-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathmodule.py
271 lines (241 loc) · 10.8 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
import argparse
import ast
import os
import numpy as np
from paddle.inference import Config
from paddle.inference import create_predictor
import paddlehub as hub
from .data_feed import reader
from .processor import base64_to_cv2
from .processor import postprocess
from paddlehub.module.module import moduleinfo
from paddlehub.module.module import runnable
from paddlehub.module.module import serving
@moduleinfo(
name="pyramidbox_lite_mobile_mask",
type="CV/face_detection",
author="baidu-vis",
author_email="",
summary=
"Pyramidbox-Lite-Mobile-Mask is a high-performance face detection model used to detect whether people wear masks.",
version="1.5.0")
class PyramidBoxLiteMobileMask:
def __init__(self, face_detector_module=None):
"""
Args:
face_detector_module (class): module to detect face.
"""
self.default_pretrained_model_path = os.path.join(self.directory, "pyramidbox_lite_mobile_mask_model", "model")
if face_detector_module is None:
self.face_detector = hub.Module(name='pyramidbox_lite_mobile')
else:
self.face_detector = face_detector_module
self._set_config()
self.processor = self
def _set_config(self):
"""
predictor config setting
"""
model = self.default_pretrained_model_path + '.pdmodel'
params = self.default_pretrained_model_path + '.pdiparams'
cpu_config = Config(model, params)
cpu_config.disable_glog_info()
cpu_config.disable_gpu()
self.cpu_predictor = create_predictor(cpu_config)
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
use_gpu = True
except:
use_gpu = False
if use_gpu:
gpu_config = Config(model, params)
gpu_config.disable_glog_info()
gpu_config.enable_use_gpu(memory_pool_init_size_mb=1000, device_id=0)
self.gpu_predictor = create_predictor(gpu_config)
def set_face_detector_module(self, face_detector_module):
"""
Set face detector.
Args:
face_detector_module (class): module to detect face.
"""
self.face_detector = face_detector_module
def get_face_detector_module(self):
return self.face_detector
def face_detection(self,
images=None,
paths=None,
data=None,
batch_size=1,
use_gpu=False,
visualization=False,
output_dir='detection_result',
use_multi_scale=False,
shrink=0.5,
confs_threshold=0.6):
"""
API for face detection.
Args:
images (list(numpy.ndarray)): images data, shape of each is [H, W, C], color space must be BGR.
paths (list[str]): The paths of images.
batch_size (int): batch size of image tensor to be fed into the later classification network.
use_gpu (bool): Whether to use gpu.
visualization (bool): Whether to save image or not.
output_dir (str): The path to store output images.
use_multi_scale (bool): whether to enable multi-scale face detection. Enabling multi-scale face detection
can increase the accuracy to detect faces, however,
it reduce the prediction speed for the increase model calculation.
shrink (float): parameter to control the resize scale in preprocess.
confs_threshold (float): confidence threshold.
Returns:
res (list[dict]): The result of face detection and save path of images.
"""
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
# compatibility with older versions
if data:
if 'image' in data:
if paths is None:
paths = list()
paths += data['image']
elif 'data' in data:
if images is None:
images = list()
images += data['data']
# get all data
all_element = list()
for yield_data in reader(self.face_detector, shrink, confs_threshold, images, paths, use_gpu, use_multi_scale):
all_element.append(yield_data)
image_list = list()
element_image_num = list()
for i in range(len(all_element)):
element_image = [handled['image'] for handled in all_element[i]['preprocessed']]
element_image_num.append(len(element_image))
image_list.extend(element_image)
total_num = len(image_list)
loop_num = int(np.ceil(total_num / batch_size))
predict_out = np.zeros((1, 2))
for iter_id in range(loop_num):
batch_data = list()
handle_id = iter_id * batch_size
for element_id in range(batch_size):
try:
batch_data.append(image_list[handle_id + element_id])
except:
pass
image_arr = np.squeeze(np.array(batch_data), axis=1)
predictor = self.gpu_predictor if use_gpu else self.cpu_predictor
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
input_handle.copy_from_cpu(image_arr)
predictor.run()
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[0])
output_data = output_handle.copy_to_cpu()
predict_out = np.concatenate((predict_out, output_data))
predict_out = predict_out[1:]
# postprocess one by one
res = list()
for i in range(len(all_element)):
detect_faces_list = [handled['face'] for handled in all_element[i]['preprocessed']]
interval_left = sum(element_image_num[0:i])
interval_right = interval_left + element_image_num[i]
out = postprocess(confidence_out=predict_out[interval_left:interval_right],
org_im=all_element[i]['org_im'],
org_im_path=all_element[i]['org_im_path'],
detected_faces=detect_faces_list,
output_dir=output_dir,
visualization=visualization)
res.append(out)
return res
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.face_detection(images_decode, **kwargs)
return results
@runnable
def run_cmd(self, argvs):
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
args = self.parser.parse_args(argvs)
results = self.face_detection(paths=[args.input_path],
use_gpu=args.use_gpu,
output_dir=args.output_dir,
visualization=args.visualization,
shrink=args.shrink,
confs_threshold=args.confs_threshold)
return results
def add_module_config_arg(self):
"""
Add the command config options.
"""
self.arg_config_group.add_argument('--use_gpu',
type=ast.literal_eval,
default=False,
help="whether use GPU or not")
self.arg_config_group.add_argument('--output_dir',
type=str,
default='detection_result',
help="The directory to save output images.")
self.arg_config_group.add_argument('--visualization',
type=ast.literal_eval,
default=False,
help="whether to save output as images.")
def add_module_input_arg(self):
"""
Add the command input options.
"""
self.arg_input_group.add_argument('--input_path', type=str, help="path to image.")
self.arg_input_group.add_argument(
'--shrink',
type=ast.literal_eval,
default=0.5,
help="resize the image to `shrink * original_shape` before feeding into network.")
self.arg_input_group.add_argument('--confs_threshold',
type=ast.literal_eval,
default=0.6,
help="confidence threshold.")
def create_gradio_app(self):
import gradio as gr
import tempfile
import os
from PIL import Image
def inference(image, shrink, confs_threshold):
with tempfile.TemporaryDirectory() as temp_dir:
self.face_detection(paths=[image],
use_gpu=False,
visualization=True,
output_dir=temp_dir,
shrink=shrink,
confs_threshold=confs_threshold)
return Image.open(os.path.join(temp_dir, os.listdir(temp_dir)[0]))
interface = gr.Interface(inference, [
gr.inputs.Image(type="filepath"),
gr.Slider(0.0, 1.0, 0.5, step=0.01),
gr.Slider(0.0, 1.0, 0.6, step=0.01)
],
gr.outputs.Image(type="ndarray"),
title='pyramidbox_lite_mobile_mask')
return interface