Skip to content

Files

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jan 9, 2023
Feb 4, 2023
Jan 6, 2023
Jan 4, 2023
Dec 27, 2022
Jan 4, 2023
Jan 4, 2023
Dec 27, 2022
Dec 27, 2022
Jan 4, 2023
Jan 4, 2023
Apr 21, 2023
Jan 4, 2023
Jan 4, 2023
Jan 4, 2023
Dec 27, 2022
Mar 16, 2023
Jan 4, 2023
Jan 4, 2023
Jan 4, 2023
Jan 4, 2023
Dec 27, 2022
Dec 27, 2022
Dec 27, 2022
Jan 16, 2023
Dec 27, 2022

English | 简体中文

PaddleDetection Python Deployment Example

Before deployment, two steps require confirmation.

This directory provides examples that infer_xxx.py fast finishes the deployment of PPYOLOE/PicoDet models on CPU/GPU and GPU accelerated by TensorRT. The script is as follows

# Download deployment example code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/detection/paddledetection/python/

# Download the PPYOLOE model file and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
tar xvf ppyoloe_crn_l_300e_coco.tgz

# CPU inference
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device cpu
# GPU inference
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu
# TensorRT inference on GPU  (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu --use_trt True
# Kunlunxin XPU Inference
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device kunlunxin
# Huawei Ascend Inference
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device ascend

The visualized result after running is as follows

PaddleDetection Python Interface

fastdeploy.vision.detection.PPYOLOE(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PicoDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PaddleYOLOX(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.YOLOv3(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PPYOLO(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.FasterRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.MaskRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.SSD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PaddleYOLOv5(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PaddleYOLOv6(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PaddleYOLOv7(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.RTMDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)

PaddleDetection model loading and initialization, among which model_file and params_file are the exported Paddle model format. config_file is the configuration yaml file exported by PaddleDetection simultaneously

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path
  • config_file(str): Inference configuration yaml file path
  • runtime_option(RuntimeOption): Backend inference configuration. None by default. (use the default configuration)
  • model_format(ModelFormat): Model format. Paddle format by default

predict Function

PaddleDetection models, including PPYOLOE/PicoDet/PaddleYOLOX/YOLOv3/PPYOLO/FasterRCNN, all provide the following member functions for image detection

PPYOLOE.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)

Model prediction interface. Input images and output results directly.

Parameter

  • image_data(np.ndarray): Input data in HWC or BGR format

Return

Return fastdeploy.vision.DetectionResult structure. Refer to Vision Model Prediction Results for the description of the structure.

Other Documents