We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
【FastDeploy版本】: 说明具体的版本,如fastdeploy-'1.0.5'
【编译命令】如果您是自行编译的FastDeploy,请说明您的编译方式(参数命令)
【系统平台】: / Windows x64(Windows10)
【编译语言】: Python(3.10)
在部署pp_ocr_v3的过程中,我训练了一个基于det_mv3_db的检测模型,但由于精度有要求,因此我基于r50_db++重新训练了检测模型,但在使用fd部署的时候,基于det_mv3_db的检测模型可以正确的检测出我需要的内容,而db++模型无法正常检测。 ` import fastdeploy.vision as vision
mv3_db det_model = vision.ocr.DBDetector(r"inference_model/db/inference.pdmodel",r"inference_model/db/inference.pdiparams")
db++ det_model = vision.ocr.DBDetector(r"inference_model/det_db/inference_.pdmodel",r"inference_model/det_db/inference_.pdiparams")
rec_model = vision.ocr.Recognizer("inference_model/rec_ocrv3/inference.pdmodel", "inference_model/rec_ocrv3/inference.pdiparams", "inference_model/rec_ocrv3/num.txt", )
ppocr_v3 = fd.vision.ocr.PPOCRv3(det_model=det_model,cls_model=None,rec_model=rec_model) `
db++检测结果: print(result) rec text: 4 rec score:0.999919 mv3_db检测结果 print(result) det boxes: [[99,32],[309,30],[310,118],[100,119]]rec text: 4 rec score:0.999997 但是我通过命令行直接推理的能够得出正常结果 python3 tools/infer/predict_det.py --image_dir="/home/aistudio/data/images_split_paddle/ae90bb62-1185-470d-87d8-341c7c5c8ee8__33.jpg" --det_model_dir="./inference/det_db++/" --det_algorithm="DB++"
print(result) rec text: 4 rec score:0.999919
print(result) det boxes: [[99,32],[309,30],[310,118],[100,119]]rec text: 4 rec score:0.999997
python3 tools/infer/predict_det.py --image_dir="/home/aistudio/data/images_split_paddle/ae90bb62-1185-470d-87d8-341c7c5c8ee8__33.jpg" --det_model_dir="./inference/det_db++/" --det_algorithm="DB++"
The text was updated successfully, but these errors were encountered:
您好,我也部署了自己的模型,发现自己的模型调用服务出错,请问如何解决?谢谢!
Sorry, something went wrong.
fd没找到解决方法,用pdserving进行部署了
No branches or pull requests
环境
【FastDeploy版本】: 说明具体的版本,如fastdeploy-'1.0.5'
【编译命令】如果您是自行编译的FastDeploy,请说明您的编译方式(参数命令)
【系统平台】: / Windows x64(Windows10)
【编译语言】: Python(3.10)
问题日志及出现问题的操作流程
在部署pp_ocr_v3的过程中,我训练了一个基于det_mv3_db的检测模型,但由于精度有要求,因此我基于r50_db++重新训练了检测模型,但在使用fd部署的时候,基于det_mv3_db的检测模型可以正确的检测出我需要的内容,而db++模型无法正常检测。
`
import fastdeploy.vision as vision
mv3_db
det_model = vision.ocr.DBDetector(r"inference_model/db/inference.pdmodel",r"inference_model/db/inference.pdiparams")
db++
det_model = vision.ocr.DBDetector(r"inference_model/det_db/inference_.pdmodel",r"inference_model/det_db/inference_.pdiparams")
rec_model = vision.ocr.Recognizer("inference_model/rec_ocrv3/inference.pdmodel",
"inference_model/rec_ocrv3/inference.pdiparams",
"inference_model/rec_ocrv3/num.txt",
)
ppocr_v3 = fd.vision.ocr.PPOCRv3(det_model=det_model,cls_model=None,rec_model=rec_model)
`
db++检测结果:
print(result) rec text: 4 rec score:0.999919
mv3_db检测结果
print(result) det boxes: [[99,32],[309,30],[310,118],[100,119]]rec text: 4 rec score:0.999997
但是我通过命令行直接推理的能够得出正常结果
python3 tools/infer/predict_det.py --image_dir="/home/aistudio/data/images_split_paddle/ae90bb62-1185-470d-87d8-341c7c5c8ee8__33.jpg" --det_model_dir="./inference/det_db++/" --det_algorithm="DB++"
The text was updated successfully, but these errors were encountered: