-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathmodule.py
225 lines (199 loc) · 8.31 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import ast
import argparse
from math import ceil
import paddle
import numpy as np
import paddle.static
from paddlehub.module.module import moduleinfo, runnable, serving
from paddle.inference import Config, create_predictor
from paddlehub.utils.parser import txt_parser
from .processor import load_label_info, postprocess, base64_to_cv2
from .data_feed import test_reader, padding_minibatch
@moduleinfo(
name="faster_rcnn_resnet50_coco2017",
version="1.2.0",
type="cv/object_detection",
summary=
"Baidu's Faster R-CNN model for object detection with backbone ResNet50, trained with dataset COCO2017",
author="paddlepaddle",
author_email="[email protected]")
class FasterRCNNResNet50:
def __init__(self):
# default pretrained model, Faster-RCNN with backbone ResNet50, shape of input tensor is [3, 800, 1333]
self.default_pretrained_model_path = os.path.join(
self.directory, "faster_rcnn_resnet50_model", "model")
self.label_names = load_label_info(
os.path.join(self.directory, "label_file.txt"))
self._set_config()
def _set_config(self):
"""
predictor config setting
"""
model = self.default_pretrained_model_path+'.pdmodel'
params = self.default_pretrained_model_path+'.pdiparams'
cpu_config = Config(model, params)
cpu_config.disable_glog_info()
cpu_config.disable_gpu()
self.cpu_predictor = create_predictor(cpu_config)
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
use_gpu = True
except:
use_gpu = False
if use_gpu:
gpu_config = Config(model, params)
gpu_config.disable_glog_info()
gpu_config.enable_use_gpu(memory_pool_init_size_mb=500, device_id=0)
self.gpu_predictor = create_predictor(gpu_config)
def object_detection(self,
paths=None,
images=None,
use_gpu=False,
batch_size=1,
output_dir='detection_result',
score_thresh=0.5,
visualization=True):
"""API of Object Detection.
Args:
paths (list[str]): The paths of images.
images (list(numpy.ndarray)): images data, shape of each is [H, W, C]
batch_size (int): batch size.
use_gpu (bool): Whether to use gpu.
output_dir (str): The path to store output images.
visualization (bool): Whether to save image or not.
score_thresh (float): threshold for object detecion.
Returns:
res (list[dict]): The result of coco2017 detecion. keys include 'data', 'save_path', the corresponding value is:
data (dict): the result of object detection, keys include 'left', 'top', 'right', 'bottom', 'label', 'confidence', the corresponding value is:
left (float): The X coordinate of the upper left corner of the bounding box;
top (float): The Y coordinate of the upper left corner of the bounding box;
right (float): The X coordinate of the lower right corner of the bounding box;
bottom (float): The Y coordinate of the lower right corner of the bounding box;
label (str): The label of detection result;
confidence (float): The confidence of detection result.
save_path (str, optional): The path to save output images.
"""
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
except:
raise RuntimeError(
"Attempt to use GPU for prediction, but environment variable CUDA_VISIBLE_DEVICES was not set correctly."
)
paths = paths if paths else list()
all_images = list()
for yield_return in test_reader(paths, images):
all_images.append(yield_return)
images_num = len(all_images)
loop_num = ceil(images_num / batch_size)
res = []
for iter_id in range(loop_num):
batch_data = []
handle_id = iter_id * batch_size
for image_id in range(batch_size):
try:
batch_data.append(all_images[handle_id + image_id])
except:
pass
padding_image, padding_info, padding_shape = padding_minibatch(
batch_data)
predictor = self.gpu_predictor if use_gpu else self.cpu_predictor
feed_list = [
padding_image, padding_info, padding_shape
]
input_names = predictor.get_input_names()
for i, input_name in enumerate(input_names):
data = np.asarray(feed_list[i], dtype=np.float32)
handle = predictor.get_input_handle(input_name)
handle.copy_from_cpu(data)
predictor.run()
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[0])
output = postprocess(
paths=paths,
images=images,
data_out=output_handle,
score_thresh=score_thresh,
label_names=self.label_names,
output_dir=output_dir,
handle_id=handle_id,
visualization=visualization)
res += output
return res
def add_module_config_arg(self):
"""
Add the command config options
"""
self.arg_config_group.add_argument(
'--use_gpu',
type=ast.literal_eval,
default=False,
help="whether use GPU or not")
self.arg_config_group.add_argument(
'--batch_size',
type=int,
default=1,
help="batch size for prediction")
def add_module_input_arg(self):
"""
Add the command input options
"""
self.arg_input_group.add_argument(
'--input_path', type=str, default=None, help="input data")
self.arg_input_group.add_argument(
'--input_file',
type=str,
default=None,
help="file contain input data")
def check_input_data(self, args):
input_data = []
if args.input_path:
input_data = [args.input_path]
elif args.input_file:
if not os.path.exists(args.input_file):
raise RuntimeError("File %s is not exist." % args.input_file)
else:
input_data = txt_parser.parse(args.input_file, use_strip=True)
return input_data
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.object_detection(images=images_decode, **kwargs)
return results
@runnable
def run_cmd(self, argvs):
self.parser = argparse.ArgumentParser(
description="Run the {}".format(self.name),
prog="hub run {}".format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(
title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options",
description=
"Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
args = self.parser.parse_args(argvs)
input_data = self.check_input_data(args)
if len(input_data) == 0:
self.parser.print_help()
exit(1)
else:
for image_path in input_data:
if not os.path.exists(image_path):
raise RuntimeError(
"File %s or %s is not exist." % image_path)
return self.object_detection(
paths=input_data, use_gpu=args.use_gpu, batch_size=args.batch_size)