From f389c98eea4efd64a1c4d21f1ae66b924ba6213b Mon Sep 17 00:00:00 2001 From: FELIPE OVIEDO <43591071+fipeop@users.noreply.github.com> Date: Fri, 24 May 2019 12:44:27 -0400 Subject: [PATCH] Final readme updates --- README.md | 31 +++++++++++++++---------------- 1 file changed, 15 insertions(+), 16 deletions(-) diff --git a/README.md b/README.md index 3311daf..b1863ef 100644 --- a/README.md +++ b/README.md @@ -8,12 +8,12 @@ autoXRD is a python package for automatic XRD pattern classification of thin-fil autoXRD performs physics-informed data augmentation to solve the small data problem, implements a state-of-the-art a-CNN architecture and allows interpretation using Average Class Activation Maps (CAMs), according to the following publications: -"**Oviedo, F., Ren, Z., Sun, S., Settens, C., Liu, Z., Hartono, N. T. P., ... & Kusne, A. G. (2019). Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. npj Computational Materials, 5(1), 60." Link: [https://doi.org/10.1038/s41524-019-0196-x](https://doi.org/10.1038/s41524-019-0196-x) +"**Oviedo, F., Ren, Z., Sun, S., Settens, C., Liu, Z., Hartono, N. T. P., ... & Buonassisi, T. (2019). Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. npj Computational Materials, 5(1), 60." Link: [https://doi.org/10.1038/s41524-019-0196-x](https://doi.org/10.1038/s41524-019-0196-x)** -"**Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks, (2019), Felipe Oviedo, Zekun Ren, et. al. Link: [arXiv:1811.08425v](https://arxiv.org/abs/1811.08425v2)** +"**Fast classification of small X-ray diffraction datasets using data augmentation and deep neural networks, (2019), Felipe Oviedo, Zekun Ren, et. al. Link: [arXiv:1811.08425v](https://arxiv.org/abs/1811.08425v2)** -**Accepted to NeurIPS 2018 ML for Molecules and Materials. Final version published npj Computational Materials 2019** +**Accepted to NeurIPS 2018 ML for Molecules and Materials Workshop. Final version published npj Computational Materials 2019** ## Installation @@ -43,22 +43,21 @@ Felipe Oviedo and "Danny" Zekun Ren | ------------- | ------------------------------ | | **AUTHORS** | Felipe Oviedo and "Danny" Ren Zekun | | **VERSION** | 0.9 / April, 2019 | +| **EMAIL OF REPO OWNER** | foviedo@mit.edu | || | ## Attribution This work is under an Apache 2.0 License and data policies of Nature Partner Journal Computational Materials. Please, acknowledge use of this work with the apropiate citation. -### Citation - - @article{oviedo2019fast, - title={Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks}, - author={Oviedo, Felipe and Ren, Zekun and Sun, Shijing and Settens, Charles and Liu, Zhe and Hartono, Noor Titan Putri and Ramasamy, Savitha and DeCost, Brian L and Tian, Siyu IP and Romano, Giuseppe and others}, - journal={npj Computational Materials}, - volume={5}, - number={1}, - pages={60}, - year={2019}, - publisher={Nature Publishing Group} - howpublished = {\url{https://doi.org/10.1038/s41524-019-0196-x}}, -} +## Citation + + @article{oviedo2019fast, + title={Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks}, + author={Oviedo, Felipe and Ren, Zekun and Sun, Shijing and Settens, Charles and Liu, Zhe and Hartono, Noor Titan Putri and Ramasamy, Savitha and DeCost, Brian L and Tian, Siyu IP and Romano, Giuseppe and others}, + journal={npj Computational Materials}, + volume={5}, + number={1}, + pages={60}, + year={2019}, + publisher={Nature Publishing Group}}