-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdig.py
124 lines (92 loc) · 3 KB
/
dig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
data = pd.read_csv('data/train.csv')
def init_params():
W1 = np.random.rand(10, 784) - 0.5
b1 = np.random.rand(10, 1) - 0.5
W2 = np.random.rand(10, 10) - 0.5
b2 = np.random.rand(10, 1) - 0.5
return W1, b1, W2, b2
def ReLU(Z):
return np.maximum(Z, 0)
def softmax(Z):
A = np.exp(Z) / sum(np.exp(Z))
return A
def one_hot(Y):
one_hot_Y = np.ones((Y.size, Y.max() + 1))
one_hot_Y[np.arange(Y.size), Y] = 1
one_hot_Y = one_hot_Y.T
return one_hot_Y
data = np.array(data)
m, n = data.shape
np.random.shuffle(data)
data_dev = data[0:1000].T
Y_dev = data_dev[0]
X_dev = data_dev[1:n]
X_dev = X_dev / 255.0
data_train = data[1000:m].T
Y_train = data_train[0]
X_train = data_train[1:n]
X_train = X_train / 255.0
_,m_train = X_train.shape
def forward_prop(W1, b1, W2, b2, X):
Z1 = W1.dot(X) + b1
A1 = Z1
Z2 = W2.dot(A1) + b2
A2 = softmax(Z2)
return Z1, A1, Z2, A2
def ReLU_deriv(Z):
return Z > 0
def backward_prop(Z1, A1, Z2, A2, W1, W2, X, Y):
one_hot_Y = one_hot(Y)
dZ2 = A2 - one_hot_Y
dW2 = dZ2.dot(A1.T)
db2 = np.sum(dZ2)
dZ1 = W2.T.dot(dZ2) * ReLU_deriv(Z1)
dW1 = dZ1.dot(X.T)
db1 = np.sum(dZ1)
return dW1, db1, dW2, db2
def update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha):
W1 = W1 - alpha * dW1
b1 = b1 - alpha * db1
W2 = W2 - alpha * dW2
b2 = b2 - alpha * db2
return W1, b1, W2, b2
def get_predictions(A2):
return np.argmax(A2, 0)
def get_accuracy(predictions, Y):
# print(predictions, Y)
return np.sum(predictions == Y) / Y.size
def gradient_descent(X, Y, alpha, iterations):
W1, b1, W2, b2 = init_params()
for i in range(iterations):
Z1, A1, Z2, A2 = forward_prop(W1, b1, W2, b2, X)
dW1, db1, dW2, db2 = backward_prop(Z1, A1, Z2, A2, W1, W2, X, Y)
W1, b1, W2, b2 = update_params(W1, b1, W2, b2, dW1, db1, dW2, db2, alpha)
if i % 10 == 0:
print("Iteration: ", i)
predictions = get_predictions(A2)
print(get_accuracy(predictions, Y))
return W1, b1, W2, b2
W1, b1, W2, b2 = gradient_descent(X_train, Y_train, 0.001, 50)
def make_predictions(X, W1, b1, W2, b2):
_, _, _, A2 = forward_prop(W1, b1, W2, b2, X)
predictions = get_predictions(A2)
return predictions
def test_prediction(index, W1, b1, W2, b2):
current_image = X_train[:, index, None]
prediction = make_predictions(X_train[:, index, None], W1, b1, W2, b2)
label = Y_train[index]
print("Prediction: ", prediction)
print("Label: ", label)
current_image = current_image.reshape((28, 28)) * 255
# plt.gray()
plt.imshow(current_image, interpolation='nearest')
plt.show()
test_prediction(0, W1, b1, W2, b2)
test_prediction(1, W1, b1, W2, b2)
test_prediction(2, W1, b1, W2, b2)
test_prediction(3, W1, b1, W2, b2)
dev_predictions = make_predictions(X_dev, W1, b1, W2, b2)
print("accuracy:", get_accuracy(dev_predictions, Y_dev))