-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathmodule.py
182 lines (161 loc) · 6.81 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# -*- coding:utf-8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import copy
import paddle
import numpy as np
from paddle.inference import Config, create_predictor
from paddlehub.module.module import moduleinfo, serving
from .data_feed import reader
from .processor import postprocess, base64_to_cv2, cv2_to_base64
def check_attribute_conflict(label_batch):
''' Based on https://github.com/LynnHo/AttGAN-Tensorflow'''
attrs = "Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young".split(
',')
def _set(label, value, attr):
if attr in attrs:
label[attrs.index(attr)] = value
attr_id = attrs.index('Bald')
for label in label_batch:
if attrs[attr_id] != 0:
_set(label, 0, 'Bangs')
return label_batch
@moduleinfo(
name="stgan_bald",
version="1.1.0",
summary="Baldness generator",
author="Arrow, 七年期限,Mr.郑先生_",
author_email="[email protected],[email protected]",
type="image/gan")
class StganBald:
def __init__(self):
self.default_pretrained_model_path = os.path.join(
self.directory, "module", "model")
self._set_config()
def _set_config(self):
"""
predictor config setting
"""
model = self.default_pretrained_model_path+'.pdmodel'
params = self.default_pretrained_model_path+'.pdiparams'
cpu_config = Config(model, params)
cpu_config.disable_glog_info()
cpu_config.disable_gpu()
self.cpu_predictor = create_predictor(cpu_config)
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
use_gpu = True
self.place = paddle.CUDAPlace(0)
except:
use_gpu = False
self.place = paddle.CPUPlace()
if use_gpu:
gpu_config = Config(model, params)
gpu_config.disable_glog_info()
gpu_config.enable_use_gpu(
memory_pool_init_size_mb=1000, device_id=0)
self.gpu_predictor = create_predictor(gpu_config)
def bald(self,
images=None,
paths=None,
data=None,
use_gpu=False,
org_labels=[[0., 0., 1., 0., 0., 1., 1., 1., 0., 0., 0., 0., 1.]],
target_labels=None,
visualization=True,
output_dir="bald_output"):
"""
API for super resolution.
Args:
images (list(numpy.ndarray)): images data, shape of each is [H, W, C], the color space is BGR.
paths (list[str]): The paths of images.
data (dict): key is 'image', the corresponding value is the path to image.
use_gpu (bool): Whether to use gpu.
visualization (bool): Whether to save image or not.
output_dir (str): The path to store output images.
Returns:
res (list[dict]): each element in the list is a dict, the keys and values are:
save_path (str, optional): the path to save images. (Exists only if visualization is True)
data (numpy.ndarray): data of post processed image.
"""
if use_gpu:
try:
_places = os.environ["CUDA_VISIBLE_DEVICES"]
int(_places[0])
except:
raise RuntimeError(
"Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES as cuda_device_id."
)
if data and 'image' in data:
if paths is None:
paths = list()
paths += data['image']
all_data = list()
for yield_data in reader(images, paths, org_labels, target_labels):
all_data.append(yield_data)
total_num = len(all_data)
res = list()
outputs = []
for i in range(total_num):
image_np = all_data[i]['img']
org_label_np = [all_data[i]['org_label']]
target_label_np = [all_data[i]['target_label']]
for j in range(5):
if j % 2 == 0:
label_trg_tmp = copy.deepcopy(target_label_np)
new_i = 0
label_trg_tmp[0][new_i] = 1.0 - label_trg_tmp[0][new_i]
label_trg_tmp = check_attribute_conflict(
label_trg_tmp)
change_num = j * 0.02 + 0.3
label_org_tmp = list(
map(lambda x: ((x * 2) - 1) * change_num, org_label_np))
label_trg_tmp = list(
map(lambda x: ((x * 2) - 1) * change_num, label_trg_tmp))
predictor = self.gpu_predictor if use_gpu else self.cpu_predictor
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
input_handle.copy_from_cpu(image_np.copy())
input_handle = predictor.get_input_handle(input_names[1])
input_handle.copy_from_cpu(
np.array(label_org_tmp).astype('float32'))
input_handle = predictor.get_input_handle(input_names[2])
input_handle.copy_from_cpu(
np.array(label_trg_tmp).astype('float32'))
predictor.run()
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(
output_names[0])
outputs.append(output_handle)
out = postprocess(
data_out=outputs,
org_im=all_data[i]['org_im'],
org_im_path=all_data[i]['org_im_path'],
output_dir=output_dir,
visualization=visualization)
res.append(out)
return res
@serving
def serving_method(self, images, **kwargs):
"""
Run as a service.
"""
images_decode = [base64_to_cv2(image) for image in images]
results = self.bald(images=images_decode, **kwargs)
output = {}
for key, value in results[0].items():
output[key] = cv2_to_base64(value)
return output