-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathKNN_1.m
140 lines (118 loc) · 4.34 KB
/
KNN_1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
%Assignment 4 Q1 Gagan Khanijau 2011046
% clc
% clear
%%data loading and division
No_of_Samples= 1600;
No_of_features= 81;
DataSet = Data_tmp; %importdata('E:\datat\data.txt');
Indices_crossValidated= crossvalind('Kfold',No_of_Samples,2);
%creating traing and testing matrices
DataSet_train = zeros(1500,No_of_features+1);
DataSet_test = zeros(100,No_of_features+1);
r = randi([1 16],1,1);
for i=1:No_of_Samples
ndx= mod(i,16);
ndx(ndx == 0) = 16;
if ndx ~= r(1)
DataSet_train(i,1:No_of_features+1) = DataSet(i,1:No_of_features+1);
else
DataSet_test(i,1:No_of_features+1) = DataSet(i,1:No_of_features+1);
end
end
DataSet_train(all(~DataSet_train,2), : ) = [];
DataSet_test( all(~DataSet_test,2), : ) = [];
%random initial centres k=100
%InitialRandomCentres= randperm(1500,100);
CentreFeatures= zeros(100,81);
% counter= 1;
for i=1:100
CentreFeatures(i,1:81)= DataSet_train(InitialRandomCentres(i),2:82);
% CentreFeatures(i,1:81)= DataSet_train(counter,2:82);
% counter= counter+14;
end
% CentreFeatures(1,1:4)= DataSet_train(InitialRandomCentres(1),2:5);
% CentreFeatures(2,1:4)= DataSet_train(InitialRandomCentres(2),2:5);
% CentreFeatures(3,1:4)= DataSet_train(InitialRandomCentres(3),2:5);
Train_assignedCluster= zeros(1500,1);
%stopping flag
flag= 1;
%algorithm k means
while(flag)
flag=0;
for i = 1:1500
DistanceFromCentres= zeros(100,1);
for j=1:100
DistanceFromCentres(j)= norm(DataSet_train(i,2:82)- CentreFeatures(j,1:81));
end
% DistanceFromCentres(1)= norm(DataSet_train(i,2:5)- CentreFeatures(1,1:4));
% DistanceFromCentres(2)= norm(DataSet_train(i,2:5)- CentreFeatures(2,1:4));
% DistanceFromCentres(3)= norm(DataSet_train(i,2:5)- CentreFeatures(3,1:4));
[sortedValues, sortedIndex]= sort(DistanceFromCentres,'ascend');
if Train_assignedCluster(i)~=sortedIndex(1)
Train_assignedCluster(i)=sortedIndex(1);
flag=1;
end
end
CentreFeatures= zeros(100,81);
PointsinCluster=zeros(100,1);
for j=1:1500
CentreFeatures(Train_assignedCluster(j),:) = CentreFeatures(Train_assignedCluster(j),:) + DataSet_train(j,2:82);
PointsinCluster(Train_assignedCluster(j))=PointsinCluster(Train_assignedCluster(j))+1;
end
for j=1:100
CentreFeatures(j,:)= CentreFeatures(j,:)/PointsinCluster(j);
end
% CentreFeatures(1,:)= CentreFeatures(1,:)/PointsinCluster(1);
% CentreFeatures(2,:)= CentreFeatures(2,:)/PointsinCluster(2);
% CentreFeatures(3,:)= CentreFeatures(3,:)/PointsinCluster(3);
end
%%training data accuracy
TrainingFrequencyMatrix=zeros(100);
for i=1:1500
TrainingFrequencyMatrix(Train_assignedCluster(i),DataSet_train(i))=TrainingFrequencyMatrix(Train_assignedCluster(i),DataSet_train(i))+1;
end
TrainingOutputLabels= zeros(1500,1);
for i=1:1500
[val,ndx]=max(TrainingFrequencyMatrix(Train_assignedCluster(i),:));
TrainingOutputLabels(i)= ndx;
end
Correct=0;
for i=1:1500
if TrainingOutputLabels(i)==DataSet_train(i,1)
Correct=Correct+1;
end
end
AccuracyTraining = Correct/1500;
Training_Error = 1- AccuracyTraining
%plotconfusion(training_data(:,1),train_outputLbls)
%%testing data accuracy
Test_AssignedCluster= zeros(100,1);
for i = 1:100
DistanceFromCentres= zeros(100,1);
for j=1:100
DistanceFromCentres(j)= norm(DataSet_test(i,2:82)- CentreFeatures(j,1:81));
end
% DistanceFromCentres(1)= norm(DataSet_test(i,2:5)- CentreFeatures(1,1:4));
% DistanceFromCentres(2)= norm(DataSet_test(i,2:5)- CentreFeatures(2,1:4));
% DistanceFromCentres(3)= norm(DataSet_test(i,2:5)- CentreFeatures(3,1:4));
[sortedValues, sortedIndex]= sort(DistanceFromCentres,'ascend');
Test_AssignedCluster(i)=sortedIndex(1);
end
TestingFrequencyMatrix=zeros(100);
for i=1:100
TestingFrequencyMatrix(Test_AssignedCluster(i),DataSet_test(i))=TestingFrequencyMatrix(Test_AssignedCluster(i),DataSet_test(i))+1;
end
TestingOutputLabels= zeros(100,1);
for i=1:100
[val,ndx]=max(TestingFrequencyMatrix(Test_AssignedCluster(i),:));
TestingOutputLabels(i)= ndx;
end
Correct=0;
for i=1:100
if TestingOutputLabels(i)==DataSet_test(i,1)
Correct=Correct+1;
end
end
accuracytest = Correct/100;
Testing_Error= 1-accuracytest
%plotconfusion(testing_data(:,1),test_outputLbls)