-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathaggregate_temporal.json
252 lines (252 loc) · 10.7 KB
/
aggregate_temporal.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
{
"id": "aggregate_temporal",
"summary": "Temporal aggregations",
"description": "Computes a temporal aggregation based on an array of temporal intervals.\n\nFor common regular calendar hierarchies such as year, month, week or seasons ``aggregate_temporal_period()`` can be used. Other calendar hierarchies must be transformed into specific intervals by the clients.\n\nFor each interval, all data along the dimension will be passed through the reducer.\n\nThe computed values will be projected to the labels. If no labels are specified, the start of the temporal interval will be used as label for the corresponding values. In case of a conflict (i.e. the user-specified values for the start times of the temporal intervals are not distinct), the user-defined labels must be specified in the parameter `labels` as otherwise a `DistinctDimensionLabelsRequired` exception would be thrown. The number of user-defined labels and the number of intervals need to be equal.\n\nIf the dimension is not set or is set to `null`, the data cube is expected to only have one temporal dimension.",
"categories": [
"cubes",
"aggregate"
],
"parameters": [
{
"name": "data",
"description": "A data cube.",
"schema": {
"type": "object",
"subtype": "datacube",
"dimensions": [
{
"type": "temporal"
}
]
}
},
{
"name": "intervals",
"description": "Left-closed temporal intervals, which are allowed to overlap. Each temporal interval in the array has exactly two elements:\n\n1. The first element is the start of the temporal interval. The specified time instant is **included** in the interval.\n2. The second element is the end of the temporal interval. The specified time instant is **excluded** from the interval.\n\nThe second element must always be greater/later than the first element, except when using time without date. Otherwise, a `TemporalExtentEmpty` exception is thrown.",
"schema": {
"type": "array",
"subtype": "temporal-intervals",
"minItems": 1,
"items": {
"type": "array",
"subtype": "temporal-interval",
"uniqueItems": true,
"minItems": 2,
"maxItems": 2,
"items": {
"anyOf": [
{
"type": "string",
"format": "date-time",
"subtype": "date-time",
"description": "Date and time with a time zone."
},
{
"type": "string",
"format": "date",
"subtype": "date",
"description": "Date only, formatted as `YYYY-MM-DD`. The time zone is UTC. Missing time components are all 0."
},
{
"type": "string",
"subtype": "time",
"pattern": "^\\d{2}:\\d{2}:\\d{2}$",
"description": "Time only, formatted as `HH:MM:SS`. The time zone is UTC."
},
{
"type": "null"
}
]
}
},
"examples": [
[
[
"2015-01-01",
"2016-01-01"
],
[
"2016-01-01",
"2017-01-01"
],
[
"2017-01-01",
"2018-01-01"
]
],
[
[
"06:00:00",
"18:00:00"
],
[
"18:00:00",
"06:00:00"
]
]
]
}
},
{
"name": "reducer",
"description": "A reducer to be applied for the values contained in each interval. A reducer is a single process such as ``mean()`` or a set of processes, which computes a single value for a list of values, see the category 'reducer' for such processes. Intervals may not contain any values, which for most reducers leads to no-data (`null`) values by default.",
"schema": {
"type": "object",
"subtype": "process-graph",
"parameters": [
{
"name": "data",
"description": "A labeled array with elements of any type. If there's no data for the interval, the array is empty.",
"schema": {
"type": "array",
"subtype": "labeled-array",
"items": {
"description": "Any data type."
}
}
},
{
"name": "context",
"description": "Additional data passed by the user.",
"schema": {
"description": "Any data type."
},
"optional": true,
"default": null
}
],
"returns": {
"description": "The value to be set in the new data cube.",
"schema": {
"description": "Any data type."
}
}
}
},
{
"name": "labels",
"description": "Distinct labels for the intervals, which can contain dates and/or times. Is only required to be specified if the values for the start of the temporal intervals are not distinct and thus the default labels would not be unique. The number of labels and the number of groups need to be equal.",
"schema": {
"type": "array",
"items": {
"type": [
"number",
"string"
]
}
},
"default": [],
"optional": true
},
{
"name": "dimension",
"description": "The name of the temporal dimension for aggregation. All data along the dimension is passed through the specified reducer. If the dimension is not set or set to `null`, the data cube is expected to only have one temporal dimension. Fails with a `TooManyDimensions` exception if it has more dimensions. Fails with a `DimensionNotAvailable` exception if the specified dimension does not exist.",
"schema": {
"type": [
"string",
"null"
]
},
"default": null,
"optional": true
},
{
"name": "context",
"description": "Additional data to be passed to the reducer.",
"schema": {
"description": "Any data type."
},
"optional": true,
"default": null
}
],
"returns": {
"description": "A new data cube with the same dimensions. The dimension properties (name, type, labels, reference system and resolution) remain unchanged, except for the resolution and dimension labels of the given temporal dimension.",
"schema": {
"type": "object",
"subtype": "datacube",
"dimensions": [
{
"type": "temporal"
}
]
}
},
"examples": [
{
"arguments": {
"data": {
"from_parameter": "data"
},
"intervals": [
[
"2015-01-01",
"2016-01-01"
],
[
"2016-01-01",
"2017-01-01"
],
[
"2017-01-01",
"2018-01-01"
],
[
"2018-01-01",
"2019-01-01"
],
[
"2019-01-01",
"2020-01-01"
]
],
"labels": [
"2015",
"2016",
"2017",
"2018",
"2019"
],
"reducer": {
"process_graph": {
"mean1": {
"process_id": "mean",
"arguments": {
"data": {
"from_parameter": "data"
}
},
"result": true
}
}
}
}
}
],
"exceptions": {
"TooManyDimensions": {
"message": "The data cube contains multiple temporal dimensions. The parameter `dimension` must be specified."
},
"DimensionNotAvailable": {
"message": "A dimension with the specified name does not exist."
},
"DistinctDimensionLabelsRequired": {
"message": "The dimension labels have duplicate values. Distinct labels must be specified."
},
"TemporalExtentEmpty": {
"message": "At least one of the intervals is empty. The second instant in time must always be greater/later than the first instant."
}
},
"links": [
{
"href": "https://openeo.org/documentation/1.0/datacubes.html#aggregate",
"rel": "about",
"title": "Aggregation explained in the openEO documentation"
},
{
"href": "https://www.rfc-editor.org/rfc/rfc3339.html",
"rel": "about",
"title": "RFC3339: Details about formatting temporal strings"
}
]
}