English | 简体中文
本目录下提供infer_xxxxx.cc
快速完成RKYOLO模型在Rockchip板子上上通过二代NPU加速部署的示例。
在部署前,需确认以下两个步骤:
- 软硬件环境满足要求
- 根据开发环境,下载预编译部署库或者从头编译FastDeploy仓库
以上步骤请参考RK2代NPU部署库编译实现
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j8
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/yolov5-s-relu.zip
unzip yolov5-s-relu.zip
./infer_rkyolov5 yolov5-s-relu/yolov5s_relu_tk2_RK3588_i8.rknn 000000014439.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/yolov7-tiny.zip
unzip yolov7-tiny.zip
./infer_rkyolov7 yolov7-tiny/yolov7-tiny_tk2_RK3588_i8.rknn 000000014439.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/yolox-s.zip
unzip yolox-s.zip
./infer_rkyolox yolox-s/yoloxs_tk2_RK3588_i8.rknn 000000014439.jpg
如果你使用自己训练的YOLOv5模型,你可能会碰到运行FastDeploy的demo后出现segmentation fault
的问题,很大概率是label数目不一致,你可以使用以下方案来解决:
model.GetPostprocessor().SetClassNum(3);