From 3c627f037ed0e8c3cb00835ac46a1b7fbb89f0e8 Mon Sep 17 00:00:00 2001 From: Benedikt Mersch Date: Tue, 27 Aug 2024 16:38:27 +0200 Subject: [PATCH] Add HeLiMOS (#25) * Add helimos dataloader * Update readme * Update readme * Update readme * Take fix from 4DMOS * Switch to polyscope * Fix name * Fix voxelization * Add belief visualization * Revert "Fix voxelization" This reverts commit 3b2198fec329e51cc4653d785ab2bedcd33ed227. * Fix wrong voxel size * Fix voxelization * Fix voxelization * Fix transformations in visualizer * Readme * Add link to paper * Not needed --- README.md | 17 +++- config/example.yaml | 2 +- config/helimos/all_training.yaml | 12 +++ config/helimos/inference.yaml | 3 + config/helimos/omni_training.yaml | 8 ++ config/helimos/solid_training.yaml | 8 ++ scripts/cache_to_ply.py | 63 ++++++------ src/mapmos/config/config.py | 2 +- src/mapmos/datasets/__init__.py | 1 + src/mapmos/datasets/helimos.py | 137 ++++++++++++++++++++++++++ src/mapmos/datasets/mapmos_dataset.py | 9 +- src/mapmos/mapmos_net.py | 3 +- src/mapmos/pipeline.py | 2 +- src/mapmos/training_module.py | 9 +- src/mapmos/utils/pipeline_results.py | 4 +- 15 files changed, 240 insertions(+), 40 deletions(-) create mode 100644 config/helimos/all_training.yaml create mode 100644 config/helimos/inference.yaml create mode 100644 config/helimos/omni_training.yaml create mode 100644 config/helimos/solid_training.yaml create mode 100644 src/mapmos/datasets/helimos.py diff --git a/README.md b/README.md index 68005d2..9454352 100644 --- a/README.md +++ b/README.md @@ -71,7 +71,7 @@ mapmos_pipeline --visualize /path/to/weights.ckpt /path/to/data
Want to evaluate with ground truth labels? -Because these lables come in all shapes, you need to specify a dataloader. This is currently available for SemanticKITTI and NuScenes as well as our post-processed KITTI Tracking sequence 19 and Apollo sequences (see [Downloads](#downloads)). +Because these labels come in all shapes, you need to specify a dataloader. This is currently available for SemanticKITTI, NuScenes, HeLiMOS, and our labeled KITTI Tracking sequence 19 and Apollo sequences (see [Downloads](#downloads)).
@@ -108,6 +108,21 @@ The training log and checkpoints will be saved by default to the current working +## HeLiMOS +We provide additional training and evaluation data for different sensor types in our [HeLiMOS paper](https://www.ipb.uni-bonn.de/pdfs/lim2024iros.pdf). To train on the HeLiMOS data, use the following commands: + +```shell +python3 scripts/precache.py /path/to/HeLiMOS helimos /path/to/cache --config config/helimos/*_training.yaml +python3 scripts/train.py /path/to/HeLiMOS helimos /path/to/cache --config config/helimos/*_training.yaml +``` + +by replacing the paths and the config file names. To evaluate for example on the Velodyne test data, run + +```shell +mapmos_pipeline /path/to/weights.ckpt /path/to/HeLiMOS --dataloader helimos -s Velodyne/test.txt +``` + +Note that our sequence `-s` encodes both the sensor type `Velodyne` and split `test.txt`, just replace these with `Ouster`, `Aeva`, or `Avia` and/or `train.txt` or `val.txt` to run MapMOS on different sensors and/or splits. ## Downloads You can download the post-processed and labeled [Apollo dataset](https://www.ipb.uni-bonn.de/html/projects/apollo_dataset/LiDAR-MOS.zip) and [KITTI Tracking sequence 19](https://www.ipb.uni-bonn.de/html/projects/kitti-tracking/post-processed/kitti-tracking.zip) from our website. diff --git a/config/example.yaml b/config/example.yaml index e80b3bc..1a03c54 100644 --- a/config/example.yaml +++ b/config/example.yaml @@ -13,11 +13,11 @@ odometry: mos: voxel_size_mos: 0.1 + delay_mos: 10 max_range_mos: 50.0 min_range_mos: 0.0 voxel_size_belief: 0.25 max_range_belief: 150 - delay_belief: 10 training: id: "experiment_id" diff --git a/config/helimos/all_training.yaml b/config/helimos/all_training.yaml new file mode 100644 index 0000000..83dacdf --- /dev/null +++ b/config/helimos/all_training.yaml @@ -0,0 +1,12 @@ +training: + id: "helimos_all" + train: + - "Avia/train.txt" + - "Aeva/train.txt" + - "Velodyne/train.txt" + - "Ouster/train.txt" + val: + - "Avia/val.txt" + - "Aeva/val.txt" + - "Velodyne/val.txt" + - "Ouster/val.txt" diff --git a/config/helimos/inference.yaml b/config/helimos/inference.yaml new file mode 100644 index 0000000..2e99a04 --- /dev/null +++ b/config/helimos/inference.yaml @@ -0,0 +1,3 @@ +mos: + max_range_mos: -1.0 + max_range_belief: 50 diff --git a/config/helimos/omni_training.yaml b/config/helimos/omni_training.yaml new file mode 100644 index 0000000..d56daa2 --- /dev/null +++ b/config/helimos/omni_training.yaml @@ -0,0 +1,8 @@ +training: + id: "helimos_omni" + train: + - "Velodyne/train.txt" + - "Ouster/train.txt" + val: + - "Velodyne/val.txt" + - "Ouster/val.txt" diff --git a/config/helimos/solid_training.yaml b/config/helimos/solid_training.yaml new file mode 100644 index 0000000..c902477 --- /dev/null +++ b/config/helimos/solid_training.yaml @@ -0,0 +1,8 @@ +training: + id: "helimos_solid" + train: + - "Avia/train.txt" + - "Aeva/train.txt" + val: + - "Avia/val.txt" + - "Aeva/val.txt" diff --git a/scripts/cache_to_ply.py b/scripts/cache_to_ply.py index 7b2aa76..7aefa75 100755 --- a/scripts/cache_to_ply.py +++ b/scripts/cache_to_ply.py @@ -82,7 +82,7 @@ def cache_to_ply( dataloader=dataloader, data_dir=data, config=cfg, - sequences=sequence, + sequences=[sequence], cache_dir=cache_dir, ), batch_size=1, @@ -103,36 +103,37 @@ def cache_to_ply( for idx, batch in enumerate( tqdm(data_iterable, desc="Writing data to ply", unit=" items", dynamic_ncols=True) ): - mask_scan = batch[:, 4] == idx - scan_points = batch[mask_scan, 1:4] - scan_labels = batch[mask_scan, 6] - - map_points = batch[~mask_scan, 1:4] - map_timestamps = batch[~mask_scan, 5] - map_labels = batch[~mask_scan, 6] - - min_time = torch.min(batch[:, 5]) - max_time = torch.max(batch[:, 5]) - - pcd_scan = o3d.geometry.PointCloud( - o3d.utility.Vector3dVector(scan_points.numpy()) - ).paint_uniform_color([0, 0, 1]) - scan_colors = np.array(pcd_scan.colors) - scan_colors[scan_labels == 1] = [1, 0, 0] - pcd_scan.colors = o3d.utility.Vector3dVector(scan_colors) - - pcd_map = o3d.geometry.PointCloud( - o3d.utility.Vector3dVector(map_points.numpy()) - ).paint_uniform_color([0, 0, 0]) - map_colors = np.array(pcd_map.colors) - map_timestamps_norm = (map_timestamps - min_time) / (max_time - min_time) - for i in range(len(map_colors)): - t = map_timestamps_norm[i] - map_colors[i, :] = [t, t, t] - map_colors[map_labels == 1] = [1, 0, 0] - pcd_map.colors = o3d.utility.Vector3dVector(map_colors) - - o3d.io.write_point_cloud(os.path.join(path, f"{idx:06}.ply"), pcd_scan + pcd_map) + if len(batch) > 0: + mask_scan = batch[:, 4] == idx + scan_points = batch[mask_scan, 1:4] + scan_labels = batch[mask_scan, 6] + + map_points = batch[~mask_scan, 1:4] + map_timestamps = batch[~mask_scan, 5] + map_labels = batch[~mask_scan, 6] + + min_time = torch.min(batch[:, 5]) + max_time = torch.max(batch[:, 5]) + + pcd_scan = o3d.geometry.PointCloud( + o3d.utility.Vector3dVector(scan_points.numpy()) + ).paint_uniform_color([0, 0, 1]) + scan_colors = np.array(pcd_scan.colors) + scan_colors[scan_labels == 1] = [1, 0, 0] + pcd_scan.colors = o3d.utility.Vector3dVector(scan_colors) + + pcd_map = o3d.geometry.PointCloud( + o3d.utility.Vector3dVector(map_points.numpy()) + ).paint_uniform_color([0, 0, 0]) + map_colors = np.array(pcd_map.colors) + map_timestamps_norm = (map_timestamps - min_time) / (max_time - min_time) + for i in range(len(map_colors)): + t = map_timestamps_norm[i] + map_colors[i, :] = [t, t, t] + map_colors[map_labels == 1] = [1, 0, 0] + pcd_map.colors = o3d.utility.Vector3dVector(map_colors) + + o3d.io.write_point_cloud(os.path.join(path, f"{idx:06}.ply"), pcd_scan + pcd_map) if __name__ == "__main__": diff --git a/src/mapmos/config/config.py b/src/mapmos/config/config.py index 9f05c24..71e1f42 100644 --- a/src/mapmos/config/config.py +++ b/src/mapmos/config/config.py @@ -39,11 +39,11 @@ class OdometryConfig(BaseModel): class MOSConfig(BaseModel): voxel_size_mos: float = 0.1 + delay_mos: int = 10 max_range_mos: float = 50.0 min_range_mos: float = 0.0 voxel_size_belief: float = 0.25 max_range_belief: float = 150 - delay_belief: int = 10 class TrainingConfig(BaseModel): diff --git a/src/mapmos/datasets/__init__.py b/src/mapmos/datasets/__init__.py index 681fa77..006ad8e 100644 --- a/src/mapmos/datasets/__init__.py +++ b/src/mapmos/datasets/__init__.py @@ -44,6 +44,7 @@ def sequence_dataloaders(): "kitti_tracking", "nuscenes", "apollo", + "helimos", ] diff --git a/src/mapmos/datasets/helimos.py b/src/mapmos/datasets/helimos.py new file mode 100644 index 0000000..fe8a8a7 --- /dev/null +++ b/src/mapmos/datasets/helimos.py @@ -0,0 +1,137 @@ +# MIT License +# +# Copyright (c) 2023 Benedikt Mersch, Tiziano Guadagnino, Ignacio Vizzo, Cyrill Stachniss +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. + +import glob +import os +import numpy as np + + +class HeliMOSDataset: + def __init__(self, data_dir, sequence: str, *_, **__): + self.sequence_id = sequence.split("/")[0] + split_file = sequence.split("/")[1] + self.sequence_dir = os.path.join(data_dir, self.sequence_id) + self.scan_dir = os.path.join(self.sequence_dir, "velodyne/") + + self.scan_files = sorted(glob.glob(self.scan_dir + "*.bin")) + self.calibration = self.read_calib_file(os.path.join(self.sequence_dir, "calib.txt")) + + # Load GT Poses (if available) + self.poses_fn = os.path.join(self.sequence_dir, "poses.txt") + if os.path.exists(self.poses_fn): + self.gt_poses = self.load_poses(self.poses_fn) + + # No correction + self.correct_kitti_scan = lambda frame: frame + + # Load labels + self.label_dir = os.path.join(self.sequence_dir, "labels/") + label_files = sorted(glob.glob(self.label_dir + "*.label")) + + # Get labels for train/val split if desired + label_indices = np.loadtxt(os.path.join(data_dir, split_file), dtype=int).tolist() + + # Filter based on split if desired + getIndex = lambda filename: int(os.path.basename(filename).split(".label")[0]) + self.dict_label_files = { + getIndex(filename): filename + for filename in label_files + if getIndex(filename) in label_indices + } + + def __getitem__(self, idx): + points = self.scans(idx) + timestamps = np.zeros(len(points)) + labels = ( + self.read_labels(self.dict_label_files[idx]) + if idx in self.dict_label_files.keys() + else np.full(len(points), -1, dtype=np.int32) + ) + return points, timestamps, labels + + def __len__(self): + return len(self.scan_files) + + def scans(self, idx): + return self.read_point_cloud(self.scan_files[idx]) + + def apply_calibration(self, poses: np.ndarray) -> np.ndarray: + """Converts from Velodyne to Camera Frame""" + Tr = np.eye(4, dtype=np.float64) + Tr[:3, :4] = self.calibration["Tr"].reshape(3, 4) + return Tr @ poses @ np.linalg.inv(Tr) + + def read_point_cloud(self, scan_file: str): + points = np.fromfile(scan_file, dtype=np.float32).reshape((-1, 4))[:, :3].astype(np.float64) + return points + + def load_poses(self, poses_file): + def _lidar_pose_gt(poses_gt): + _tr = self.calibration["Tr"].reshape(3, 4) + tr = np.eye(4, dtype=np.float64) + tr[:3, :4] = _tr + left = np.einsum("...ij,...jk->...ik", np.linalg.inv(tr), poses_gt) + right = np.einsum("...ij,...jk->...ik", left, tr) + return right + + poses = np.loadtxt(poses_file, delimiter=" ") + n = poses.shape[0] + poses = np.concatenate( + (poses, np.zeros((n, 3), dtype=np.float32), np.ones((n, 1), dtype=np.float32)), axis=1 + ) + poses = poses.reshape((n, 4, 4)) # [N, 4, 4] + + # Ensure rotations are SO3 + rotations = poses[:, :3, :3] + U, _, Vh = np.linalg.svd(rotations) + poses[:, :3, :3] = U @ Vh + + return _lidar_pose_gt(poses) + + @staticmethod + def read_calib_file(file_path: str) -> dict: + calib_dict = {} + with open(file_path, "r") as calib_file: + for line in calib_file.readlines(): + tokens = line.split(" ") + if tokens[0] == "calib_time:": + continue + # Only read with float data + if len(tokens) > 0: + values = [float(token) for token in tokens[1:]] + values = np.array(values, dtype=np.float32) + + # The format in KITTI's file is : ...\n -> Remove the ':' + key = tokens[0][:-1] + calib_dict[key] = values + return calib_dict + + def read_labels(self, filename): + """Load moving object labels from .label file""" + orig_labels = np.fromfile(filename, dtype=np.int32).reshape((-1)) + orig_labels = orig_labels & 0xFFFF # Mask semantics in lower half + + labels = np.zeros_like(orig_labels) + labels[orig_labels <= 1] = -1 # Unlabeled (0), outlier (1) + labels[orig_labels > 250] = 1 # Moving + labels = labels.astype(dtype=np.int32).reshape(-1) + return labels diff --git a/src/mapmos/datasets/mapmos_dataset.py b/src/mapmos/datasets/mapmos_dataset.py index 7c50859..8696ef9 100644 --- a/src/mapmos/datasets/mapmos_dataset.py +++ b/src/mapmos/datasets/mapmos_dataset.py @@ -105,6 +105,7 @@ def setup(self, stage=None): shuffle=self.shuffle, num_workers=self.config.training.num_workers, pin_memory=True, + persistent_workers=True, drop_last=False, timeout=0, ) @@ -118,6 +119,7 @@ def setup(self, stage=None): shuffle=False, num_workers=self.config.training.num_workers, pin_memory=True, + persistent_workers=True, drop_last=False, timeout=0, ) @@ -148,6 +150,7 @@ def __init__( ): self.config = config self.sequences = sequences + self._print = False # Cache if cache_dir is not None: @@ -208,6 +211,10 @@ def get_scan_and_map( local frame to allow for efficient cropping (sample point does not change). We use the VoxelHashMap to keep track of the GT labels for map points. """ + if not self._print: + print("*****Caching now*****") + self._print = True + scan_points, timestamps, scan_labels = self.datasets[sequence][scan_index] # Only consider valid points @@ -215,7 +222,7 @@ def get_scan_and_map( scan_points = scan_points[valid_mask] scan_labels = scan_labels[valid_mask] - if self.sequence != sequence: + if self.sequence != sequence or len(scan_points) == 0: data_config = DataConfig().model_validate(data_config_dict) odometry_config = OdometryConfig().model_validate(odometry_config_dict) diff --git a/src/mapmos/mapmos_net.py b/src/mapmos/mapmos_net.py index c17ca99..001d569 100644 --- a/src/mapmos/mapmos_net.py +++ b/src/mapmos/mapmos_net.py @@ -80,7 +80,8 @@ def forward(self, coordinates: torch.Tensor, indices: torch.Tensor): logits = out.features.reshape(-1) return logits - def to_label(self, logits): + @staticmethod + def to_label(logits): labels = copy.deepcopy(logits) mask = logits > 0 labels[mask] = 1.0 diff --git a/src/mapmos/pipeline.py b/src/mapmos/pipeline.py index 7a1d4e1..23e2a23 100644 --- a/src/mapmos/pipeline.py +++ b/src/mapmos/pipeline.py @@ -78,7 +78,7 @@ def __init__( voxel_size=self.config.mos.voxel_size_belief, max_distance=self.config.mos.max_range_belief, ) - self.buffer = deque(maxlen=self.config.mos.delay_belief) + self.buffer = deque(maxlen=self.config.mos.delay_mos) # Results self.results = MOSPipelineResults() diff --git a/src/mapmos/training_module.py b/src/mapmos/training_module.py index c2f828b..6c29219 100644 --- a/src/mapmos/training_module.py +++ b/src/mapmos/training_module.py @@ -69,11 +69,15 @@ def training_step(self, batch: torch.Tensor, batch_idx, dataloader_index=0): batch_scan = batch[self.mask_scan(batch)] num_moving_points = len(batch_scan[batch_scan[:, -1] == 1.0]) num_points = len(batch_scan) - if num_moving_points / num_points < 0.001: + if num_points == 0 or num_moving_points / num_points < 0.001: return None batch = self.augmentation(batch) + # Only train if enough points are left + if len(batch) < 100: + return None + coordinates = batch[:, :5].reshape(-1, 5) features = batch[:, 5].reshape(-1, 1) gt_labels = batch[:, 6].reshape(-1) @@ -118,6 +122,9 @@ def on_train_epoch_end(self): def validation_step(self, batch: torch.Tensor, batch_idx): # Batch is [batch,x,y,z,t,scan_idx,label] + if len(batch) < 100: + return None + coordinates = batch[:, :5].reshape(-1, 5) features = batch[:, 5].reshape(-1, 1) gt_labels = batch[:, 6].reshape(-1) diff --git a/src/mapmos/utils/pipeline_results.py b/src/mapmos/utils/pipeline_results.py index 4b6ae65..03931b6 100644 --- a/src/mapmos/utils/pipeline_results.py +++ b/src/mapmos/utils/pipeline_results.py @@ -42,7 +42,7 @@ def eval_odometry(self, gt_poses, poses): self.append(desc="Average Translation Error", units="%", value=avg_tra) self.append(desc="Average Rotational Error", units="deg/m", value=avg_rot) self.append(desc="Absoulte Trajectory Error (ATE)", units="m", value=ate_trans) - self.append(desc="Absoulte Rotational Error (ARE)", units="rad", value=ate_rot) + self.append(desc="Absoulte Rotational Error (ARE)\n", units="rad", value=ate_rot) def eval_mos(self, confusion_matrix, desc=""): iou = get_iou(confusion_matrix) @@ -57,7 +57,7 @@ def eval_mos(self, confusion_matrix, desc=""): self.append(desc="Moving F1", units="%", value=f1[1].item() * 100) self.append(desc="Moving TP", units="points", value=int(tp[1].item())) self.append(desc="Moving FP", units="points", value=int(fp[1].item())) - self.append(desc="Moving FN", units="points", value=int(fn[1].item())) + self.append(desc="Moving FN\n", units="points", value=int(fn[1].item())) def eval_fps(self, times, desc="Average Frequency"): def _get_fps(times):