-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathtest.py
81 lines (65 loc) · 2.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import shutil
import unittest
import cv2
import numpy as np
import requests
import paddlehub as hub
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
class TestHubModule(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
img_url = 'https://ai-studio-static-online.cdn.bcebos.com/7799a8ccc5f6471b9d56fb6eff94f82a08b70ca2c7594d3f99877e366c0a2619'
if not os.path.exists('tests'):
os.makedirs('tests')
response = requests.get(img_url)
assert response.status_code == 200, 'Network Error.'
with open('tests/test.jpg', 'wb') as f:
f.write(response.content)
cls.module = hub.Module(name="solov2")
@classmethod
def tearDownClass(cls) -> None:
shutil.rmtree('tests')
shutil.rmtree('inference')
shutil.rmtree('solov2_result')
def test_predict1(self):
results = self.module.predict(image='tests/test.jpg', visualization=False)
segm = results['segm']
label = results['label']
score = results['score']
self.assertIsInstance(segm, np.ndarray)
self.assertIsInstance(label, np.ndarray)
self.assertIsInstance(score, np.ndarray)
def test_predict2(self):
results = self.module.predict(image=cv2.imread('tests/test.jpg'), visualization=False)
segm = results['segm']
label = results['label']
score = results['score']
self.assertIsInstance(segm, np.ndarray)
self.assertIsInstance(label, np.ndarray)
self.assertIsInstance(score, np.ndarray)
def test_predict3(self):
results = self.module.predict(image=cv2.imread('tests/test.jpg'), visualization=True)
segm = results['segm']
label = results['label']
score = results['score']
self.assertIsInstance(segm, np.ndarray)
self.assertIsInstance(label, np.ndarray)
self.assertIsInstance(score, np.ndarray)
def test_predict4(self):
module = hub.Module(name="solov2", use_gpu=True)
results = module.predict(image=cv2.imread('tests/test.jpg'), visualization=True)
segm = results['segm']
label = results['label']
score = results['score']
self.assertIsInstance(segm, np.ndarray)
self.assertIsInstance(label, np.ndarray)
self.assertIsInstance(score, np.ndarray)
def test_predict5(self):
self.assertRaises(FileNotFoundError, self.module.predict, image='no.jpg')
def test_save_inference_model(self):
self.module.save_inference_model('./inference/model')
self.assertTrue(os.path.exists('./inference/model.pdmodel'))
self.assertTrue(os.path.exists('./inference/model.pdiparams'))
if __name__ == "__main__":
unittest.main()