-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathmodule.py
155 lines (136 loc) · 6.29 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import copy
import paddle
import paddlehub as hub
from paddlehub.module.module import moduleinfo, runnable, serving
import numpy as np
import cv2
from skimage.io import imread
from skimage.transform import rescale, resize
from .model import StyleGANv2EditingPredictor
from .util import base64_to_cv2
@moduleinfo(
name="styleganv2_editing",
type="CV/style_transfer",
author="paddlepaddle",
author_email="",
summary="",
version="1.0.0")
class styleganv2_editing:
def __init__(self):
self.pretrained_model = os.path.join(self.directory, "stylegan2-ffhq-config-f-directions.pdparams")
self.network = StyleGANv2EditingPredictor(direction_path=self.pretrained_model, model_type='ffhq-config-f')
self.pixel2style2pixel_module = hub.Module(name='pixel2style2pixel')
def generate(self,
images=None,
paths=None,
direction_name='age',
direction_offset=0.0,
output_dir='./editing_result/',
use_gpu=False,
visualization=True):
'''
images (list[numpy.ndarray]): data of images, shape of each is [H, W, C], color space must be BGR(read by cv2).
paths (list[str]): paths to image.
direction_name(str): Attribute to be manipulated,For ffhq-conf-f, we have: age, eyes_open, eye_distance, eye_eyebrow_distance, eye_ratio, gender, lip_ratio, mouth_open, mouth_ratio, nose_mouth_distance, nose_ratio, nose_tip, pitch, roll, smile, yaw.
direction_offset(float): Offset strength of the attribute.
output_dir: the dir to save the results
use_gpu: if True, use gpu to perform the computation, otherwise cpu.
visualization: if True, save results in output_dir.
'''
results = []
paddle.disable_static()
place = 'gpu:0' if use_gpu else 'cpu'
place = paddle.set_device(place)
if images == None and paths == None:
print('No image provided. Please input an image or a image path.')
return
if images != None:
for image in images:
image = image[:, :, ::-1]
_, latent = self.pixel2style2pixel_module.network.run(image)
out = self.network.run(latent, direction_name, direction_offset)
results.append(out)
if paths != None:
for path in paths:
image = cv2.imread(path)[:, :, ::-1]
_, latent = self.pixel2style2pixel_module.network.run(image)
out = self.network.run(latent, direction_name, direction_offset)
results.append(out)
if visualization == True:
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
for i, out in enumerate(results):
if out is not None:
cv2.imwrite(os.path.join(output_dir, 'src_{}.png'.format(i)), out[0][:, :, ::-1])
cv2.imwrite(os.path.join(output_dir, 'dst_{}.png'.format(i)), out[1][:, :, ::-1])
np.save(os.path.join(output_dir, 'dst_{}.npy'.format(i)), out[2])
return results
@runnable
def run_cmd(self, argvs: list):
"""
Run as a command.
"""
self.parser = argparse.ArgumentParser(
description="Run the {} module.".format(self.name),
prog='hub run {}'.format(self.name),
usage='%(prog)s',
add_help=True)
self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required")
self.arg_config_group = self.parser.add_argument_group(
title="Config options", description="Run configuration for controlling module behavior, not required.")
self.add_module_config_arg()
self.add_module_input_arg()
self.args = self.parser.parse_args(argvs)
results = self.generate(
paths=[self.args.input_path],
direction_name=self.args.direction_name,
direction_offset=self.args.direction_offset,
output_dir=self.args.output_dir,
use_gpu=self.args.use_gpu,
visualization=self.args.visualization)
return results
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.generate(images=images_decode, **kwargs)
tolist = [result.tolist() for result in results]
return tolist
def add_module_config_arg(self):
"""
Add the command config options.
"""
self.arg_config_group.add_argument('--use_gpu', action='store_true', help="use GPU or not")
self.arg_config_group.add_argument(
'--output_dir', type=str, default='editing_result', help='output directory for saving result.')
self.arg_config_group.add_argument('--visualization', type=bool, default=False, help='save results or not.')
def add_module_input_arg(self):
"""
Add the command input options.
"""
self.arg_input_group.add_argument('--input_path', type=str, help="path to input image.")
self.arg_input_group.add_argument(
'--direction_name',
type=str,
default='age',
help=
"Attribute to be manipulated,For ffhq-conf-f, we have: age, eyes_open, eye_distance, eye_eyebrow_distance, eye_ratio, gender, lip_ratio, mouth_open, mouth_ratio, nose_mouth_distance, nose_ratio, nose_tip, pitch, roll, smile, yaw."
)
self.arg_input_group.add_argument('--direction_offset', type=float, help="Offset strength of the attribute.")