Skip to content

Latest commit

 

History

History
92 lines (80 loc) · 4.28 KB

OWLEnglishSupport.md

File metadata and controls

92 lines (80 loc) · 4.28 KB

###Some details about HOWLER's support for OWL.

This table shows if the OWL element is supported in translating from OWL to English, from English to OWL and if the round trip from OWL to English back to OWL results in the same (or logically equivalent) form. See footnotes for details.

Category Element OWL to English English to OWL Round trip Equivalent Foot Notes
Ontology Y Y Y
Axiom Declaration Y 6
ClassAxiom EquivalentClasses Y Y Y 10
ClassAxiom DisjointClasses Y Y Y 10
ClassAxiom SubclassOf Y Y Y
ClassAxiom DisjointUnion Y Y Y
AssertionAxiom ClassAssertion Y Y Y
AssertionAxiom SameIndividual Y Y Y 10
AssertionAxiom DifferentIndividuals Y Y Y 10
AssertionAxiom ObjectPropertyAssertion Y Y Y
AssertionAxiom NegativeObjectPropertyAssertion Y Y Y
AssertionAxiom DataPropertyAssertion 3
AssertionAxiom NegativeDataPropertyAssertion 3
ObjectPropertyAxiom EquivalentObjectProperties 2
ObjectPropertyAxiom SubObjectProperty 2
ObjectPropertyAxiom InverseObjectProperties Y 2
ObjectPropertyAxiom FunctionalObjectProperty Y 2,9
ObjectPropertyAxiom InverseFunctionalObjectProperty Y 2,9
ObjectPropertyAxiom SymmetricObjectProperty 2
ObjectPropertyAxiom AsymmetricObjectProperty 2
ObjectPropertyAxiom TransitiveObjectProperty 2
ObjectPropertyAxiom ReflexiveObjectProperty Y Y 2,9
ObjectPropertyAxiom IrreflexiveObjectProperty Y Y 2,9
ObjectPropertyAxiom ObjectPropertyDomain Y Y 2,9
ObjectPropertyAxiom ObjectPropertyRange Y Y 2,9
ObjectPropertyAxiom DisjointObjectProperties 2
ObjectPropertyAxiom SubPropertyChainOf 2
DataPropertyAxiom EquivalentDataProperties 2
DataPropertyAxiom SubDataProperty 2
DataPropertyAxiom FunctionalDataProperty 2
DataPropertyAxiom DataPropertyDomain 2
DataPropertyAxiom DataPropertyRange 2
DataPropertyAxiom DisjointDataProperties 2
Axiom DatatypeDefinition 3
Axiom HasKey 4
Axiom SwrlRule 5
AnnotationAxiom AnnotationAssertion 1
AnnotationAxiom SubAnnotationPropertyOf 1
AnnotationAxiom AnnotationPropertyRange 1
AnnotationAxiom AnnotationPropertyDomain 1
Entity AnnotationProperty 1
Entity Class Y Y Y
Entity DataProperty 3
Entity Datatype 3
Literal Literal 3
Entity NamedIndividual Y Y Y
Entity AnonymousIndividual Y 8
Entity ObjectProperty Y Y Y
ObjectProperty InverseObjectProperty  Y Y Y
ClassExpression ObjectComplementOf Y Y Y
ClassExpression ObjectUnionOf Y Y Y
ClassExpression ObjectIntersectionOf Y Y Y
ClassExpression ObjectOneOf Y Y Y
ClassExpression ObjectAllValuesFrom Y Y Y
ClassExpression ObjectSomeValuesFrom Y Y Y
ClassExpression ObjectHasValue Y
ClassExpression ObjectExactCardinality Y Y Y
ClassExpression ObjectMaxCardinality Y Y Y
ClassExpression ObjectMinCardinality Y Y Y
ClassExpression ObjectHasSelf Y 7
ClassExpression DataHasValue 3
ClassExpression DataAllValuesFrom 3
ClassExpression DataSomeValuesFrom 3
ClassExpression DataExactCardinality 3
ClassExpression DataMaxCardinality 3
ClassExpression DataMinCardinality 3
  1. Annotations are ignored
  2. Most data and object property axioms are not supported since they are effectively sentences about verbs which result in very awkward and unnatural English expressions.
  3. Data-like elements (literals, datatypes, data class expressions) are not supported since English has no real distinction between class-like and data-like elements.
  4. No obvious English equivalent for HasKey semantics.
  5. Rules not yet supported. A SWRL subset to English possible but English to SWRL would require very complex English grammar to enforce DL-safety
  6. Declarations don’t carry much semantic weight and are ignored. Only entities which are actually used in an axiom are translated. Declarations are created for entities which appear in the generated ontology.
  7. No obvious English equivalent for has-self semantics
  8. No obvious English equivalent for anonymous individuals.
  9. OWL rewritten as equivalent subclass expression before translation to English. The resulting English would thus be interpreted as a (logically equivalent )subclass expression rather than the original expression
  10. Expanded into multiple pairwise axioms for axioms with more than two elements