
return os.path.exists(os.path.join(self.default_pretrained_model_path, var.name))
fluid.io.load_vars(exe, self.default_pretrained_model_path, predicate=_if_exist)
else:
exe.run(startup_program)
return inputs, outputs, context_prog