forked from gilbeckers/HumanPose-and-UrbanScene-Matching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatching.py
82 lines (71 loc) · 3.68 KB
/
matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from urbanscene.urban_scene import match_scene_multi
import posematching.multi_person as multi_person
import logging
import thresholds
import plot_vars
from matplotlib import pyplot as plt
import cv2
import numpy as np
logger = logging.getLogger("match_whole")
import time
def timing(f):
def wrap(*args):
time1 = time.time()
ret = f(*args)
time2 = time.time()
logger.critical('%s function took %0.3f ms' % (f.__name__, (time2-time1)*1000.0))
return ret
return wrap
# Performs the whole matching
# First multi pose matching, followed by urbanscene matching
@timing
def match_whole(model_pose_features, input_pose_features, detector, matcher, model_image, input_image, plot_us=False, plot_mp=False):
result_pose_matching = multi_person.match(model_pose_features, input_pose_features,normalise=True, plot=plot_mp, input_image = input_image, model_image=model_image)
#logger.debug("---Result pose matching: --")
#logger.debug(result_pose_matching)
if result_pose_matching.match_bool:
#logger.debug(result_pose_matching.matching_permutations)
logger.info("===> Pose matching succes!")
else:
logger.info("No matching poses found, so quit URBAN SCENE MATCHING")
if plot_us or plot_mp:
f = plt.figure(figsize=(10, 8))
fs = 10 #fontsize
markersize = 3
f.suptitle("No matching poses found, so quit URBAN SCENE MATCHING", fontsize=10)
plt.subplot(1, 2, 1)
plt.imshow(np.asarray(input_image), cmap='gray')
for i in range(0, len(input_pose_features)):
plt.plot(*zip(*input_pose_features[i]), marker='o', color='blue', label='pose', ls='', ms=markersize - 1)
plt.title("input: " + plot_vars.input_name + " (" + str(plot_vars.amount_input_persons) + " pers)", fontsize=fs)
plt.subplot(1, 2, 2)
plt.imshow(np.asarray(model_image), cmap='gray')
for i in range(0, len(model_pose_features)):
plt.plot(*zip(*model_pose_features[i]), marker='o', color='blue', label='pose', ls='', ms=markersize - 1)
plt.title("model: " + plot_vars.model_name + " (" + str(plot_vars.amount_model_persons) + " pers)", fontsize=fs)
plot_name = plot_vars.model_name.split(".")[0] + "_" + plot_vars.input_name.split(".")[0] + "_FALSE"
plt.savefig('./plots/' + plot_name + '.png')
return (False,False)
#exit()
logger.debug("--- Starting urbanscene matching ---")
# Loop over all found matching comnbinations
# And order input poses according to matching model poses
for matching_permuations, result in result_pose_matching.matching_permutations.items():
model_poses = result['model']
input_poses = result['input']
#logger.debug(model_poses)
#logger.debug(input_poses)
model_image_copy = model_image #TODO make hard copy ??
input_image_copy = input_image
error = match_scene_multi(detector, matcher,
model_image_copy, input_image_copy,
model_poses,input_poses,
plot_us)
if error <= thresholds.AFFINE_TRANS_WHOLE_DISTANCE:
logger.info("===> MATCH! permutation %s score:%0.4f (thresh ca %0.4f)",
matching_permuations, round(error, 4), thresholds.AFFINE_TRANS_WHOLE_DISTANCE)
return (True,True)
else:
logger.info("===> NO-MATCH! permutation %s score:%0.4f (thresh ca %0.4f)",
matching_permuations, round(error, 4), thresholds.AFFINE_TRANS_WHOLE_DISTANCE)
return (True,False)