-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathslurm_train_intern.py
162 lines (150 loc) · 6.12 KB
/
slurm_train_intern.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A script to run multinode training with submitit.
Almost copy-paste from https://github.com/facebookresearch/deit/blob/main/run_with_submitit.py
"""
import argparse
import os
import re
import random
import uuid
from pathlib import Path
import train
from utils.arguments_utils import get_parser
import submitit
def parse_args():
parser = argparse.ArgumentParser("Submitit for DINO", parents=[get_parser()])
print("!!!")
parser.add_argument("--ngpus", default=8, type=int, help="Number of gpus to request on each node")
parser.add_argument("--nodes", default=4, type=int, help="Number of nodes to request")
parser.add_argument("--timeout", default=72000, type=int, help="Duration of the job")
parser.add_argument("--partition", default="mozi-S1", type=str, help="Partition where to submit")
parser.add_argument("--use_volta32", action='store_true', help="Big models? Use this")
parser.add_argument('--comment', default="", type=str,
help='Comment to pass to scheduler, e.g. priority message')
parser.add_argument("--exclude", default="", type=str, help="Nodes to exclude")
parser.add_argument("--output_dir", default="/mnt/petrelfs/tianyang/Code/ICLR_Manipulation/out", type=str)
return parser.parse_args()
def get_shared_folder() -> Path:
user = os.getenv("USER")
if Path(f"/ailab/user/{user}/").is_dir():
p = Path(f"/ailab/user/{user}/experiments")
p.mkdir(exist_ok=True)
return p
raise RuntimeError("No shared folder available")
def get_init_file():
# Init file must not exist, but it's parent dir must exist.
os.makedirs(str(get_shared_folder()), exist_ok=True)
init_file = get_shared_folder() / f"{uuid.uuid4().hex}_init"
if init_file.exists():
os.remove(str(init_file))
return init_file
def _get_master_port(seed):
MIN_MASTER_PORT, MAX_MASTER_PORT = (20_000, 60_000)
master_port_str = os.environ.get("MASTER_PORT")
if master_port_str is None:
rng = random.Random(seed)
return rng.randint(MIN_MASTER_PORT, MAX_MASTER_PORT)
return int(master_port_str)
def _parse_slurm_node_list(s):
nodes = []
# Extract "hostname", "hostname[1-2,3,4-5]," substrings
p = re.compile(r"(([^\[]+)(?:\[([^\]]+)\])?),?")
for m in p.finditer(s):
prefix, suffixes = s[m.start(2) : m.end(2)], s[m.start(3) : m.end(3)]
prefix_list = prefix.split(',')
if len(prefix_list) > 1:
nodes += prefix_list[:-1]
prefix = prefix_list[-1]
for suffix in suffixes.split(","):
span = suffix.split("-")
if len(span) == 1:
nodes.append(prefix + suffix)
else:
width = len(span[0])
start, end = int(span[0]), int(span[1]) + 1
for i in range(start, end):
nodes.append(prefix + f"{i:0{width}}")
return nodes
class Trainer(object):
def __init__(self, args):
self.args = args
def __call__(self):
# import run_beit_pretraining
self._setup_gpu_args()
train.main(self.args)
def checkpoint(self):
import os
import submitit
# self.args.dist_url = get_init_file().as_uri()
print("Requeuing ", self.args)
empty_trainer = type(self)(self.args)
return submitit.helpers.DelayedSubmission(empty_trainer)
def _setup_gpu_args(self):
import submitit
from pathlib import Path
job_id = int(os.environ["SLURM_JOB_ID"])
node_count = int(os.environ["SLURM_JOB_NUM_NODES"])
print("node_list :", os.environ["SLURM_JOB_NODELIST"])
nodes = _parse_slurm_node_list(os.environ["SLURM_JOB_NODELIST"])
print("node_count :", node_count)
print("nodes :", nodes)
assert len(nodes) == node_count
master_addr = nodes[0]
master_port = _get_master_port(seed=job_id)
os.environ['MASTER_ADDR'] = master_addr
os.environ['MASTER_PORT'] = str(master_port)
job_env = submitit.JobEnvironment()
self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id)))
self.args.gpu = job_env.local_rank
self.args.rank = job_env.global_rank
self.args.world_size = job_env.num_tasks
print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
def main():
args = parse_args()
if args.output_dir == "":
args.output_dir = get_shared_folder() / "%j"
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
executor = submitit.SlurmExecutor(folder=args.output_dir, max_num_timeout=30)
num_gpus_per_node = args.ngpus
nodes = args.nodes
timeout_min = args.timeout
partition = args.partition
kwargs = {}
if args.use_volta32:
kwargs['slurm_constraint'] = 'volta32gb'
if args.comment:
kwargs['slurm_comment'] = args.comment
if args.exclude:
kwargs["exclude"] = args.exclude
executor.update_parameters(
gres=f"gpu:{num_gpus_per_node}",
ntasks_per_node=num_gpus_per_node, # one task per GPU
cpus_per_task=6,
nodes=nodes,
time=timeout_min,
# Below are cluster dependent parameters
signal_delay_s=120,
partition=partition,
**kwargs
)
executor.update_parameters(job_name="seer")
# args.dist_url = get_init_file().as_uri()
trainer = Trainer(args)
job = executor.submit(trainer)
print(f"Submitted job_id: {job.job_id}")
print(f"Logs and checkpoints will be saved at: {args.output_dir}")
if __name__ == "__main__":
main()