-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathdata_feed.py
71 lines (57 loc) · 1.96 KB
/
data_feed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# coding=utf-8
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import os
import cv2
import numpy as np
__all__ = ['reader']
def reader(paths=[], images=None):
"""
data generator
Args:
paths (list[str]): paths to images.
images (list(numpy.ndarray)): data of images, shape of each is [H, W, C]
Yield:
res (list): preprocessed image and the size of original image.
"""
img_list = []
if paths:
assert type(paths) is list, "type(paths) is not list."
for img_path in paths:
assert os.path.isfile(
img_path), "The {} isn't a valid file path.".format(img_path)
img = cv2.imread(img_path).astype('float32')
img_list.append(img)
if images is not None:
for img in images:
img_list.append(img)
for im in img_list:
# im_size
im_shape = im.shape
im_size = np.array([im_shape[0], im_shape[1]], dtype=np.int32)
# decode image
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
# resize image
target_size = 608
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
if float(im_size_min) == 0:
raise ZeroDivisionError('min size of image is 0')
im_scale_x = float(target_size) / float(im_shape[1])
im_scale_y = float(target_size) / float(im_shape[0])
im = cv2.resize(
im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=2)
# normalize image
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
im = im.astype(np.float32, copy=False)
mean = np.array(mean)[np.newaxis, np.newaxis, :]
std = np.array(std)[np.newaxis, np.newaxis, :]
im = im / 255.0
im -= mean
im /= std
# permute
im = np.swapaxes(im, 1, 2)
im = np.swapaxes(im, 1, 0)
yield [im, im_size]