-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathrun_mae_pretraining.py
455 lines (401 loc) · 14.4 KB
/
run_mae_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# --------------------------------------------------------
# Based on BEiT, timm, DINO and DeiT code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import argparse
import datetime
import json
import os
import random
import time
from functools import partial
from pathlib import Path
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from packaging import version
from timm.models import create_model
# NOTE: Do not comment `import models`, it is used to register models
import models # noqa: F401
import utils
from dataset import build_pretraining_dataset
from engine_for_pretraining import train_one_epoch
from optim_factory import create_optimizer
from utils import NativeScalerWithGradNormCount as NativeScaler
from utils import multiple_pretrain_samples_collate
def get_args():
parser = argparse.ArgumentParser(
'VideoMAE v2 pre-training script', add_help=False)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--save_ckpt_freq', default=50, type=int)
# Model parameters
parser.add_argument(
'--model',
default='pretrain_videomae_base_patch16_224',
type=str,
metavar='MODEL',
help='Name of model to train')
parser.add_argument('--tubelet_size', type=int, default=2)
parser.add_argument(
'--with_checkpoint', action='store_true', default=False)
parser.add_argument(
'--decoder_depth', default=4, type=int, help='depth of decoder')
parser.add_argument(
'--mask_type',
default='tube',
choices=['random', 'tube'],
type=str,
help='encoder masked strategy')
parser.add_argument(
'--decoder_mask_type',
default='run_cell',
choices=['random', 'run_cell'],
type=str,
help='decoder masked strategy')
parser.add_argument(
'--mask_ratio', default=0.9, type=float, help='mask ratio of encoder')
parser.add_argument(
'--decoder_mask_ratio',
default=0.0,
type=float,
help='mask ratio of decoder')
parser.add_argument(
'--input_size',
default=224,
type=int,
help='images input size for backbone')
parser.add_argument(
'--drop_path',
type=float,
default=0.0,
metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument(
'--normlize_target',
default=True,
type=bool,
help='normalized the target patch pixels')
# Optimizer parameters
parser.add_argument(
'--opt',
default='adamw',
type=str,
metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument(
'--opt_eps',
default=1e-8,
type=float,
metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument(
'--opt_betas',
default=None,
type=float,
nargs='+',
metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument(
'--clip_grad',
type=float,
default=None,
metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument(
'--momentum',
type=float,
default=0.9,
metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument(
'--weight_decay',
type=float,
default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument(
'--weight_decay_end',
type=float,
default=None,
help="""Final value of the
weight decay. We use a cosine schedule for WD.
(Set the same value with args.weight_decay to keep weight decay no change)"""
)
parser.add_argument(
'--lr',
type=float,
default=1.5e-4,
metavar='LR',
help='learning rate (default: 1.5e-4)')
parser.add_argument(
'--warmup_lr',
type=float,
default=1e-6,
metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument(
'--min_lr',
type=float,
default=1e-5,
metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument(
'--warmup_epochs',
type=int,
default=40,
metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument(
'--warmup_steps',
type=int,
default=-1,
metavar='N',
help='epochs to warmup LR, if scheduler supports')
# Augmentation parameters
parser.add_argument(
'--color_jitter',
type=float,
default=0.0,
metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument(
'--train_interpolation',
type=str,
default='bicubic',
choices=['random', 'bilinear', 'bicubic'],
help='Training interpolation')
# * Finetuning params
parser.add_argument(
'--finetune', default='', help='finetune from checkpoint')
# Dataset parameters
parser.add_argument(
'--data_path',
default='/your/data/annotation/path',
type=str,
help='dataset path')
parser.add_argument(
'--data_root', default='', type=str, help='dataset path root')
parser.add_argument(
'--fname_tmpl',
default='img_{:05}.jpg',
type=str,
help='filename_tmpl for rawframe data')
parser.add_argument(
'--imagenet_default_mean_and_std', default=True, action='store_true')
parser.add_argument('--num_frames', type=int, default=16)
parser.add_argument('--sampling_rate', type=int, default=4)
parser.add_argument('--num_sample', type=int, default=1)
parser.add_argument(
'--output_dir',
default='',
help='path where to save, empty for no saving')
parser.add_argument(
'--log_dir', default=None, help='path where to tensorboard log')
parser.add_argument(
'--device',
default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument(
'--no_auto_resume', action='store_false', dest='auto_resume')
parser.set_defaults(auto_resume=True)
parser.add_argument(
'--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument(
'--pin_mem',
action='store_true',
help=
'Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.'
)
parser.add_argument(
'--no_pin_mem', action='store_false', dest='pin_mem', help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument(
'--world_size',
default=1,
type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument(
'--dist_url',
default='env://',
help='url used to set up distributed training')
return parser.parse_args()
def get_model(args):
print(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=False,
drop_path_rate=args.drop_path,
drop_block_rate=None,
all_frames=args.num_frames,
tubelet_size=args.tubelet_size,
decoder_depth=args.decoder_depth,
with_cp=args.with_checkpoint)
if version.parse(torch.__version__) > version.parse('1.13.1'):
torch.set_float32_matmul_precision('high')
model = torch.compile(model)
return model
def main(args):
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
model = get_model(args)
patch_size = model.encoder.patch_embed.patch_size
print("Patch size = %s" % str(patch_size))
args.window_size = (args.num_frames // args.tubelet_size,
args.input_size // patch_size[0],
args.input_size // patch_size[1])
args.patch_size = patch_size
# get dataset
dataset_train = build_pretraining_dataset(args)
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_rank = global_rank
total_batch_size = args.batch_size * num_tasks
num_training_steps_per_epoch = len(dataset_train) // total_batch_size
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True)
print("Sampler_train = %s" % str(sampler_train))
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
if args.num_sample > 1:
collate_func = partial(multiple_pretrain_samples_collate, fold=False)
else:
collate_func = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
collate_fn=collate_func,
worker_init_fn=utils.seed_worker,
persistent_workers=True)
if args.finetune:
checkpoint = torch.load(args.finetune, map_location='cpu')
print("Load ckpt from %s" % args.finetune)
checkpoint_model = None
for model_key in ['model', 'module']:
if model_key in checkpoint:
checkpoint_model = checkpoint[model_key]
print("Load state_dict by model_key = %s" % model_key)
break
if checkpoint_model is None:
checkpoint_model = checkpoint
utils.load_state_dict(model, checkpoint_model)
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters()
if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params: {} M'.format(n_parameters / 1e6))
# scale the lr
args.lr = args.lr * total_batch_size / 256
args.min_lr = args.min_lr * total_batch_size / 256
args.warmup_lr = args.warmup_lr * total_batch_size / 256
print("LR = %.8f" % args.lr)
print("Batch size = %d" % total_batch_size)
print("Number of training steps = %d" % num_training_steps_per_epoch)
print("Number of training examples per epoch = %d" %
(total_batch_size * num_training_steps_per_epoch))
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = model.module
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
print("Use step level LR & WD scheduler!")
lr_schedule_values = utils.cosine_scheduler(
args.lr,
args.min_lr,
args.epochs,
num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs,
warmup_steps=args.warmup_steps,
)
if args.weight_decay_end is None:
args.weight_decay_end = args.weight_decay
wd_schedule_values = utils.cosine_scheduler(args.weight_decay,
args.weight_decay_end,
args.epochs,
num_training_steps_per_epoch)
print("Max WD = %.7f, Min WD = %.7f" %
(max(wd_schedule_values), min(wd_schedule_values)))
utils.auto_load_model(
args=args,
model=model,
model_without_ddp=model_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler)
torch.cuda.empty_cache()
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch)
train_stats = train_one_epoch(
model,
data_loader_train,
optimizer,
device,
epoch,
loss_scaler,
args.clip_grad,
log_writer=log_writer,
start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values,
wd_schedule_values=wd_schedule_values,
patch_size=patch_size[0],
normlize_target=args.normlize_target)
if args.output_dir:
_epoch = epoch + 1
if _epoch % args.save_ckpt_freq == 0 or _epoch == args.epochs:
utils.save_model(
args=args,
model=model,
model_without_ddp=model_without_ddp,
optimizer=optimizer,
loss_scaler=loss_scaler,
epoch=epoch)
log_stats = {
**{f'train_{k}': v
for k, v in train_stats.items()}, 'epoch': epoch,
'n_parameters': n_parameters
}
if args.output_dir and utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(
os.path.join(args.output_dir, "log.txt"),
mode="a",
encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
opts = get_args()
if opts.output_dir:
Path(opts.output_dir).mkdir(parents=True, exist_ok=True)
main(opts)