diff --git a/TimerCounter/SPL/inc/misc.h b/TimerCounter/SPL/inc/misc.h
new file mode 100644
index 0000000..cedbd01
--- /dev/null
+++ b/TimerCounter/SPL/inc/misc.h
@@ -0,0 +1,172 @@
+/**
+ ******************************************************************************
+ * @file misc.h
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file contains all the functions prototypes for the miscellaneous
+ * firmware library functions (add-on to CMSIS functions).
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F4xx_FSMC_H
+#define __STM32F4xx_FSMC_H
+
+#ifdef __cplusplus
+ extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @addtogroup FSMC
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+
+/**
+ * @brief Timing parameters For NOR/SRAM Banks
+ */
+typedef struct
+{
+ uint32_t FSMC_AddressSetupTime; /*!< Defines the number of HCLK cycles to configure
+ the duration of the address setup time.
+ This parameter can be a value between 0 and 0xF.
+ @note This parameter is not used with synchronous NOR Flash memories. */
+
+ uint32_t FSMC_AddressHoldTime; /*!< Defines the number of HCLK cycles to configure
+ the duration of the address hold time.
+ This parameter can be a value between 0 and 0xF.
+ @note This parameter is not used with synchronous NOR Flash memories.*/
+
+ uint32_t FSMC_DataSetupTime; /*!< Defines the number of HCLK cycles to configure
+ the duration of the data setup time.
+ This parameter can be a value between 0 and 0xFF.
+ @note This parameter is used for SRAMs, ROMs and asynchronous multiplexed NOR Flash memories. */
+
+ uint32_t FSMC_BusTurnAroundDuration; /*!< Defines the number of HCLK cycles to configure
+ the duration of the bus turnaround.
+ This parameter can be a value between 0 and 0xF.
+ @note This parameter is only used for multiplexed NOR Flash memories. */
+
+ uint32_t FSMC_CLKDivision; /*!< Defines the period of CLK clock output signal, expressed in number of HCLK cycles.
+ This parameter can be a value between 1 and 0xF.
+ @note This parameter is not used for asynchronous NOR Flash, SRAM or ROM accesses. */
+
+ uint32_t FSMC_DataLatency; /*!< Defines the number of memory clock cycles to issue
+ to the memory before getting the first data.
+ The parameter value depends on the memory type as shown below:
+ - It must be set to 0 in case of a CRAM
+ - It is don't care in asynchronous NOR, SRAM or ROM accesses
+ - It may assume a value between 0 and 0xF in NOR Flash memories
+ with synchronous burst mode enable */
+
+ uint32_t FSMC_AccessMode; /*!< Specifies the asynchronous access mode.
+ This parameter can be a value of @ref FSMC_Access_Mode */
+}FSMC_NORSRAMTimingInitTypeDef;
+
+/**
+ * @brief FSMC NOR/SRAM Init structure definition
+ */
+typedef struct
+{
+ uint32_t FSMC_Bank; /*!< Specifies the NOR/SRAM memory bank that will be used.
+ This parameter can be a value of @ref FSMC_NORSRAM_Bank */
+
+ uint32_t FSMC_DataAddressMux; /*!< Specifies whether the address and data values are
+ multiplexed on the databus or not.
+ This parameter can be a value of @ref FSMC_Data_Address_Bus_Multiplexing */
+
+ uint32_t FSMC_MemoryType; /*!< Specifies the type of external memory attached to
+ the corresponding memory bank.
+ This parameter can be a value of @ref FSMC_Memory_Type */
+
+ uint32_t FSMC_MemoryDataWidth; /*!< Specifies the external memory device width.
+ This parameter can be a value of @ref FSMC_Data_Width */
+
+ uint32_t FSMC_BurstAccessMode; /*!< Enables or disables the burst access mode for Flash memory,
+ valid only with synchronous burst Flash memories.
+ This parameter can be a value of @ref FSMC_Burst_Access_Mode */
+
+ uint32_t FSMC_AsynchronousWait; /*!< Enables or disables wait signal during asynchronous transfers,
+ valid only with asynchronous Flash memories.
+ This parameter can be a value of @ref FSMC_AsynchronousWait */
+
+ uint32_t FSMC_WaitSignalPolarity; /*!< Specifies the wait signal polarity, valid only when accessing
+ the Flash memory in burst mode.
+ This parameter can be a value of @ref FSMC_Wait_Signal_Polarity */
+
+ uint32_t FSMC_WrapMode; /*!< Enables or disables the Wrapped burst access mode for Flash
+ memory, valid only when accessing Flash memories in burst mode.
+ This parameter can be a value of @ref FSMC_Wrap_Mode */
+
+ uint32_t FSMC_WaitSignalActive; /*!< Specifies if the wait signal is asserted by the memory one
+ clock cycle before the wait state or during the wait state,
+ valid only when accessing memories in burst mode.
+ This parameter can be a value of @ref FSMC_Wait_Timing */
+
+ uint32_t FSMC_WriteOperation; /*!< Enables or disables the write operation in the selected bank by the FSMC.
+ This parameter can be a value of @ref FSMC_Write_Operation */
+
+ uint32_t FSMC_WaitSignal; /*!< Enables or disables the wait-state insertion via wait
+ signal, valid for Flash memory access in burst mode.
+ This parameter can be a value of @ref FSMC_Wait_Signal */
+
+ uint32_t FSMC_ExtendedMode; /*!< Enables or disables the extended mode.
+ This parameter can be a value of @ref FSMC_Extended_Mode */
+
+ uint32_t FSMC_WriteBurst; /*!< Enables or disables the write burst operation.
+ This parameter can be a value of @ref FSMC_Write_Burst */
+
+ FSMC_NORSRAMTimingInitTypeDef* FSMC_ReadWriteTimingStruct; /*!< Timing Parameters for write and read access if the ExtendedMode is not used*/
+
+ FSMC_NORSRAMTimingInitTypeDef* FSMC_WriteTimingStruct; /*!< Timing Parameters for write access if the ExtendedMode is used*/
+}FSMC_NORSRAMInitTypeDef;
+
+/**
+ * @brief Timing parameters For FSMC NAND and PCCARD Banks
+ */
+typedef struct
+{
+ uint32_t FSMC_SetupTime; /*!< Defines the number of HCLK cycles to setup address before
+ the command assertion for NAND-Flash read or write access
+ to common/Attribute or I/O memory space (depending on
+ the memory space timing to be configured).
+ This parameter can be a value between 0 and 0xFF.*/
+
+ uint32_t FSMC_WaitSetupTime; /*!< Defines the minimum number of HCLK cycles to assert the
+ command for NAND-Flash read or write access to
+ common/Attribute or I/O memory space (depending on the
+ memory space timing to be configured).
+ This parameter can be a number between 0x00 and 0xFF */
+
+ uint32_t FSMC_HoldSetupTime; /*!< Defines the number of HCLK clock cycles to hold address
+ (and data for write access) after the command deassertion
+ for NAND-Flash read or write access to common/Attribute
+ or I/O memory space (depending on the memory space timing
+ to be configured).
+ This parameter can be a number between 0x00 and 0xFF */
+
+ uint32_t FSMC_HiZSetupTime; /*!< Defines the number of HCLK clock cycles during which the
+ databus is kept in HiZ after the start of a NAND-Flash
+ write access to common/Attribute or I/O memory space (depending
+ on the memory space timing to be configured).
+ This parameter can be a number between 0x00 and 0xFF */
+}FSMC_NAND_PCCARDTimingInitTypeDef;
+
+/**
+ * @brief FSMC NAND Init structure definition
+ */
+typedef struct
+{
+ uint32_t FSMC_Bank; /*!< Specifies the NAND memory bank that will be used.
+ This parameter can be a value of @ref FSMC_NAND_Bank */
+
+ uint32_t FSMC_Waitfeature; /*!< Enables or disables the Wait feature for the NAND Memory Bank.
+ This parameter can be any value of @ref FSMC_Wait_feature */
+
+ uint32_t FSMC_MemoryDataWidth; /*!< Specifies the external memory device width.
+ This parameter can be any value of @ref FSMC_Data_Width */
+
+ uint32_t FSMC_ECC; /*!< Enables or disables the ECC computation.
+ This parameter can be any value of @ref FSMC_ECC */
+
+ uint32_t FSMC_ECCPageSize; /*!< Defines the page size for the extended ECC.
+ This parameter can be any value of @ref FSMC_ECC_Page_Size */
+
+ uint32_t FSMC_TCLRSetupTime; /*!< Defines the number of HCLK cycles to configure the
+ delay between CLE low and RE low.
+ This parameter can be a value between 0 and 0xFF. */
+
+ uint32_t FSMC_TARSetupTime; /*!< Defines the number of HCLK cycles to configure the
+ delay between ALE low and RE low.
+ This parameter can be a number between 0x0 and 0xFF */
+
+ FSMC_NAND_PCCARDTimingInitTypeDef* FSMC_CommonSpaceTimingStruct; /*!< FSMC Common Space Timing */
+
+ FSMC_NAND_PCCARDTimingInitTypeDef* FSMC_AttributeSpaceTimingStruct; /*!< FSMC Attribute Space Timing */
+}FSMC_NANDInitTypeDef;
+
+/**
+ * @brief FSMC PCCARD Init structure definition
+ */
+
+typedef struct
+{
+ uint32_t FSMC_Waitfeature; /*!< Enables or disables the Wait feature for the Memory Bank.
+ This parameter can be any value of @ref FSMC_Wait_feature */
+
+ uint32_t FSMC_TCLRSetupTime; /*!< Defines the number of HCLK cycles to configure the
+ delay between CLE low and RE low.
+ This parameter can be a value between 0 and 0xFF. */
+
+ uint32_t FSMC_TARSetupTime; /*!< Defines the number of HCLK cycles to configure the
+ delay between ALE low and RE low.
+ This parameter can be a number between 0x0 and 0xFF */
+
+
+ FSMC_NAND_PCCARDTimingInitTypeDef* FSMC_CommonSpaceTimingStruct; /*!< FSMC Common Space Timing */
+
+ FSMC_NAND_PCCARDTimingInitTypeDef* FSMC_AttributeSpaceTimingStruct; /*!< FSMC Attribute Space Timing */
+
+ FSMC_NAND_PCCARDTimingInitTypeDef* FSMC_IOSpaceTimingStruct; /*!< FSMC IO Space Timing */
+}FSMC_PCCARDInitTypeDef;
+
+/* Exported constants --------------------------------------------------------*/
+
+/** @defgroup FSMC_Exported_Constants
+ * @{
+ */
+
+/** @defgroup FSMC_NORSRAM_Bank
+ * @{
+ */
+#define FSMC_Bank1_NORSRAM1 ((uint32_t)0x00000000)
+#define FSMC_Bank1_NORSRAM2 ((uint32_t)0x00000002)
+#define FSMC_Bank1_NORSRAM3 ((uint32_t)0x00000004)
+#define FSMC_Bank1_NORSRAM4 ((uint32_t)0x00000006)
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_NAND_Bank
+ * @{
+ */
+#define FSMC_Bank2_NAND ((uint32_t)0x00000010)
+#define FSMC_Bank3_NAND ((uint32_t)0x00000100)
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_PCCARD_Bank
+ * @{
+ */
+#define FSMC_Bank4_PCCARD ((uint32_t)0x00001000)
+/**
+ * @}
+ */
+
+#define IS_FSMC_NORSRAM_BANK(BANK) (((BANK) == FSMC_Bank1_NORSRAM1) || \
+ ((BANK) == FSMC_Bank1_NORSRAM2) || \
+ ((BANK) == FSMC_Bank1_NORSRAM3) || \
+ ((BANK) == FSMC_Bank1_NORSRAM4))
+
+#define IS_FSMC_NAND_BANK(BANK) (((BANK) == FSMC_Bank2_NAND) || \
+ ((BANK) == FSMC_Bank3_NAND))
+
+#define IS_FSMC_GETFLAG_BANK(BANK) (((BANK) == FSMC_Bank2_NAND) || \
+ ((BANK) == FSMC_Bank3_NAND) || \
+ ((BANK) == FSMC_Bank4_PCCARD))
+
+#define IS_FSMC_IT_BANK(BANK) (((BANK) == FSMC_Bank2_NAND) || \
+ ((BANK) == FSMC_Bank3_NAND) || \
+ ((BANK) == FSMC_Bank4_PCCARD))
+
+/** @defgroup FSMC_NOR_SRAM_Controller
+ * @{
+ */
+
+/** @defgroup FSMC_Data_Address_Bus_Multiplexing
+ * @{
+ */
+
+#define FSMC_DataAddressMux_Disable ((uint32_t)0x00000000)
+#define FSMC_DataAddressMux_Enable ((uint32_t)0x00000002)
+#define IS_FSMC_MUX(MUX) (((MUX) == FSMC_DataAddressMux_Disable) || \
+ ((MUX) == FSMC_DataAddressMux_Enable))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Memory_Type
+ * @{
+ */
+
+#define FSMC_MemoryType_SRAM ((uint32_t)0x00000000)
+#define FSMC_MemoryType_PSRAM ((uint32_t)0x00000004)
+#define FSMC_MemoryType_NOR ((uint32_t)0x00000008)
+#define IS_FSMC_MEMORY(MEMORY) (((MEMORY) == FSMC_MemoryType_SRAM) || \
+ ((MEMORY) == FSMC_MemoryType_PSRAM)|| \
+ ((MEMORY) == FSMC_MemoryType_NOR))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Data_Width
+ * @{
+ */
+
+#define FSMC_MemoryDataWidth_8b ((uint32_t)0x00000000)
+#define FSMC_MemoryDataWidth_16b ((uint32_t)0x00000010)
+#define IS_FSMC_MEMORY_WIDTH(WIDTH) (((WIDTH) == FSMC_MemoryDataWidth_8b) || \
+ ((WIDTH) == FSMC_MemoryDataWidth_16b))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Burst_Access_Mode
+ * @{
+ */
+
+#define FSMC_BurstAccessMode_Disable ((uint32_t)0x00000000)
+#define FSMC_BurstAccessMode_Enable ((uint32_t)0x00000100)
+#define IS_FSMC_BURSTMODE(STATE) (((STATE) == FSMC_BurstAccessMode_Disable) || \
+ ((STATE) == FSMC_BurstAccessMode_Enable))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_AsynchronousWait
+ * @{
+ */
+#define FSMC_AsynchronousWait_Disable ((uint32_t)0x00000000)
+#define FSMC_AsynchronousWait_Enable ((uint32_t)0x00008000)
+#define IS_FSMC_ASYNWAIT(STATE) (((STATE) == FSMC_AsynchronousWait_Disable) || \
+ ((STATE) == FSMC_AsynchronousWait_Enable))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Wait_Signal_Polarity
+ * @{
+ */
+#define FSMC_WaitSignalPolarity_Low ((uint32_t)0x00000000)
+#define FSMC_WaitSignalPolarity_High ((uint32_t)0x00000200)
+#define IS_FSMC_WAIT_POLARITY(POLARITY) (((POLARITY) == FSMC_WaitSignalPolarity_Low) || \
+ ((POLARITY) == FSMC_WaitSignalPolarity_High))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Wrap_Mode
+ * @{
+ */
+#define FSMC_WrapMode_Disable ((uint32_t)0x00000000)
+#define FSMC_WrapMode_Enable ((uint32_t)0x00000400)
+#define IS_FSMC_WRAP_MODE(MODE) (((MODE) == FSMC_WrapMode_Disable) || \
+ ((MODE) == FSMC_WrapMode_Enable))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Wait_Timing
+ * @{
+ */
+#define FSMC_WaitSignalActive_BeforeWaitState ((uint32_t)0x00000000)
+#define FSMC_WaitSignalActive_DuringWaitState ((uint32_t)0x00000800)
+#define IS_FSMC_WAIT_SIGNAL_ACTIVE(ACTIVE) (((ACTIVE) == FSMC_WaitSignalActive_BeforeWaitState) || \
+ ((ACTIVE) == FSMC_WaitSignalActive_DuringWaitState))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Write_Operation
+ * @{
+ */
+#define FSMC_WriteOperation_Disable ((uint32_t)0x00000000)
+#define FSMC_WriteOperation_Enable ((uint32_t)0x00001000)
+#define IS_FSMC_WRITE_OPERATION(OPERATION) (((OPERATION) == FSMC_WriteOperation_Disable) || \
+ ((OPERATION) == FSMC_WriteOperation_Enable))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Wait_Signal
+ * @{
+ */
+#define FSMC_WaitSignal_Disable ((uint32_t)0x00000000)
+#define FSMC_WaitSignal_Enable ((uint32_t)0x00002000)
+#define IS_FSMC_WAITE_SIGNAL(SIGNAL) (((SIGNAL) == FSMC_WaitSignal_Disable) || \
+ ((SIGNAL) == FSMC_WaitSignal_Enable))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Extended_Mode
+ * @{
+ */
+#define FSMC_ExtendedMode_Disable ((uint32_t)0x00000000)
+#define FSMC_ExtendedMode_Enable ((uint32_t)0x00004000)
+
+#define IS_FSMC_EXTENDED_MODE(MODE) (((MODE) == FSMC_ExtendedMode_Disable) || \
+ ((MODE) == FSMC_ExtendedMode_Enable))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Write_Burst
+ * @{
+ */
+
+#define FSMC_WriteBurst_Disable ((uint32_t)0x00000000)
+#define FSMC_WriteBurst_Enable ((uint32_t)0x00080000)
+#define IS_FSMC_WRITE_BURST(BURST) (((BURST) == FSMC_WriteBurst_Disable) || \
+ ((BURST) == FSMC_WriteBurst_Enable))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Address_Setup_Time
+ * @{
+ */
+#define IS_FSMC_ADDRESS_SETUP_TIME(TIME) ((TIME) <= 0xF)
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Address_Hold_Time
+ * @{
+ */
+#define IS_FSMC_ADDRESS_HOLD_TIME(TIME) ((TIME) <= 0xF)
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Data_Setup_Time
+ * @{
+ */
+#define IS_FSMC_DATASETUP_TIME(TIME) (((TIME) > 0) && ((TIME) <= 0xFF))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Bus_Turn_around_Duration
+ * @{
+ */
+#define IS_FSMC_TURNAROUND_TIME(TIME) ((TIME) <= 0xF)
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_CLK_Division
+ * @{
+ */
+#define IS_FSMC_CLK_DIV(DIV) ((DIV) <= 0xF)
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Data_Latency
+ * @{
+ */
+#define IS_FSMC_DATA_LATENCY(LATENCY) ((LATENCY) <= 0xF)
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Access_Mode
+ * @{
+ */
+#define FSMC_AccessMode_A ((uint32_t)0x00000000)
+#define FSMC_AccessMode_B ((uint32_t)0x10000000)
+#define FSMC_AccessMode_C ((uint32_t)0x20000000)
+#define FSMC_AccessMode_D ((uint32_t)0x30000000)
+#define IS_FSMC_ACCESS_MODE(MODE) (((MODE) == FSMC_AccessMode_A) || \
+ ((MODE) == FSMC_AccessMode_B) || \
+ ((MODE) == FSMC_AccessMode_C) || \
+ ((MODE) == FSMC_AccessMode_D))
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_NAND_PCCARD_Controller
+ * @{
+ */
+
+/** @defgroup FSMC_Wait_feature
+ * @{
+ */
+#define FSMC_Waitfeature_Disable ((uint32_t)0x00000000)
+#define FSMC_Waitfeature_Enable ((uint32_t)0x00000002)
+#define IS_FSMC_WAIT_FEATURE(FEATURE) (((FEATURE) == FSMC_Waitfeature_Disable) || \
+ ((FEATURE) == FSMC_Waitfeature_Enable))
+/**
+ * @}
+ */
+
+
+/** @defgroup FSMC_ECC
+ * @{
+ */
+#define FSMC_ECC_Disable ((uint32_t)0x00000000)
+#define FSMC_ECC_Enable ((uint32_t)0x00000040)
+#define IS_FSMC_ECC_STATE(STATE) (((STATE) == FSMC_ECC_Disable) || \
+ ((STATE) == FSMC_ECC_Enable))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_ECC_Page_Size
+ * @{
+ */
+#define FSMC_ECCPageSize_256Bytes ((uint32_t)0x00000000)
+#define FSMC_ECCPageSize_512Bytes ((uint32_t)0x00020000)
+#define FSMC_ECCPageSize_1024Bytes ((uint32_t)0x00040000)
+#define FSMC_ECCPageSize_2048Bytes ((uint32_t)0x00060000)
+#define FSMC_ECCPageSize_4096Bytes ((uint32_t)0x00080000)
+#define FSMC_ECCPageSize_8192Bytes ((uint32_t)0x000A0000)
+#define IS_FSMC_ECCPAGE_SIZE(SIZE) (((SIZE) == FSMC_ECCPageSize_256Bytes) || \
+ ((SIZE) == FSMC_ECCPageSize_512Bytes) || \
+ ((SIZE) == FSMC_ECCPageSize_1024Bytes) || \
+ ((SIZE) == FSMC_ECCPageSize_2048Bytes) || \
+ ((SIZE) == FSMC_ECCPageSize_4096Bytes) || \
+ ((SIZE) == FSMC_ECCPageSize_8192Bytes))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_TCLR_Setup_Time
+ * @{
+ */
+#define IS_FSMC_TCLR_TIME(TIME) ((TIME) <= 0xFF)
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_TAR_Setup_Time
+ * @{
+ */
+#define IS_FSMC_TAR_TIME(TIME) ((TIME) <= 0xFF)
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Setup_Time
+ * @{
+ */
+#define IS_FSMC_SETUP_TIME(TIME) ((TIME) <= 0xFF)
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Wait_Setup_Time
+ * @{
+ */
+#define IS_FSMC_WAIT_TIME(TIME) ((TIME) <= 0xFF)
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Hold_Setup_Time
+ * @{
+ */
+#define IS_FSMC_HOLD_TIME(TIME) ((TIME) <= 0xFF)
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_HiZ_Setup_Time
+ * @{
+ */
+#define IS_FSMC_HIZ_TIME(TIME) ((TIME) <= 0xFF)
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Interrupt_sources
+ * @{
+ */
+#define FSMC_IT_RisingEdge ((uint32_t)0x00000008)
+#define FSMC_IT_Level ((uint32_t)0x00000010)
+#define FSMC_IT_FallingEdge ((uint32_t)0x00000020)
+#define IS_FSMC_IT(IT) ((((IT) & (uint32_t)0xFFFFFFC7) == 0x00000000) && ((IT) != 0x00000000))
+#define IS_FSMC_GET_IT(IT) (((IT) == FSMC_IT_RisingEdge) || \
+ ((IT) == FSMC_IT_Level) || \
+ ((IT) == FSMC_IT_FallingEdge))
+/**
+ * @}
+ */
+
+/** @defgroup FSMC_Flags
+ * @{
+ */
+#define FSMC_FLAG_RisingEdge ((uint32_t)0x00000001)
+#define FSMC_FLAG_Level ((uint32_t)0x00000002)
+#define FSMC_FLAG_FallingEdge ((uint32_t)0x00000004)
+#define FSMC_FLAG_FEMPT ((uint32_t)0x00000040)
+#define IS_FSMC_GET_FLAG(FLAG) (((FLAG) == FSMC_FLAG_RisingEdge) || \
+ ((FLAG) == FSMC_FLAG_Level) || \
+ ((FLAG) == FSMC_FLAG_FallingEdge) || \
+ ((FLAG) == FSMC_FLAG_FEMPT))
+
+#define IS_FSMC_CLEAR_FLAG(FLAG) ((((FLAG) & (uint32_t)0xFFFFFFF8) == 0x00000000) && ((FLAG) != 0x00000000))
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Exported macro ------------------------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
+
+/* NOR/SRAM Controller functions **********************************************/
+void FSMC_NORSRAMDeInit(uint32_t FSMC_Bank);
+void FSMC_NORSRAMInit(FSMC_NORSRAMInitTypeDef* FSMC_NORSRAMInitStruct);
+void FSMC_NORSRAMStructInit(FSMC_NORSRAMInitTypeDef* FSMC_NORSRAMInitStruct);
+void FSMC_NORSRAMCmd(uint32_t FSMC_Bank, FunctionalState NewState);
+
+/* NAND Controller functions **************************************************/
+void FSMC_NANDDeInit(uint32_t FSMC_Bank);
+void FSMC_NANDInit(FSMC_NANDInitTypeDef* FSMC_NANDInitStruct);
+void FSMC_NANDStructInit(FSMC_NANDInitTypeDef* FSMC_NANDInitStruct);
+void FSMC_NANDCmd(uint32_t FSMC_Bank, FunctionalState NewState);
+void FSMC_NANDECCCmd(uint32_t FSMC_Bank, FunctionalState NewState);
+uint32_t FSMC_GetECC(uint32_t FSMC_Bank);
+
+/* PCCARD Controller functions ************************************************/
+void FSMC_PCCARDDeInit(void);
+void FSMC_PCCARDInit(FSMC_PCCARDInitTypeDef* FSMC_PCCARDInitStruct);
+void FSMC_PCCARDStructInit(FSMC_PCCARDInitTypeDef* FSMC_PCCARDInitStruct);
+void FSMC_PCCARDCmd(FunctionalState NewState);
+
+/* Interrupts and flags management functions **********************************/
+void FSMC_ITConfig(uint32_t FSMC_Bank, uint32_t FSMC_IT, FunctionalState NewState);
+FlagStatus FSMC_GetFlagStatus(uint32_t FSMC_Bank, uint32_t FSMC_FLAG);
+void FSMC_ClearFlag(uint32_t FSMC_Bank, uint32_t FSMC_FLAG);
+ITStatus FSMC_GetITStatus(uint32_t FSMC_Bank, uint32_t FSMC_IT);
+void FSMC_ClearITPendingBit(uint32_t FSMC_Bank, uint32_t FSMC_IT);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /*__STM32F4xx_FSMC_H */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/inc/stm32f4xx_gpio.h b/TimerCounter/SPL/inc/stm32f4xx_gpio.h
new file mode 100644
index 0000000..5cbc201
--- /dev/null
+++ b/TimerCounter/SPL/inc/stm32f4xx_gpio.h
@@ -0,0 +1,406 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_gpio.h
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file contains all the functions prototypes for the GPIO firmware
+ * library.
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32F4xx_I2C_H
+#define __STM32F4xx_I2C_H
+
+#ifdef __cplusplus
+ extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @addtogroup I2C
+ * @{
+ */
+
+/* Exported types ------------------------------------------------------------*/
+
+/**
+ * @brief I2C Init structure definition
+ */
+
+typedef struct
+{
+ uint32_t I2C_ClockSpeed; /*!< Specifies the clock frequency.
+ This parameter must be set to a value lower than 400kHz */
+
+ uint16_t I2C_Mode; /*!< Specifies the I2C mode.
+ This parameter can be a value of @ref I2C_mode */
+
+ uint16_t I2C_DutyCycle; /*!< Specifies the I2C fast mode duty cycle.
+ This parameter can be a value of @ref I2C_duty_cycle_in_fast_mode */
+
+ uint16_t I2C_OwnAddress1; /*!< Specifies the first device own address.
+ This parameter can be a 7-bit or 10-bit address. */
+
+ uint16_t I2C_Ack; /*!< Enables or disables the acknowledgement.
+ This parameter can be a value of @ref I2C_acknowledgement */
+
+ uint16_t I2C_AcknowledgedAddress; /*!< Specifies if 7-bit or 10-bit address is acknowledged.
+ This parameter can be a value of @ref I2C_acknowledged_address */
+}I2C_InitTypeDef;
+
+/* Exported constants --------------------------------------------------------*/
+
+
+/** @defgroup I2C_Exported_Constants
+ * @{
+ */
+
+#define IS_I2C_ALL_PERIPH(PERIPH) (((PERIPH) == I2C1) || \
+ ((PERIPH) == I2C2) || \
+ ((PERIPH) == I2C3))
+/** @defgroup I2C_mode
+ * @{
+ */
+
+#define I2C_Mode_I2C ((uint16_t)0x0000)
+#define I2C_Mode_SMBusDevice ((uint16_t)0x0002)
+#define I2C_Mode_SMBusHost ((uint16_t)0x000A)
+#define IS_I2C_MODE(MODE) (((MODE) == I2C_Mode_I2C) || \
+ ((MODE) == I2C_Mode_SMBusDevice) || \
+ ((MODE) == I2C_Mode_SMBusHost))
+/**
+ * @}
+ */
+
+/** @defgroup I2C_duty_cycle_in_fast_mode
+ * @{
+ */
+
+#define I2C_DutyCycle_16_9 ((uint16_t)0x4000) /*!< I2C fast mode Tlow/Thigh = 16/9 */
+#define I2C_DutyCycle_2 ((uint16_t)0xBFFF) /*!< I2C fast mode Tlow/Thigh = 2 */
+#define IS_I2C_DUTY_CYCLE(CYCLE) (((CYCLE) == I2C_DutyCycle_16_9) || \
+ ((CYCLE) == I2C_DutyCycle_2))
+/**
+ * @}
+ */
+
+/** @defgroup I2C_acknowledgement
+ * @{
+ */
+
+#define I2C_Ack_Enable ((uint16_t)0x0400)
+#define I2C_Ack_Disable ((uint16_t)0x0000)
+#define IS_I2C_ACK_STATE(STATE) (((STATE) == I2C_Ack_Enable) || \
+ ((STATE) == I2C_Ack_Disable))
+/**
+ * @}
+ */
+
+/** @defgroup I2C_transfer_direction
+ * @{
+ */
+
+#define I2C_Direction_Transmitter ((uint8_t)0x00)
+#define I2C_Direction_Receiver ((uint8_t)0x01)
+#define IS_I2C_DIRECTION(DIRECTION) (((DIRECTION) == I2C_Direction_Transmitter) || \
+ ((DIRECTION) == I2C_Direction_Receiver))
+/**
+ * @}
+ */
+
+/** @defgroup I2C_acknowledged_address
+ * @{
+ */
+
+#define I2C_AcknowledgedAddress_7bit ((uint16_t)0x4000)
+#define I2C_AcknowledgedAddress_10bit ((uint16_t)0xC000)
+#define IS_I2C_ACKNOWLEDGE_ADDRESS(ADDRESS) (((ADDRESS) == I2C_AcknowledgedAddress_7bit) || \
+ ((ADDRESS) == I2C_AcknowledgedAddress_10bit))
+/**
+ * @}
+ */
+
+/** @defgroup I2C_registers
+ * @{
+ */
+
+#define I2C_Register_CR1 ((uint8_t)0x00)
+#define I2C_Register_CR2 ((uint8_t)0x04)
+#define I2C_Register_OAR1 ((uint8_t)0x08)
+#define I2C_Register_OAR2 ((uint8_t)0x0C)
+#define I2C_Register_DR ((uint8_t)0x10)
+#define I2C_Register_SR1 ((uint8_t)0x14)
+#define I2C_Register_SR2 ((uint8_t)0x18)
+#define I2C_Register_CCR ((uint8_t)0x1C)
+#define I2C_Register_TRISE ((uint8_t)0x20)
+#define IS_I2C_REGISTER(REGISTER) (((REGISTER) == I2C_Register_CR1) || \
+ ((REGISTER) == I2C_Register_CR2) || \
+ ((REGISTER) == I2C_Register_OAR1) || \
+ ((REGISTER) == I2C_Register_OAR2) || \
+ ((REGISTER) == I2C_Register_DR) || \
+ ((REGISTER) == I2C_Register_SR1) || \
+ ((REGISTER) == I2C_Register_SR2) || \
+ ((REGISTER) == I2C_Register_CCR) || \
+ ((REGISTER) == I2C_Register_TRISE))
+/**
+ * @}
+ */
+
+/** @defgroup I2C_NACK_position
+ * @{
+ */
+
+#define I2C_NACKPosition_Next ((uint16_t)0x0800)
+#define I2C_NACKPosition_Current ((uint16_t)0xF7FF)
+#define IS_I2C_NACK_POSITION(POSITION) (((POSITION) == I2C_NACKPosition_Next) || \
+ ((POSITION) == I2C_NACKPosition_Current))
+/**
+ * @}
+ */
+
+/** @defgroup I2C_SMBus_alert_pin_level
+ * @{
+ */
+
+#define I2C_SMBusAlert_Low ((uint16_t)0x2000)
+#define I2C_SMBusAlert_High ((uint16_t)0xDFFF)
+#define IS_I2C_SMBUS_ALERT(ALERT) (((ALERT) == I2C_SMBusAlert_Low) || \
+ ((ALERT) == I2C_SMBusAlert_High))
+/**
+ * @}
+ */
+
+/** @defgroup I2C_PEC_position
+ * @{
+ */
+
+#define I2C_PECPosition_Next ((uint16_t)0x0800)
+#define I2C_PECPosition_Current ((uint16_t)0xF7FF)
+#define IS_I2C_PEC_POSITION(POSITION) (((POSITION) == I2C_PECPosition_Next) || \
+ ((POSITION) == I2C_PECPosition_Current))
+/**
+ * @}
+ */
+
+/** @defgroup I2C_interrupts_definition
+ * @{
+ */
+
+#define I2C_IT_BUF ((uint16_t)0x0400)
+#define I2C_IT_EVT ((uint16_t)0x0200)
+#define I2C_IT_ERR ((uint16_t)0x0100)
+#define IS_I2C_CONFIG_IT(IT) ((((IT) & (uint16_t)0xF8FF) == 0x00) && ((IT) != 0x00))
+/**
+ * @}
+ */
+
+/** @defgroup I2C_interrupts_definition
+ * @{
+ */
+
+#define I2C_IT_SMBALERT ((uint32_t)0x01008000)
+#define I2C_IT_TIMEOUT ((uint32_t)0x01004000)
+#define I2C_IT_PECERR ((uint32_t)0x01001000)
+#define I2C_IT_OVR ((uint32_t)0x01000800)
+#define I2C_IT_AF ((uint32_t)0x01000400)
+#define I2C_IT_ARLO ((uint32_t)0x01000200)
+#define I2C_IT_BERR ((uint32_t)0x01000100)
+#define I2C_IT_TXE ((uint32_t)0x06000080)
+#define I2C_IT_RXNE ((uint32_t)0x06000040)
+#define I2C_IT_STOPF ((uint32_t)0x02000010)
+#define I2C_IT_ADD10 ((uint32_t)0x02000008)
+#define I2C_IT_BTF ((uint32_t)0x02000004)
+#define I2C_IT_ADDR ((uint32_t)0x02000002)
+#define I2C_IT_SB ((uint32_t)0x02000001)
+
+#define IS_I2C_CLEAR_IT(IT) ((((IT) & (uint16_t)0x20FF) == 0x00) && ((IT) != (uint16_t)0x00))
+
+#define IS_I2C_GET_IT(IT) (((IT) == I2C_IT_SMBALERT) || ((IT) == I2C_IT_TIMEOUT) || \
+ ((IT) == I2C_IT_PECERR) || ((IT) == I2C_IT_OVR) || \
+ ((IT) == I2C_IT_AF) || ((IT) == I2C_IT_ARLO) || \
+ ((IT) == I2C_IT_BERR) || ((IT) == I2C_IT_TXE) || \
+ ((IT) == I2C_IT_RXNE) || ((IT) == I2C_IT_STOPF) || \
+ ((IT) == I2C_IT_ADD10) || ((IT) == I2C_IT_BTF) || \
+ ((IT) == I2C_IT_ADDR) || ((IT) == I2C_IT_SB))
+/**
+ * @}
+ */
+
+/** @defgroup I2C_flags_definition
+ * @{
+ */
+
+/**
+ * @brief SR2 register flags
+ */
+
+#define I2C_FLAG_DUALF ((uint32_t)0x00800000)
+#define I2C_FLAG_SMBHOST ((uint32_t)0x00400000)
+#define I2C_FLAG_SMBDEFAULT ((uint32_t)0x00200000)
+#define I2C_FLAG_GENCALL ((uint32_t)0x00100000)
+#define I2C_FLAG_TRA ((uint32_t)0x00040000)
+#define I2C_FLAG_BUSY ((uint32_t)0x00020000)
+#define I2C_FLAG_MSL ((uint32_t)0x00010000)
+
+/**
+ * @brief SR1 register flags
+ */
+
+#define I2C_FLAG_SMBALERT ((uint32_t)0x10008000)
+#define I2C_FLAG_TIMEOUT ((uint32_t)0x10004000)
+#define I2C_FLAG_PECERR ((uint32_t)0x10001000)
+#define I2C_FLAG_OVR ((uint32_t)0x10000800)
+#define I2C_FLAG_AF ((uint32_t)0x10000400)
+#define I2C_FLAG_ARLO ((uint32_t)0x10000200)
+#define I2C_FLAG_BERR ((uint32_t)0x10000100)
+#define I2C_FLAG_TXE ((uint32_t)0x10000080)
+#define I2C_FLAG_RXNE ((uint32_t)0x10000040)
+#define I2C_FLAG_STOPF ((uint32_t)0x10000010)
+#define I2C_FLAG_ADD10 ((uint32_t)0x10000008)
+#define I2C_FLAG_BTF ((uint32_t)0x10000004)
+#define I2C_FLAG_ADDR ((uint32_t)0x10000002)
+#define I2C_FLAG_SB ((uint32_t)0x10000001)
+
+#define IS_I2C_CLEAR_FLAG(FLAG) ((((FLAG) & (uint16_t)0x20FF) == 0x00) && ((FLAG) != (uint16_t)0x00))
+
+#define IS_I2C_GET_FLAG(FLAG) (((FLAG) == I2C_FLAG_DUALF) || ((FLAG) == I2C_FLAG_SMBHOST) || \
+ ((FLAG) == I2C_FLAG_SMBDEFAULT) || ((FLAG) == I2C_FLAG_GENCALL) || \
+ ((FLAG) == I2C_FLAG_TRA) || ((FLAG) == I2C_FLAG_BUSY) || \
+ ((FLAG) == I2C_FLAG_MSL) || ((FLAG) == I2C_FLAG_SMBALERT) || \
+ ((FLAG) == I2C_FLAG_TIMEOUT) || ((FLAG) == I2C_FLAG_PECERR) || \
+ ((FLAG) == I2C_FLAG_OVR) || ((FLAG) == I2C_FLAG_AF) || \
+ ((FLAG) == I2C_FLAG_ARLO) || ((FLAG) == I2C_FLAG_BERR) || \
+ ((FLAG) == I2C_FLAG_TXE) || ((FLAG) == I2C_FLAG_RXNE) || \
+ ((FLAG) == I2C_FLAG_STOPF) || ((FLAG) == I2C_FLAG_ADD10) || \
+ ((FLAG) == I2C_FLAG_BTF) || ((FLAG) == I2C_FLAG_ADDR) || \
+ ((FLAG) == I2C_FLAG_SB))
+/**
+ * @}
+ */
+
+/** @defgroup I2C_Events
+ * @{
+ */
+
+/**
+ ===============================================================================
+ I2C Master Events (Events grouped in order of communication)
+ ===============================================================================
+ */
+
+/**
+ * @brief Communication start
+ *
+ * After sending the START condition (I2C_GenerateSTART() function) the master
+ * has to wait for this event. It means that the Start condition has been correctly
+ * released on the I2C bus (the bus is free, no other devices is communicating).
+ *
+ */
+/* --EV5 */
+#define I2C_EVENT_MASTER_MODE_SELECT ((uint32_t)0x00030001) /* BUSY, MSL and SB flag */
+
+/**
+ * @brief Address Acknowledge
+ *
+ * After checking on EV5 (start condition correctly released on the bus), the
+ * master sends the address of the slave(s) with which it will communicate
+ * (I2C_Send7bitAddress() function, it also determines the direction of the communication:
+ * Master transmitter or Receiver). Then the master has to wait that a slave acknowledges
+ * his address. If an acknowledge is sent on the bus, one of the following events will
+ * be set:
+ *
+ * 1) In case of Master Receiver (7-bit addressing): the I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED
+ * event is set.
+ *
+ * 2) In case of Master Transmitter (7-bit addressing): the I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED
+ * is set
+ *
+ * 3) In case of 10-Bit addressing mode, the master (just after generating the START
+ * and checking on EV5) has to send the header of 10-bit addressing mode (I2C_SendData()
+ * function). Then master should wait on EV9. It means that the 10-bit addressing
+ * header has been correctly sent on the bus. Then master should send the second part of
+ * the 10-bit address (LSB) using the function I2C_Send7bitAddress(). Then master
+ * should wait for event EV6.
+ *
+ */
+
+/* --EV6 */
+#define I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED ((uint32_t)0x00070082) /* BUSY, MSL, ADDR, TXE and TRA flags */
+#define I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED ((uint32_t)0x00030002) /* BUSY, MSL and ADDR flags */
+/* --EV9 */
+#define I2C_EVENT_MASTER_MODE_ADDRESS10 ((uint32_t)0x00030008) /* BUSY, MSL and ADD10 flags */
+
+/**
+ * @brief Communication events
+ *
+ * If a communication is established (START condition generated and slave address
+ * acknowledged) then the master has to check on one of the following events for
+ * communication procedures:
+ *
+ * 1) Master Receiver mode: The master has to wait on the event EV7 then to read
+ * the data received from the slave (I2C_ReceiveData() function).
+ *
+ * 2) Master Transmitter mode: The master has to send data (I2C_SendData()
+ * function) then to wait on event EV8 or EV8_2.
+ * These two events are similar:
+ * - EV8 means that the data has been written in the data register and is
+ * being shifted out.
+ * - EV8_2 means that the data has been physically shifted out and output
+ * on the bus.
+ * In most cases, using EV8 is sufficient for the application.
+ * Using EV8_2 leads to a slower communication but ensure more reliable test.
+ * EV8_2 is also more suitable than EV8 for testing on the last data transmission
+ * (before Stop condition generation).
+ *
+ * @note In case the user software does not guarantee that this event EV7 is
+ * managed before the current byte end of transfer, then user may check on EV7
+ * and BTF flag at the same time (ie. (I2C_EVENT_MASTER_BYTE_RECEIVED | I2C_FLAG_BTF)).
+ * In this case the communication may be slower.
+ *
+ */
+
+/* Master RECEIVER mode -----------------------------*/
+/* --EV7 */
+#define I2C_EVENT_MASTER_BYTE_RECEIVED ((uint32_t)0x00030040) /* BUSY, MSL and RXNE flags */
+
+/* Master TRANSMITTER mode --------------------------*/
+/* --EV8 */
+#define I2C_EVENT_MASTER_BYTE_TRANSMITTING ((uint32_t)0x00070080) /* TRA, BUSY, MSL, TXE flags */
+/* --EV8_2 */
+#define I2C_EVENT_MASTER_BYTE_TRANSMITTED ((uint32_t)0x00070084) /* TRA, BUSY, MSL, TXE and BTF flags */
+
+
+/**
+ ===============================================================================
+ I2C Slave Events (Events grouped in order of communication)
+ ===============================================================================
+ */
+
+
+/**
+ * @brief Communication start events
+ *
+ * Wait on one of these events at the start of the communication. It means that
+ * the I2C peripheral detected a Start condition on the bus (generated by master
+ * device) followed by the peripheral address. The peripheral generates an ACK
+ * condition on the bus (if the acknowledge feature is enabled through function
+ * I2C_AcknowledgeConfig()) and the events listed above are set :
+ *
+ * 1) In normal case (only one address managed by the slave), when the address
+ * sent by the master matches the own address of the peripheral (configured by
+ * I2C_OwnAddress1 field) the I2C_EVENT_SLAVE_XXX_ADDRESS_MATCHED event is set
+ * (where XXX could be TRANSMITTER or RECEIVER).
+ *
+ * 2) In case the address sent by the master matches the second address of the
+ * peripheral (configured by the function I2C_OwnAddress2Config() and enabled
+ * by the function I2C_DualAddressCmd()) the events I2C_EVENT_SLAVE_XXX_SECONDADDRESS_MATCHED
+ * (where XXX could be TRANSMITTER or RECEIVER) are set.
+ *
+ * 3) In case the address sent by the master is General Call (address 0x00) and
+ * if the General Call is enabled for the peripheral (using function I2C_GeneralCallCmd())
+ * the following event is set I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED.
+ *
+ */
+
+/* --EV1 (all the events below are variants of EV1) */
+/* 1) Case of One Single Address managed by the slave */
+#define I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED ((uint32_t)0x00020002) /* BUSY and ADDR flags */
+#define I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED ((uint32_t)0x00060082) /* TRA, BUSY, TXE and ADDR flags */
+
+/* 2) Case of Dual address managed by the slave */
+#define I2C_EVENT_SLAVE_RECEIVER_SECONDADDRESS_MATCHED ((uint32_t)0x00820000) /* DUALF and BUSY flags */
+#define I2C_EVENT_SLAVE_TRANSMITTER_SECONDADDRESS_MATCHED ((uint32_t)0x00860080) /* DUALF, TRA, BUSY and TXE flags */
+
+/* 3) Case of General Call enabled for the slave */
+#define I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED ((uint32_t)0x00120000) /* GENCALL and BUSY flags */
+
+/**
+ * @brief Communication events
+ *
+ * Wait on one of these events when EV1 has already been checked and:
+ *
+ * - Slave RECEIVER mode:
+ * - EV2: When the application is expecting a data byte to be received.
+ * - EV4: When the application is expecting the end of the communication: master
+ * sends a stop condition and data transmission is stopped.
+ *
+ * - Slave Transmitter mode:
+ * - EV3: When a byte has been transmitted by the slave and the application is expecting
+ * the end of the byte transmission. The two events I2C_EVENT_SLAVE_BYTE_TRANSMITTED and
+ * I2C_EVENT_SLAVE_BYTE_TRANSMITTING are similar. The second one can optionally be
+ * used when the user software doesn't guarantee the EV3 is managed before the
+ * current byte end of transfer.
+ * - EV3_2: When the master sends a NACK in order to tell slave that data transmission
+ * shall end (before sending the STOP condition). In this case slave has to stop sending
+ * data bytes and expect a Stop condition on the bus.
+ *
+ * @note In case the user software does not guarantee that the event EV2 is
+ * managed before the current byte end of transfer, then user may check on EV2
+ * and BTF flag at the same time (ie. (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_BTF)).
+ * In this case the communication may be slower.
+ *
+ */
+
+/* Slave RECEIVER mode --------------------------*/
+/* --EV2 */
+#define I2C_EVENT_SLAVE_BYTE_RECEIVED ((uint32_t)0x00020040) /* BUSY and RXNE flags */
+/* --EV4 */
+#define I2C_EVENT_SLAVE_STOP_DETECTED ((uint32_t)0x00000010) /* STOPF flag */
+
+/* Slave TRANSMITTER mode -----------------------*/
+/* --EV3 */
+#define I2C_EVENT_SLAVE_BYTE_TRANSMITTED ((uint32_t)0x00060084) /* TRA, BUSY, TXE and BTF flags */
+#define I2C_EVENT_SLAVE_BYTE_TRANSMITTING ((uint32_t)0x00060080) /* TRA, BUSY and TXE flags */
+/* --EV3_2 */
+#define I2C_EVENT_SLAVE_ACK_FAILURE ((uint32_t)0x00000400) /* AF flag */
+
+/*
+ ===============================================================================
+ End of Events Description
+ ===============================================================================
+ */
+
+#define IS_I2C_EVENT(EVENT) (((EVENT) == I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED) || \
+ ((EVENT) == I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED) || \
+ ((EVENT) == I2C_EVENT_SLAVE_TRANSMITTER_SECONDADDRESS_MATCHED) || \
+ ((EVENT) == I2C_EVENT_SLAVE_RECEIVER_SECONDADDRESS_MATCHED) || \
+ ((EVENT) == I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED) || \
+ ((EVENT) == I2C_EVENT_SLAVE_BYTE_RECEIVED) || \
+ ((EVENT) == (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_DUALF)) || \
+ ((EVENT) == (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_GENCALL)) || \
+ ((EVENT) == I2C_EVENT_SLAVE_BYTE_TRANSMITTED) || \
+ ((EVENT) == (I2C_EVENT_SLAVE_BYTE_TRANSMITTED | I2C_FLAG_DUALF)) || \
+ ((EVENT) == (I2C_EVENT_SLAVE_BYTE_TRANSMITTED | I2C_FLAG_GENCALL)) || \
+ ((EVENT) == I2C_EVENT_SLAVE_STOP_DETECTED) || \
+ ((EVENT) == I2C_EVENT_MASTER_MODE_SELECT) || \
+ ((EVENT) == I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED) || \
+ ((EVENT) == I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED) || \
+ ((EVENT) == I2C_EVENT_MASTER_BYTE_RECEIVED) || \
+ ((EVENT) == I2C_EVENT_MASTER_BYTE_TRANSMITTED) || \
+ ((EVENT) == I2C_EVENT_MASTER_BYTE_TRANSMITTING) || \
+ ((EVENT) == I2C_EVENT_MASTER_MODE_ADDRESS10) || \
+ ((EVENT) == I2C_EVENT_SLAVE_ACK_FAILURE))
+/**
+ * @}
+ */
+
+/** @defgroup I2C_own_address1
+ * @{
+ */
+
+#define IS_I2C_OWN_ADDRESS1(ADDRESS1) ((ADDRESS1) <= 0x3FF)
+/**
+ * @}
+ */
+
+/** @defgroup I2C_clock_speed
+ * @{
+ */
+
+#define IS_I2C_CLOCK_SPEED(SPEED) (((SPEED) >= 0x1) && ((SPEED) <= 400000))
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Exported macro ------------------------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
+
+/* Function used to set the I2C configuration to the default reset state *****/
+void I2C_DeInit(I2C_TypeDef* I2Cx);
+
+/* Initialization and Configuration functions *********************************/
+void I2C_Init(I2C_TypeDef* I2Cx, I2C_InitTypeDef* I2C_InitStruct);
+void I2C_StructInit(I2C_InitTypeDef* I2C_InitStruct);
+void I2C_Cmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
+void I2C_GenerateSTART(I2C_TypeDef* I2Cx, FunctionalState NewState);
+void I2C_GenerateSTOP(I2C_TypeDef* I2Cx, FunctionalState NewState);
+void I2C_Send7bitAddress(I2C_TypeDef* I2Cx, uint8_t Address, uint8_t I2C_Direction);
+void I2C_AcknowledgeConfig(I2C_TypeDef* I2Cx, FunctionalState NewState);
+void I2C_OwnAddress2Config(I2C_TypeDef* I2Cx, uint8_t Address);
+void I2C_DualAddressCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
+void I2C_GeneralCallCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
+void I2C_SoftwareResetCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
+void I2C_StretchClockCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
+void I2C_FastModeDutyCycleConfig(I2C_TypeDef* I2Cx, uint16_t I2C_DutyCycle);
+void I2C_NACKPositionConfig(I2C_TypeDef* I2Cx, uint16_t I2C_NACKPosition);
+void I2C_SMBusAlertConfig(I2C_TypeDef* I2Cx, uint16_t I2C_SMBusAlert);
+void I2C_ARPCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
+
+/* Data transfers functions ***************************************************/
+void I2C_SendData(I2C_TypeDef* I2Cx, uint8_t Data);
+uint8_t I2C_ReceiveData(I2C_TypeDef* I2Cx);
+
+/* PEC management functions ***************************************************/
+void I2C_TransmitPEC(I2C_TypeDef* I2Cx, FunctionalState NewState);
+void I2C_PECPositionConfig(I2C_TypeDef* I2Cx, uint16_t I2C_PECPosition);
+void I2C_CalculatePEC(I2C_TypeDef* I2Cx, FunctionalState NewState);
+uint8_t I2C_GetPEC(I2C_TypeDef* I2Cx);
+
+/* DMA transfers management functions *****************************************/
+void I2C_DMACmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
+void I2C_DMALastTransferCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
+
+/* Interrupts, events and flags management functions **************************/
+uint16_t I2C_ReadRegister(I2C_TypeDef* I2Cx, uint8_t I2C_Register);
+void I2C_ITConfig(I2C_TypeDef* I2Cx, uint16_t I2C_IT, FunctionalState NewState);
+
+/*
+ ===============================================================================
+ I2C State Monitoring Functions
+ ===============================================================================
+ This I2C driver provides three different ways for I2C state monitoring
+ depending on the application requirements and constraints:
+
+
+ 1. Basic state monitoring (Using I2C_CheckEvent() function)
+ -----------------------------------------------------------
+ It compares the status registers (SR1 and SR2) content to a given event
+ (can be the combination of one or more flags).
+ It returns SUCCESS if the current status includes the given flags
+ and returns ERROR if one or more flags are missing in the current status.
+
+ - When to use
+ - This function is suitable for most applications as well as for startup
+ activity since the events are fully described in the product reference
+ manual (RM0090).
+ - It is also suitable for users who need to define their own events.
+
+ - Limitations
+ - If an error occurs (ie. error flags are set besides to the monitored
+ flags), the I2C_CheckEvent() function may return SUCCESS despite
+ the communication hold or corrupted real state.
+ In this case, it is advised to use error interrupts to monitor
+ the error events and handle them in the interrupt IRQ handler.
+
+ Note
+ For error management, it is advised to use the following functions:
+ - I2C_ITConfig() to configure and enable the error interrupts (I2C_IT_ERR).
+ - I2Cx_ER_IRQHandler() which is called when the error interrupt occurs.
+ Where x is the peripheral instance (I2C1, I2C2 ...)
+ - I2C_GetFlagStatus() or I2C_GetITStatus() to be called into the
+ I2Cx_ER_IRQHandler() function in order to determine which error occurred.
+ - I2C_ClearFlag() or I2C_ClearITPendingBit() and/or I2C_SoftwareResetCmd()
+ and/or I2C_GenerateStop() in order to clear the error flag and source
+ and return to correct communication status.
+
+
+ 2. Advanced state monitoring (Using the function I2C_GetLastEvent())
+ --------------------------------------------------------------------
+ Using the function I2C_GetLastEvent() which returns the image of both status
+ registers in a single word (uint32_t) (Status Register 2 value is shifted left
+ by 16 bits and concatenated to Status Register 1).
+
+ - When to use
+ - This function is suitable for the same applications above but it
+ allows to overcome the mentioned limitation of I2C_GetFlagStatus()
+ function.
+ - The returned value could be compared to events already defined in
+ this file or to custom values defined by user.
+ This function is suitable when multiple flags are monitored at the
+ same time.
+ - At the opposite of I2C_CheckEvent() function, this function allows
+ user to choose when an event is accepted (when all events flags are
+ set and no other flags are set or just when the needed flags are set
+ like I2C_CheckEvent() function.
+
+ - Limitations
+ - User may need to define his own events.
+ - Same remark concerning the error management is applicable for this
+ function if user decides to check only regular communication flags
+ (and ignores error flags).
+
+
+ 3. Flag-based state monitoring (Using the function I2C_GetFlagStatus())
+ -----------------------------------------------------------------------
+
+ Using the function I2C_GetFlagStatus() which simply returns the status of
+ one single flag (ie. I2C_FLAG_RXNE ...).
+
+ - When to use
+ - This function could be used for specific applications or in debug
+ phase.
+ - It is suitable when only one flag checking is needed (most I2C
+ events are monitored through multiple flags).
+ - Limitations:
+ - When calling this function, the Status register is accessed.
+ Some flags are cleared when the status register is accessed.
+ So checking the status of one Flag, may clear other ones.
+ - Function may need to be called twice or more in order to monitor
+ one single event.
+ */
+
+/*
+ ===============================================================================
+ 1. Basic state monitoring
+ ===============================================================================
+ */
+ErrorStatus I2C_CheckEvent(I2C_TypeDef* I2Cx, uint32_t I2C_EVENT);
+/*
+ ===============================================================================
+ 2. Advanced state monitoring
+ ===============================================================================
+ */
+uint32_t I2C_GetLastEvent(I2C_TypeDef* I2Cx);
+/*
+ ===============================================================================
+ 3. Flag-based state monitoring
+ ===============================================================================
+ */
+FlagStatus I2C_GetFlagStatus(I2C_TypeDef* I2Cx, uint32_t I2C_FLAG);
+
+
+void I2C_ClearFlag(I2C_TypeDef* I2Cx, uint32_t I2C_FLAG);
+ITStatus I2C_GetITStatus(I2C_TypeDef* I2Cx, uint32_t I2C_IT);
+void I2C_ClearITPendingBit(I2C_TypeDef* I2Cx, uint32_t I2C_IT);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /*__STM32F4xx_I2C_H */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/inc/stm32f4xx_iwdg.h b/TimerCounter/SPL/inc/stm32f4xx_iwdg.h
new file mode 100644
index 0000000..fd5deb5
--- /dev/null
+++ b/TimerCounter/SPL/inc/stm32f4xx_iwdg.h
@@ -0,0 +1,125 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_iwdg.h
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file contains all the functions prototypes for the IWDG
+ * firmware library.
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "misc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup MISC
+ * @brief MISC driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+#define AIRCR_VECTKEY_MASK ((uint32_t)0x05FA0000)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup MISC_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief Configures the priority grouping: pre-emption priority and subpriority.
+ * @param NVIC_PriorityGroup: specifies the priority grouping bits length.
+ * This parameter can be one of the following values:
+ * @arg NVIC_PriorityGroup_0: 0 bits for pre-emption priority
+ * 4 bits for subpriority
+ * @arg NVIC_PriorityGroup_1: 1 bits for pre-emption priority
+ * 3 bits for subpriority
+ * @arg NVIC_PriorityGroup_2: 2 bits for pre-emption priority
+ * 2 bits for subpriority
+ * @arg NVIC_PriorityGroup_3: 3 bits for pre-emption priority
+ * 1 bits for subpriority
+ * @arg NVIC_PriorityGroup_4: 4 bits for pre-emption priority
+ * 0 bits for subpriority
+ * @note When the NVIC_PriorityGroup_0 is selected, IRQ pre-emption is no more possible.
+ * The pending IRQ priority will be managed only by the subpriority.
+ * @retval None
+ */
+void NVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup)
+{
+ /* Check the parameters */
+ assert_param(IS_NVIC_PRIORITY_GROUP(NVIC_PriorityGroup));
+
+ /* Set the PRIGROUP[10:8] bits according to NVIC_PriorityGroup value */
+ SCB->AIRCR = AIRCR_VECTKEY_MASK | NVIC_PriorityGroup;
+}
+
+/**
+ * @brief Initializes the NVIC peripheral according to the specified
+ * parameters in the NVIC_InitStruct.
+ * @note To configure interrupts priority correctly, the NVIC_PriorityGroupConfig()
+ * function should be called before.
+ * @param NVIC_InitStruct: pointer to a NVIC_InitTypeDef structure that contains
+ * the configuration information for the specified NVIC peripheral.
+ * @retval None
+ */
+void NVIC_Init(NVIC_InitTypeDef* NVIC_InitStruct)
+{
+ uint8_t tmppriority = 0x00, tmppre = 0x00, tmpsub = 0x0F;
+
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NVIC_InitStruct->NVIC_IRQChannelCmd));
+ assert_param(IS_NVIC_PREEMPTION_PRIORITY(NVIC_InitStruct->NVIC_IRQChannelPreemptionPriority));
+ assert_param(IS_NVIC_SUB_PRIORITY(NVIC_InitStruct->NVIC_IRQChannelSubPriority));
+
+ if (NVIC_InitStruct->NVIC_IRQChannelCmd != DISABLE)
+ {
+ /* Compute the Corresponding IRQ Priority --------------------------------*/
+ tmppriority = (0x700 - ((SCB->AIRCR) & (uint32_t)0x700))>> 0x08;
+ tmppre = (0x4 - tmppriority);
+ tmpsub = tmpsub >> tmppriority;
+
+ tmppriority = NVIC_InitStruct->NVIC_IRQChannelPreemptionPriority << tmppre;
+ tmppriority |= (uint8_t)(NVIC_InitStruct->NVIC_IRQChannelSubPriority & tmpsub);
+
+ tmppriority = tmppriority << 0x04;
+
+ NVIC->IP[NVIC_InitStruct->NVIC_IRQChannel] = tmppriority;
+
+ /* Enable the Selected IRQ Channels --------------------------------------*/
+ NVIC->ISER[NVIC_InitStruct->NVIC_IRQChannel >> 0x05] =
+ (uint32_t)0x01 << (NVIC_InitStruct->NVIC_IRQChannel & (uint8_t)0x1F);
+ }
+ else
+ {
+ /* Disable the Selected IRQ Channels -------------------------------------*/
+ NVIC->ICER[NVIC_InitStruct->NVIC_IRQChannel >> 0x05] =
+ (uint32_t)0x01 << (NVIC_InitStruct->NVIC_IRQChannel & (uint8_t)0x1F);
+ }
+}
+
+/**
+ * @brief Sets the vector table location and Offset.
+ * @param NVIC_VectTab: specifies if the vector table is in RAM or FLASH memory.
+ * This parameter can be one of the following values:
+ * @arg NVIC_VectTab_RAM: Vector Table in internal SRAM.
+ * @arg NVIC_VectTab_FLASH: Vector Table in internal FLASH.
+ * @param Offset: Vector Table base offset field. This value must be a multiple of 0x200.
+ * @retval None
+ */
+void NVIC_SetVectorTable(uint32_t NVIC_VectTab, uint32_t Offset)
+{
+ /* Check the parameters */
+ assert_param(IS_NVIC_VECTTAB(NVIC_VectTab));
+ assert_param(IS_NVIC_OFFSET(Offset));
+
+ SCB->VTOR = NVIC_VectTab | (Offset & (uint32_t)0x1FFFFF80);
+}
+
+/**
+ * @brief Selects the condition for the system to enter low power mode.
+ * @param LowPowerMode: Specifies the new mode for the system to enter low power mode.
+ * This parameter can be one of the following values:
+ * @arg NVIC_LP_SEVONPEND: Low Power SEV on Pend.
+ * @arg NVIC_LP_SLEEPDEEP: Low Power DEEPSLEEP request.
+ * @arg NVIC_LP_SLEEPONEXIT: Low Power Sleep on Exit.
+ * @param NewState: new state of LP condition. This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void NVIC_SystemLPConfig(uint8_t LowPowerMode, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_NVIC_LP(LowPowerMode));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ SCB->SCR |= LowPowerMode;
+ }
+ else
+ {
+ SCB->SCR &= (uint32_t)(~(uint32_t)LowPowerMode);
+ }
+}
+
+/**
+ * @brief Configures the SysTick clock source.
+ * @param SysTick_CLKSource: specifies the SysTick clock source.
+ * This parameter can be one of the following values:
+ * @arg SysTick_CLKSource_HCLK_Div8: AHB clock divided by 8 selected as SysTick clock source.
+ * @arg SysTick_CLKSource_HCLK: AHB clock selected as SysTick clock source.
+ * @retval None
+ */
+void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource)
+{
+ /* Check the parameters */
+ assert_param(IS_SYSTICK_CLK_SOURCE(SysTick_CLKSource));
+ if (SysTick_CLKSource == SysTick_CLKSource_HCLK)
+ {
+ SysTick->CTRL |= SysTick_CLKSource_HCLK;
+ }
+ else
+ {
+ SysTick->CTRL &= SysTick_CLKSource_HCLK_Div8;
+ }
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_adc.c b/TimerCounter/SPL/src/stm32f4xx_adc.c
new file mode 100644
index 0000000..d0206c3
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_adc.c
@@ -0,0 +1,1742 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_adc.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Analog to Digital Convertor (ADC) peripheral:
+ * - Initialization and Configuration (in addition to ADC multi mode
+ * selection)
+ * - Analog Watchdog configuration
+ * - Temperature Sensor & Vrefint (Voltage Reference internal) & VBAT
+ * management
+ * - Regular Channels Configuration
+ * - Regular Channels DMA Configuration
+ * - Injected channels Configuration
+ * - Interrupts and flags management
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+
+ * 1. Enable the ADC interface clock using
+ * RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADCx, ENABLE);
+ *
+ * 2. ADC pins configuration
+ * - Enable the clock for the ADC GPIOs using the following function:
+ * RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
+ * - Configure these ADC pins in analog mode using GPIO_Init();
+ *
+ * 3. Configure the ADC Prescaler, conversion resolution and data
+ * alignment using the ADC_Init() function.
+ * 4. Activate the ADC peripheral using ADC_Cmd() function.
+ *
+ * Regular channels group configuration
+ * ====================================
+ * - To configure the ADC regular channels group features, use
+ * ADC_Init() and ADC_RegularChannelConfig() functions.
+ * - To activate the continuous mode, use the ADC_continuousModeCmd()
+ * function.
+ * - To configurate and activate the Discontinuous mode, use the
+ * ADC_DiscModeChannelCountConfig() and ADC_DiscModeCmd() functions.
+ * - To read the ADC converted values, use the ADC_GetConversionValue()
+ * function.
+ *
+ * Multi mode ADCs Regular channels configuration
+ * ===============================================
+ * - Refer to "Regular channels group configuration" description to
+ * configure the ADC1, ADC2 and ADC3 regular channels.
+ * - Select the Multi mode ADC regular channels features (dual or
+ * triple mode) using ADC_CommonInit() function and configure
+ * the DMA mode using ADC_MultiModeDMARequestAfterLastTransferCmd()
+ * functions.
+ * - Read the ADCs converted values using the
+ * ADC_GetMultiModeConversionValue() function.
+ *
+ * DMA for Regular channels group features configuration
+ * ======================================================
+ * - To enable the DMA mode for regular channels group, use the
+ * ADC_DMACmd() function.
+ * - To enable the generation of DMA requests continuously at the end
+ * of the last DMA transfer, use the ADC_DMARequestAfterLastTransferCmd()
+ * function.
+ *
+ * Injected channels group configuration
+ * =====================================
+ * - To configure the ADC Injected channels group features, use
+ * ADC_InjectedChannelConfig() and ADC_InjectedSequencerLengthConfig()
+ * functions.
+ * - To activate the continuous mode, use the ADC_continuousModeCmd()
+ * function.
+ * - To activate the Injected Discontinuous mode, use the
+ * ADC_InjectedDiscModeCmd() function.
+ * - To activate the AutoInjected mode, use the ADC_AutoInjectedConvCmd()
+ * function.
+ * - To read the ADC converted values, use the ADC_GetInjectedConversionValue()
+ * function.
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_adc.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup ADC
+ * @brief ADC driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/* ADC DISCNUM mask */
+#define CR1_DISCNUM_RESET ((uint32_t)0xFFFF1FFF)
+
+/* ADC AWDCH mask */
+#define CR1_AWDCH_RESET ((uint32_t)0xFFFFFFE0)
+
+/* ADC Analog watchdog enable mode mask */
+#define CR1_AWDMode_RESET ((uint32_t)0xFF3FFDFF)
+
+/* CR1 register Mask */
+#define CR1_CLEAR_MASK ((uint32_t)0xFCFFFEFF)
+
+/* ADC EXTEN mask */
+#define CR2_EXTEN_RESET ((uint32_t)0xCFFFFFFF)
+
+/* ADC JEXTEN mask */
+#define CR2_JEXTEN_RESET ((uint32_t)0xFFCFFFFF)
+
+/* ADC JEXTSEL mask */
+#define CR2_JEXTSEL_RESET ((uint32_t)0xFFF0FFFF)
+
+/* CR2 register Mask */
+#define CR2_CLEAR_MASK ((uint32_t)0xC0FFF7FD)
+
+/* ADC SQx mask */
+#define SQR3_SQ_SET ((uint32_t)0x0000001F)
+#define SQR2_SQ_SET ((uint32_t)0x0000001F)
+#define SQR1_SQ_SET ((uint32_t)0x0000001F)
+
+/* ADC L Mask */
+#define SQR1_L_RESET ((uint32_t)0xFF0FFFFF)
+
+/* ADC JSQx mask */
+#define JSQR_JSQ_SET ((uint32_t)0x0000001F)
+
+/* ADC JL mask */
+#define JSQR_JL_SET ((uint32_t)0x00300000)
+#define JSQR_JL_RESET ((uint32_t)0xFFCFFFFF)
+
+/* ADC SMPx mask */
+#define SMPR1_SMP_SET ((uint32_t)0x00000007)
+#define SMPR2_SMP_SET ((uint32_t)0x00000007)
+
+/* ADC JDRx registers offset */
+#define JDR_OFFSET ((uint8_t)0x28)
+
+/* ADC CDR register base address */
+#define CDR_ADDRESS ((uint32_t)0x40012308)
+
+/* ADC CCR register Mask */
+#define CR_CLEAR_MASK ((uint32_t)0xFFFC30E0)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup ADC_Private_Functions
+ * @{
+ */
+
+/** @defgroup ADC_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Initialization and Configuration functions
+ ===============================================================================
+ This section provides functions allowing to:
+ - Initialize and configure the ADC Prescaler
+ - ADC Conversion Resolution (12bit..6bit)
+ - Scan Conversion Mode (multichannels or one channel) for regular group
+ - ADC Continuous Conversion Mode (Continuous or Single conversion) for
+ regular group
+ - External trigger Edge and source of regular group,
+ - Converted data alignment (left or right)
+ - The number of ADC conversions that will be done using the sequencer for
+ regular channel group
+ - Multi ADC mode selection
+ - Direct memory access mode selection for multi ADC mode
+ - Delay between 2 sampling phases (used in dual or triple interleaved modes)
+ - Enable or disable the ADC peripheral
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes all ADCs peripherals registers to their default reset
+ * values.
+ * @param None
+ * @retval None
+ */
+void ADC_DeInit(void)
+{
+ /* Enable all ADCs reset state */
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC, ENABLE);
+
+ /* Release all ADCs from reset state */
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC, DISABLE);
+}
+
+/**
+ * @brief Initializes the ADCx peripheral according to the specified parameters
+ * in the ADC_InitStruct.
+ * @note This function is used to configure the global features of the ADC (
+ * Resolution and Data Alignment), however, the rest of the configuration
+ * parameters are specific to the regular channels group (scan mode
+ * activation, continuous mode activation, External trigger source and
+ * edge, number of conversion in the regular channels group sequencer).
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_InitStruct: pointer to an ADC_InitTypeDef structure that contains
+ * the configuration information for the specified ADC peripheral.
+ * @retval None
+ */
+void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct)
+{
+ uint32_t tmpreg1 = 0;
+ uint8_t tmpreg2 = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_RESOLUTION(ADC_InitStruct->ADC_Resolution));
+ assert_param(IS_FUNCTIONAL_STATE(ADC_InitStruct->ADC_ScanConvMode));
+ assert_param(IS_FUNCTIONAL_STATE(ADC_InitStruct->ADC_ContinuousConvMode));
+ assert_param(IS_ADC_EXT_TRIG_EDGE(ADC_InitStruct->ADC_ExternalTrigConvEdge));
+ assert_param(IS_ADC_EXT_TRIG(ADC_InitStruct->ADC_ExternalTrigConv));
+ assert_param(IS_ADC_DATA_ALIGN(ADC_InitStruct->ADC_DataAlign));
+ assert_param(IS_ADC_REGULAR_LENGTH(ADC_InitStruct->ADC_NbrOfConversion));
+
+ /*---------------------------- ADCx CR1 Configuration -----------------*/
+ /* Get the ADCx CR1 value */
+ tmpreg1 = ADCx->CR1;
+
+ /* Clear RES and SCAN bits */
+ tmpreg1 &= CR1_CLEAR_MASK;
+
+ /* Configure ADCx: scan conversion mode and resolution */
+ /* Set SCAN bit according to ADC_ScanConvMode value */
+ /* Set RES bit according to ADC_Resolution value */
+ tmpreg1 |= (uint32_t)(((uint32_t)ADC_InitStruct->ADC_ScanConvMode << 8) | \
+ ADC_InitStruct->ADC_Resolution);
+ /* Write to ADCx CR1 */
+ ADCx->CR1 = tmpreg1;
+ /*---------------------------- ADCx CR2 Configuration -----------------*/
+ /* Get the ADCx CR2 value */
+ tmpreg1 = ADCx->CR2;
+
+ /* Clear CONT, ALIGN, EXTEN and EXTSEL bits */
+ tmpreg1 &= CR2_CLEAR_MASK;
+
+ /* Configure ADCx: external trigger event and edge, data alignment and
+ continuous conversion mode */
+ /* Set ALIGN bit according to ADC_DataAlign value */
+ /* Set EXTEN bits according to ADC_ExternalTrigConvEdge value */
+ /* Set EXTSEL bits according to ADC_ExternalTrigConv value */
+ /* Set CONT bit according to ADC_ContinuousConvMode value */
+ tmpreg1 |= (uint32_t)(ADC_InitStruct->ADC_DataAlign | \
+ ADC_InitStruct->ADC_ExternalTrigConv |
+ ADC_InitStruct->ADC_ExternalTrigConvEdge | \
+ ((uint32_t)ADC_InitStruct->ADC_ContinuousConvMode << 1));
+
+ /* Write to ADCx CR2 */
+ ADCx->CR2 = tmpreg1;
+ /*---------------------------- ADCx SQR1 Configuration -----------------*/
+ /* Get the ADCx SQR1 value */
+ tmpreg1 = ADCx->SQR1;
+
+ /* Clear L bits */
+ tmpreg1 &= SQR1_L_RESET;
+
+ /* Configure ADCx: regular channel sequence length */
+ /* Set L bits according to ADC_NbrOfConversion value */
+ tmpreg2 |= (uint8_t)(ADC_InitStruct->ADC_NbrOfConversion - (uint8_t)1);
+ tmpreg1 |= ((uint32_t)tmpreg2 << 20);
+
+ /* Write to ADCx SQR1 */
+ ADCx->SQR1 = tmpreg1;
+}
+
+/**
+ * @brief Fills each ADC_InitStruct member with its default value.
+ * @note This function is used to initialize the global features of the ADC (
+ * Resolution and Data Alignment), however, the rest of the configuration
+ * parameters are specific to the regular channels group (scan mode
+ * activation, continuous mode activation, External trigger source and
+ * edge, number of conversion in the regular channels group sequencer).
+ * @param ADC_InitStruct: pointer to an ADC_InitTypeDef structure which will
+ * be initialized.
+ * @retval None
+ */
+void ADC_StructInit(ADC_InitTypeDef* ADC_InitStruct)
+{
+ /* Initialize the ADC_Mode member */
+ ADC_InitStruct->ADC_Resolution = ADC_Resolution_12b;
+
+ /* initialize the ADC_ScanConvMode member */
+ ADC_InitStruct->ADC_ScanConvMode = DISABLE;
+
+ /* Initialize the ADC_ContinuousConvMode member */
+ ADC_InitStruct->ADC_ContinuousConvMode = DISABLE;
+
+ /* Initialize the ADC_ExternalTrigConvEdge member */
+ ADC_InitStruct->ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
+
+ /* Initialize the ADC_ExternalTrigConv member */
+ ADC_InitStruct->ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
+
+ /* Initialize the ADC_DataAlign member */
+ ADC_InitStruct->ADC_DataAlign = ADC_DataAlign_Right;
+
+ /* Initialize the ADC_NbrOfConversion member */
+ ADC_InitStruct->ADC_NbrOfConversion = 1;
+}
+
+/**
+ * @brief Initializes the ADCs peripherals according to the specified parameters
+ * in the ADC_CommonInitStruct.
+ * @param ADC_CommonInitStruct: pointer to an ADC_CommonInitTypeDef structure
+ * that contains the configuration information for All ADCs peripherals.
+ * @retval None
+ */
+void ADC_CommonInit(ADC_CommonInitTypeDef* ADC_CommonInitStruct)
+{
+ uint32_t tmpreg1 = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_MODE(ADC_CommonInitStruct->ADC_Mode));
+ assert_param(IS_ADC_PRESCALER(ADC_CommonInitStruct->ADC_Prescaler));
+ assert_param(IS_ADC_DMA_ACCESS_MODE(ADC_CommonInitStruct->ADC_DMAAccessMode));
+ assert_param(IS_ADC_SAMPLING_DELAY(ADC_CommonInitStruct->ADC_TwoSamplingDelay));
+ /*---------------------------- ADC CCR Configuration -----------------*/
+ /* Get the ADC CCR value */
+ tmpreg1 = ADC->CCR;
+
+ /* Clear MULTI, DELAY, DMA and ADCPRE bits */
+ tmpreg1 &= CR_CLEAR_MASK;
+
+ /* Configure ADCx: Multi mode, Delay between two sampling time, ADC prescaler,
+ and DMA access mode for multimode */
+ /* Set MULTI bits according to ADC_Mode value */
+ /* Set ADCPRE bits according to ADC_Prescaler value */
+ /* Set DMA bits according to ADC_DMAAccessMode value */
+ /* Set DELAY bits according to ADC_TwoSamplingDelay value */
+ tmpreg1 |= (uint32_t)(ADC_CommonInitStruct->ADC_Mode |
+ ADC_CommonInitStruct->ADC_Prescaler |
+ ADC_CommonInitStruct->ADC_DMAAccessMode |
+ ADC_CommonInitStruct->ADC_TwoSamplingDelay);
+
+ /* Write to ADC CCR */
+ ADC->CCR = tmpreg1;
+}
+
+/**
+ * @brief Fills each ADC_CommonInitStruct member with its default value.
+ * @param ADC_CommonInitStruct: pointer to an ADC_CommonInitTypeDef structure
+ * which will be initialized.
+ * @retval None
+ */
+void ADC_CommonStructInit(ADC_CommonInitTypeDef* ADC_CommonInitStruct)
+{
+ /* Initialize the ADC_Mode member */
+ ADC_CommonInitStruct->ADC_Mode = ADC_Mode_Independent;
+
+ /* initialize the ADC_Prescaler member */
+ ADC_CommonInitStruct->ADC_Prescaler = ADC_Prescaler_Div2;
+
+ /* Initialize the ADC_DMAAccessMode member */
+ ADC_CommonInitStruct->ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
+
+ /* Initialize the ADC_TwoSamplingDelay member */
+ ADC_CommonInitStruct->ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
+}
+
+/**
+ * @brief Enables or disables the specified ADC peripheral.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param NewState: new state of the ADCx peripheral.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Set the ADON bit to wake up the ADC from power down mode */
+ ADCx->CR2 |= (uint32_t)ADC_CR2_ADON;
+ }
+ else
+ {
+ /* Disable the selected ADC peripheral */
+ ADCx->CR2 &= (uint32_t)(~ADC_CR2_ADON);
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Group2 Analog Watchdog configuration functions
+ * @brief Analog Watchdog configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Analog Watchdog configuration functions
+ ===============================================================================
+
+ This section provides functions allowing to configure the Analog Watchdog
+ (AWD) feature in the ADC.
+
+ A typical configuration Analog Watchdog is done following these steps :
+ 1. the ADC guarded channel(s) is (are) selected using the
+ ADC_AnalogWatchdogSingleChannelConfig() function.
+ 2. The Analog watchdog lower and higher threshold are configured using the
+ ADC_AnalogWatchdogThresholdsConfig() function.
+ 3. The Analog watchdog is enabled and configured to enable the check, on one
+ or more channels, using the ADC_AnalogWatchdogCmd() function.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the analog watchdog on single/all regular or
+ * injected channels
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_AnalogWatchdog: the ADC analog watchdog configuration.
+ * This parameter can be one of the following values:
+ * @arg ADC_AnalogWatchdog_SingleRegEnable: Analog watchdog on a single regular channel
+ * @arg ADC_AnalogWatchdog_SingleInjecEnable: Analog watchdog on a single injected channel
+ * @arg ADC_AnalogWatchdog_SingleRegOrInjecEnable: Analog watchdog on a single regular or injected channel
+ * @arg ADC_AnalogWatchdog_AllRegEnable: Analog watchdog on all regular channel
+ * @arg ADC_AnalogWatchdog_AllInjecEnable: Analog watchdog on all injected channel
+ * @arg ADC_AnalogWatchdog_AllRegAllInjecEnable: Analog watchdog on all regular and injected channels
+ * @arg ADC_AnalogWatchdog_None: No channel guarded by the analog watchdog
+ * @retval None
+ */
+void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx, uint32_t ADC_AnalogWatchdog)
+{
+ uint32_t tmpreg = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_ANALOG_WATCHDOG(ADC_AnalogWatchdog));
+
+ /* Get the old register value */
+ tmpreg = ADCx->CR1;
+
+ /* Clear AWDEN, JAWDEN and AWDSGL bits */
+ tmpreg &= CR1_AWDMode_RESET;
+
+ /* Set the analog watchdog enable mode */
+ tmpreg |= ADC_AnalogWatchdog;
+
+ /* Store the new register value */
+ ADCx->CR1 = tmpreg;
+}
+
+/**
+ * @brief Configures the high and low thresholds of the analog watchdog.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param HighThreshold: the ADC analog watchdog High threshold value.
+ * This parameter must be a 12-bit value.
+ * @param LowThreshold: the ADC analog watchdog Low threshold value.
+ * This parameter must be a 12-bit value.
+ * @retval None
+ */
+void ADC_AnalogWatchdogThresholdsConfig(ADC_TypeDef* ADCx, uint16_t HighThreshold,
+ uint16_t LowThreshold)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_THRESHOLD(HighThreshold));
+ assert_param(IS_ADC_THRESHOLD(LowThreshold));
+
+ /* Set the ADCx high threshold */
+ ADCx->HTR = HighThreshold;
+
+ /* Set the ADCx low threshold */
+ ADCx->LTR = LowThreshold;
+}
+
+/**
+ * @brief Configures the analog watchdog guarded single channel
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_Channel: the ADC channel to configure for the analog watchdog.
+ * This parameter can be one of the following values:
+ * @arg ADC_Channel_0: ADC Channel0 selected
+ * @arg ADC_Channel_1: ADC Channel1 selected
+ * @arg ADC_Channel_2: ADC Channel2 selected
+ * @arg ADC_Channel_3: ADC Channel3 selected
+ * @arg ADC_Channel_4: ADC Channel4 selected
+ * @arg ADC_Channel_5: ADC Channel5 selected
+ * @arg ADC_Channel_6: ADC Channel6 selected
+ * @arg ADC_Channel_7: ADC Channel7 selected
+ * @arg ADC_Channel_8: ADC Channel8 selected
+ * @arg ADC_Channel_9: ADC Channel9 selected
+ * @arg ADC_Channel_10: ADC Channel10 selected
+ * @arg ADC_Channel_11: ADC Channel11 selected
+ * @arg ADC_Channel_12: ADC Channel12 selected
+ * @arg ADC_Channel_13: ADC Channel13 selected
+ * @arg ADC_Channel_14: ADC Channel14 selected
+ * @arg ADC_Channel_15: ADC Channel15 selected
+ * @arg ADC_Channel_16: ADC Channel16 selected
+ * @arg ADC_Channel_17: ADC Channel17 selected
+ * @arg ADC_Channel_18: ADC Channel18 selected
+ * @retval None
+ */
+void ADC_AnalogWatchdogSingleChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel)
+{
+ uint32_t tmpreg = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CHANNEL(ADC_Channel));
+
+ /* Get the old register value */
+ tmpreg = ADCx->CR1;
+
+ /* Clear the Analog watchdog channel select bits */
+ tmpreg &= CR1_AWDCH_RESET;
+
+ /* Set the Analog watchdog channel */
+ tmpreg |= ADC_Channel;
+
+ /* Store the new register value */
+ ADCx->CR1 = tmpreg;
+}
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Group3 Temperature Sensor, Vrefint (Voltage Reference internal)
+ * and VBAT (Voltage BATtery) management functions
+ * @brief Temperature Sensor, Vrefint and VBAT management functions
+ *
+@verbatim
+ ===============================================================================
+ Temperature Sensor, Vrefint and VBAT management functions
+ ===============================================================================
+
+ This section provides functions allowing to enable/ disable the internal
+ connections between the ADC and the Temperature Sensor, the Vrefint and the
+ Vbat sources.
+
+ A typical configuration to get the Temperature sensor and Vrefint channels
+ voltages is done following these steps :
+ 1. Enable the internal connection of Temperature sensor and Vrefint sources
+ with the ADC channels using ADC_TempSensorVrefintCmd() function.
+ 2. Select the ADC_Channel_TempSensor and/or ADC_Channel_Vrefint using
+ ADC_RegularChannelConfig() or ADC_InjectedChannelConfig() functions
+ 3. Get the voltage values, using ADC_GetConversionValue() or
+ ADC_GetInjectedConversionValue().
+
+ A typical configuration to get the VBAT channel voltage is done following
+ these steps :
+ 1. Enable the internal connection of VBAT source with the ADC channel using
+ ADC_VBATCmd() function.
+ 2. Select the ADC_Channel_Vbat using ADC_RegularChannelConfig() or
+ ADC_InjectedChannelConfig() functions
+ 3. Get the voltage value, using ADC_GetConversionValue() or
+ ADC_GetInjectedConversionValue().
+
+@endverbatim
+ * @{
+ */
+
+
+/**
+ * @brief Enables or disables the temperature sensor and Vrefint channels.
+ * @param NewState: new state of the temperature sensor and Vrefint channels.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_TempSensorVrefintCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the temperature sensor and Vrefint channel*/
+ ADC->CCR |= (uint32_t)ADC_CCR_TSVREFE;
+ }
+ else
+ {
+ /* Disable the temperature sensor and Vrefint channel*/
+ ADC->CCR &= (uint32_t)(~ADC_CCR_TSVREFE);
+ }
+}
+
+/**
+ * @brief Enables or disables the VBAT (Voltage Battery) channel.
+ * @param NewState: new state of the VBAT channel.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_VBATCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the VBAT channel*/
+ ADC->CCR |= (uint32_t)ADC_CCR_VBATE;
+ }
+ else
+ {
+ /* Disable the VBAT channel*/
+ ADC->CCR &= (uint32_t)(~ADC_CCR_VBATE);
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Group4 Regular Channels Configuration functions
+ * @brief Regular Channels Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Regular Channels Configuration functions
+ ===============================================================================
+
+ This section provides functions allowing to manage the ADC's regular channels,
+ it is composed of 2 sub sections :
+
+ 1. Configuration and management functions for regular channels: This subsection
+ provides functions allowing to configure the ADC regular channels :
+ - Configure the rank in the regular group sequencer for each channel
+ - Configure the sampling time for each channel
+ - select the conversion Trigger for regular channels
+ - select the desired EOC event behavior configuration
+ - Activate the continuous Mode (*)
+ - Activate the Discontinuous Mode
+ Please Note that the following features for regular channels are configurated
+ using the ADC_Init() function :
+ - scan mode activation
+ - continuous mode activation (**)
+ - External trigger source
+ - External trigger edge
+ - number of conversion in the regular channels group sequencer.
+
+ @note (*) and (**) are performing the same configuration
+
+ 2. Get the conversion data: This subsection provides an important function in
+ the ADC peripheral since it returns the converted data of the current
+ regular channel. When the Conversion value is read, the EOC Flag is
+ automatically cleared.
+
+ @note For multi ADC mode, the last ADC1, ADC2 and ADC3 regular conversions
+ results data (in the selected multi mode) can be returned in the same
+ time using ADC_GetMultiModeConversionValue() function.
+
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Configures for the selected ADC regular channel its corresponding
+ * rank in the sequencer and its sample time.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_Channel: the ADC channel to configure.
+ * This parameter can be one of the following values:
+ * @arg ADC_Channel_0: ADC Channel0 selected
+ * @arg ADC_Channel_1: ADC Channel1 selected
+ * @arg ADC_Channel_2: ADC Channel2 selected
+ * @arg ADC_Channel_3: ADC Channel3 selected
+ * @arg ADC_Channel_4: ADC Channel4 selected
+ * @arg ADC_Channel_5: ADC Channel5 selected
+ * @arg ADC_Channel_6: ADC Channel6 selected
+ * @arg ADC_Channel_7: ADC Channel7 selected
+ * @arg ADC_Channel_8: ADC Channel8 selected
+ * @arg ADC_Channel_9: ADC Channel9 selected
+ * @arg ADC_Channel_10: ADC Channel10 selected
+ * @arg ADC_Channel_11: ADC Channel11 selected
+ * @arg ADC_Channel_12: ADC Channel12 selected
+ * @arg ADC_Channel_13: ADC Channel13 selected
+ * @arg ADC_Channel_14: ADC Channel14 selected
+ * @arg ADC_Channel_15: ADC Channel15 selected
+ * @arg ADC_Channel_16: ADC Channel16 selected
+ * @arg ADC_Channel_17: ADC Channel17 selected
+ * @arg ADC_Channel_18: ADC Channel18 selected
+ * @param Rank: The rank in the regular group sequencer.
+ * This parameter must be between 1 to 16.
+ * @param ADC_SampleTime: The sample time value to be set for the selected channel.
+ * This parameter can be one of the following values:
+ * @arg ADC_SampleTime_3Cycles: Sample time equal to 3 cycles
+ * @arg ADC_SampleTime_15Cycles: Sample time equal to 15 cycles
+ * @arg ADC_SampleTime_28Cycles: Sample time equal to 28 cycles
+ * @arg ADC_SampleTime_56Cycles: Sample time equal to 56 cycles
+ * @arg ADC_SampleTime_84Cycles: Sample time equal to 84 cycles
+ * @arg ADC_SampleTime_112Cycles: Sample time equal to 112 cycles
+ * @arg ADC_SampleTime_144Cycles: Sample time equal to 144 cycles
+ * @arg ADC_SampleTime_480Cycles: Sample time equal to 480 cycles
+ * @retval None
+ */
+void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime)
+{
+ uint32_t tmpreg1 = 0, tmpreg2 = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CHANNEL(ADC_Channel));
+ assert_param(IS_ADC_REGULAR_RANK(Rank));
+ assert_param(IS_ADC_SAMPLE_TIME(ADC_SampleTime));
+
+ /* if ADC_Channel_10 ... ADC_Channel_18 is selected */
+ if (ADC_Channel > ADC_Channel_9)
+ {
+ /* Get the old register value */
+ tmpreg1 = ADCx->SMPR1;
+
+ /* Calculate the mask to clear */
+ tmpreg2 = SMPR1_SMP_SET << (3 * (ADC_Channel - 10));
+
+ /* Clear the old sample time */
+ tmpreg1 &= ~tmpreg2;
+
+ /* Calculate the mask to set */
+ tmpreg2 = (uint32_t)ADC_SampleTime << (3 * (ADC_Channel - 10));
+
+ /* Set the new sample time */
+ tmpreg1 |= tmpreg2;
+
+ /* Store the new register value */
+ ADCx->SMPR1 = tmpreg1;
+ }
+ else /* ADC_Channel include in ADC_Channel_[0..9] */
+ {
+ /* Get the old register value */
+ tmpreg1 = ADCx->SMPR2;
+
+ /* Calculate the mask to clear */
+ tmpreg2 = SMPR2_SMP_SET << (3 * ADC_Channel);
+
+ /* Clear the old sample time */
+ tmpreg1 &= ~tmpreg2;
+
+ /* Calculate the mask to set */
+ tmpreg2 = (uint32_t)ADC_SampleTime << (3 * ADC_Channel);
+
+ /* Set the new sample time */
+ tmpreg1 |= tmpreg2;
+
+ /* Store the new register value */
+ ADCx->SMPR2 = tmpreg1;
+ }
+ /* For Rank 1 to 6 */
+ if (Rank < 7)
+ {
+ /* Get the old register value */
+ tmpreg1 = ADCx->SQR3;
+
+ /* Calculate the mask to clear */
+ tmpreg2 = SQR3_SQ_SET << (5 * (Rank - 1));
+
+ /* Clear the old SQx bits for the selected rank */
+ tmpreg1 &= ~tmpreg2;
+
+ /* Calculate the mask to set */
+ tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 1));
+
+ /* Set the SQx bits for the selected rank */
+ tmpreg1 |= tmpreg2;
+
+ /* Store the new register value */
+ ADCx->SQR3 = tmpreg1;
+ }
+ /* For Rank 7 to 12 */
+ else if (Rank < 13)
+ {
+ /* Get the old register value */
+ tmpreg1 = ADCx->SQR2;
+
+ /* Calculate the mask to clear */
+ tmpreg2 = SQR2_SQ_SET << (5 * (Rank - 7));
+
+ /* Clear the old SQx bits for the selected rank */
+ tmpreg1 &= ~tmpreg2;
+
+ /* Calculate the mask to set */
+ tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 7));
+
+ /* Set the SQx bits for the selected rank */
+ tmpreg1 |= tmpreg2;
+
+ /* Store the new register value */
+ ADCx->SQR2 = tmpreg1;
+ }
+ /* For Rank 13 to 16 */
+ else
+ {
+ /* Get the old register value */
+ tmpreg1 = ADCx->SQR1;
+
+ /* Calculate the mask to clear */
+ tmpreg2 = SQR1_SQ_SET << (5 * (Rank - 13));
+
+ /* Clear the old SQx bits for the selected rank */
+ tmpreg1 &= ~tmpreg2;
+
+ /* Calculate the mask to set */
+ tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 13));
+
+ /* Set the SQx bits for the selected rank */
+ tmpreg1 |= tmpreg2;
+
+ /* Store the new register value */
+ ADCx->SQR1 = tmpreg1;
+ }
+}
+
+/**
+ * @brief Enables the selected ADC software start conversion of the regular channels.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @retval None
+ */
+void ADC_SoftwareStartConv(ADC_TypeDef* ADCx)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Enable the selected ADC conversion for regular group */
+ ADCx->CR2 |= (uint32_t)ADC_CR2_SWSTART;
+}
+
+/**
+ * @brief Gets the selected ADC Software start regular conversion Status.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @retval The new state of ADC software start conversion (SET or RESET).
+ */
+FlagStatus ADC_GetSoftwareStartConvStatus(ADC_TypeDef* ADCx)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Check the status of SWSTART bit */
+ if ((ADCx->CR2 & ADC_CR2_JSWSTART) != (uint32_t)RESET)
+ {
+ /* SWSTART bit is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* SWSTART bit is reset */
+ bitstatus = RESET;
+ }
+
+ /* Return the SWSTART bit status */
+ return bitstatus;
+}
+
+
+/**
+ * @brief Enables or disables the EOC on each regular channel conversion
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param NewState: new state of the selected ADC EOC flag rising
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_EOCOnEachRegularChannelCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC EOC rising on each regular channel conversion */
+ ADCx->CR2 |= (uint32_t)ADC_CR2_EOCS;
+ }
+ else
+ {
+ /* Disable the selected ADC EOC rising on each regular channel conversion */
+ ADCx->CR2 &= (uint32_t)(~ADC_CR2_EOCS);
+ }
+}
+
+/**
+ * @brief Enables or disables the ADC continuous conversion mode
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param NewState: new state of the selected ADC continuous conversion mode
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_ContinuousModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC continuous conversion mode */
+ ADCx->CR2 |= (uint32_t)ADC_CR2_CONT;
+ }
+ else
+ {
+ /* Disable the selected ADC continuous conversion mode */
+ ADCx->CR2 &= (uint32_t)(~ADC_CR2_CONT);
+ }
+}
+
+/**
+ * @brief Configures the discontinuous mode for the selected ADC regular group
+ * channel.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param Number: specifies the discontinuous mode regular channel count value.
+ * This number must be between 1 and 8.
+ * @retval None
+ */
+void ADC_DiscModeChannelCountConfig(ADC_TypeDef* ADCx, uint8_t Number)
+{
+ uint32_t tmpreg1 = 0;
+ uint32_t tmpreg2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_REGULAR_DISC_NUMBER(Number));
+
+ /* Get the old register value */
+ tmpreg1 = ADCx->CR1;
+
+ /* Clear the old discontinuous mode channel count */
+ tmpreg1 &= CR1_DISCNUM_RESET;
+
+ /* Set the discontinuous mode channel count */
+ tmpreg2 = Number - 1;
+ tmpreg1 |= tmpreg2 << 13;
+
+ /* Store the new register value */
+ ADCx->CR1 = tmpreg1;
+}
+
+/**
+ * @brief Enables or disables the discontinuous mode on regular group channel
+ * for the specified ADC
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param NewState: new state of the selected ADC discontinuous mode on
+ * regular group channel.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_DiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC regular discontinuous mode */
+ ADCx->CR1 |= (uint32_t)ADC_CR1_DISCEN;
+ }
+ else
+ {
+ /* Disable the selected ADC regular discontinuous mode */
+ ADCx->CR1 &= (uint32_t)(~ADC_CR1_DISCEN);
+ }
+}
+
+/**
+ * @brief Returns the last ADCx conversion result data for regular channel.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @retval The Data conversion value.
+ */
+uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Return the selected ADC conversion value */
+ return (uint16_t) ADCx->DR;
+}
+
+/**
+ * @brief Returns the last ADC1, ADC2 and ADC3 regular conversions results
+ * data in the selected multi mode.
+ * @param None
+ * @retval The Data conversion value.
+ * @note In dual mode, the value returned by this function is as following
+ * Data[15:0] : these bits contain the regular data of ADC1.
+ * Data[31:16]: these bits contain the regular data of ADC2.
+ * @note In triple mode, the value returned by this function is as following
+ * Data[15:0] : these bits contain alternatively the regular data of ADC1, ADC3 and ADC2.
+ * Data[31:16]: these bits contain alternatively the regular data of ADC2, ADC1 and ADC3.
+ */
+uint32_t ADC_GetMultiModeConversionValue(void)
+{
+ /* Return the multi mode conversion value */
+ return (*(__IO uint32_t *) CDR_ADDRESS);
+}
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Group5 Regular Channels DMA Configuration functions
+ * @brief Regular Channels DMA Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Regular Channels DMA Configuration functions
+ ===============================================================================
+
+ This section provides functions allowing to configure the DMA for ADC regular
+ channels.
+ Since converted regular channel values are stored into a unique data register,
+ it is useful to use DMA for conversion of more than one regular channel. This
+ avoids the loss of the data already stored in the ADC Data register.
+
+ When the DMA mode is enabled (using the ADC_DMACmd() function), after each
+ conversion of a regular channel, a DMA request is generated.
+
+ Depending on the "DMA disable selection for Independent ADC mode"
+ configuration (using the ADC_DMARequestAfterLastTransferCmd() function),
+ at the end of the last DMA transfer, two possibilities are allowed:
+ - No new DMA request is issued to the DMA controller (feature DISABLED)
+ - Requests can continue to be generated (feature ENABLED).
+
+ Depending on the "DMA disable selection for multi ADC mode" configuration
+ (using the void ADC_MultiModeDMARequestAfterLastTransferCmd() function),
+ at the end of the last DMA transfer, two possibilities are allowed:
+ - No new DMA request is issued to the DMA controller (feature DISABLED)
+ - Requests can continue to be generated (feature ENABLED).
+
+@endverbatim
+ * @{
+ */
+
+ /**
+ * @brief Enables or disables the specified ADC DMA request.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param NewState: new state of the selected ADC DMA transfer.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_DMACmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC DMA request */
+ ADCx->CR2 |= (uint32_t)ADC_CR2_DMA;
+ }
+ else
+ {
+ /* Disable the selected ADC DMA request */
+ ADCx->CR2 &= (uint32_t)(~ADC_CR2_DMA);
+ }
+}
+
+/**
+ * @brief Enables or disables the ADC DMA request after last transfer (Single-ADC mode)
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param NewState: new state of the selected ADC DMA request after last transfer.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_DMARequestAfterLastTransferCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC DMA request after last transfer */
+ ADCx->CR2 |= (uint32_t)ADC_CR2_DDS;
+ }
+ else
+ {
+ /* Disable the selected ADC DMA request after last transfer */
+ ADCx->CR2 &= (uint32_t)(~ADC_CR2_DDS);
+ }
+}
+
+/**
+ * @brief Enables or disables the ADC DMA request after last transfer in multi ADC mode
+ * @param NewState: new state of the selected ADC DMA request after last transfer.
+ * This parameter can be: ENABLE or DISABLE.
+ * @note if Enabled, DMA requests are issued as long as data are converted and
+ * DMA mode for multi ADC mode (selected using ADC_CommonInit() function
+ * by ADC_CommonInitStruct.ADC_DMAAccessMode structure member) is
+ * ADC_DMAAccessMode_1, ADC_DMAAccessMode_2 or ADC_DMAAccessMode_3.
+ * @retval None
+ */
+void ADC_MultiModeDMARequestAfterLastTransferCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC DMA request after last transfer */
+ ADC->CCR |= (uint32_t)ADC_CCR_DDS;
+ }
+ else
+ {
+ /* Disable the selected ADC DMA request after last transfer */
+ ADC->CCR &= (uint32_t)(~ADC_CCR_DDS);
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Group6 Injected channels Configuration functions
+ * @brief Injected channels Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Injected channels Configuration functions
+ ===============================================================================
+
+ This section provide functions allowing to configure the ADC Injected channels,
+ it is composed of 2 sub sections :
+
+ 1. Configuration functions for Injected channels: This subsection provides
+ functions allowing to configure the ADC injected channels :
+ - Configure the rank in the injected group sequencer for each channel
+ - Configure the sampling time for each channel
+ - Activate the Auto injected Mode
+ - Activate the Discontinuous Mode
+ - scan mode activation
+ - External/software trigger source
+ - External trigger edge
+ - injected channels sequencer.
+
+ 2. Get the Specified Injected channel conversion data: This subsection
+ provides an important function in the ADC peripheral since it returns the
+ converted data of the specific injected channel.
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Configures for the selected ADC injected channel its corresponding
+ * rank in the sequencer and its sample time.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_Channel: the ADC channel to configure.
+ * This parameter can be one of the following values:
+ * @arg ADC_Channel_0: ADC Channel0 selected
+ * @arg ADC_Channel_1: ADC Channel1 selected
+ * @arg ADC_Channel_2: ADC Channel2 selected
+ * @arg ADC_Channel_3: ADC Channel3 selected
+ * @arg ADC_Channel_4: ADC Channel4 selected
+ * @arg ADC_Channel_5: ADC Channel5 selected
+ * @arg ADC_Channel_6: ADC Channel6 selected
+ * @arg ADC_Channel_7: ADC Channel7 selected
+ * @arg ADC_Channel_8: ADC Channel8 selected
+ * @arg ADC_Channel_9: ADC Channel9 selected
+ * @arg ADC_Channel_10: ADC Channel10 selected
+ * @arg ADC_Channel_11: ADC Channel11 selected
+ * @arg ADC_Channel_12: ADC Channel12 selected
+ * @arg ADC_Channel_13: ADC Channel13 selected
+ * @arg ADC_Channel_14: ADC Channel14 selected
+ * @arg ADC_Channel_15: ADC Channel15 selected
+ * @arg ADC_Channel_16: ADC Channel16 selected
+ * @arg ADC_Channel_17: ADC Channel17 selected
+ * @arg ADC_Channel_18: ADC Channel18 selected
+ * @param Rank: The rank in the injected group sequencer.
+ * This parameter must be between 1 to 4.
+ * @param ADC_SampleTime: The sample time value to be set for the selected channel.
+ * This parameter can be one of the following values:
+ * @arg ADC_SampleTime_3Cycles: Sample time equal to 3 cycles
+ * @arg ADC_SampleTime_15Cycles: Sample time equal to 15 cycles
+ * @arg ADC_SampleTime_28Cycles: Sample time equal to 28 cycles
+ * @arg ADC_SampleTime_56Cycles: Sample time equal to 56 cycles
+ * @arg ADC_SampleTime_84Cycles: Sample time equal to 84 cycles
+ * @arg ADC_SampleTime_112Cycles: Sample time equal to 112 cycles
+ * @arg ADC_SampleTime_144Cycles: Sample time equal to 144 cycles
+ * @arg ADC_SampleTime_480Cycles: Sample time equal to 480 cycles
+ * @retval None
+ */
+void ADC_InjectedChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime)
+{
+ uint32_t tmpreg1 = 0, tmpreg2 = 0, tmpreg3 = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CHANNEL(ADC_Channel));
+ assert_param(IS_ADC_INJECTED_RANK(Rank));
+ assert_param(IS_ADC_SAMPLE_TIME(ADC_SampleTime));
+ /* if ADC_Channel_10 ... ADC_Channel_18 is selected */
+ if (ADC_Channel > ADC_Channel_9)
+ {
+ /* Get the old register value */
+ tmpreg1 = ADCx->SMPR1;
+ /* Calculate the mask to clear */
+ tmpreg2 = SMPR1_SMP_SET << (3*(ADC_Channel - 10));
+ /* Clear the old sample time */
+ tmpreg1 &= ~tmpreg2;
+ /* Calculate the mask to set */
+ tmpreg2 = (uint32_t)ADC_SampleTime << (3*(ADC_Channel - 10));
+ /* Set the new sample time */
+ tmpreg1 |= tmpreg2;
+ /* Store the new register value */
+ ADCx->SMPR1 = tmpreg1;
+ }
+ else /* ADC_Channel include in ADC_Channel_[0..9] */
+ {
+ /* Get the old register value */
+ tmpreg1 = ADCx->SMPR2;
+ /* Calculate the mask to clear */
+ tmpreg2 = SMPR2_SMP_SET << (3 * ADC_Channel);
+ /* Clear the old sample time */
+ tmpreg1 &= ~tmpreg2;
+ /* Calculate the mask to set */
+ tmpreg2 = (uint32_t)ADC_SampleTime << (3 * ADC_Channel);
+ /* Set the new sample time */
+ tmpreg1 |= tmpreg2;
+ /* Store the new register value */
+ ADCx->SMPR2 = tmpreg1;
+ }
+ /* Rank configuration */
+ /* Get the old register value */
+ tmpreg1 = ADCx->JSQR;
+ /* Get JL value: Number = JL+1 */
+ tmpreg3 = (tmpreg1 & JSQR_JL_SET)>> 20;
+ /* Calculate the mask to clear: ((Rank-1)+(4-JL-1)) */
+ tmpreg2 = JSQR_JSQ_SET << (5 * (uint8_t)((Rank + 3) - (tmpreg3 + 1)));
+ /* Clear the old JSQx bits for the selected rank */
+ tmpreg1 &= ~tmpreg2;
+ /* Calculate the mask to set: ((Rank-1)+(4-JL-1)) */
+ tmpreg2 = (uint32_t)ADC_Channel << (5 * (uint8_t)((Rank + 3) - (tmpreg3 + 1)));
+ /* Set the JSQx bits for the selected rank */
+ tmpreg1 |= tmpreg2;
+ /* Store the new register value */
+ ADCx->JSQR = tmpreg1;
+}
+
+/**
+ * @brief Configures the sequencer length for injected channels
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param Length: The sequencer length.
+ * This parameter must be a number between 1 to 4.
+ * @retval None
+ */
+void ADC_InjectedSequencerLengthConfig(ADC_TypeDef* ADCx, uint8_t Length)
+{
+ uint32_t tmpreg1 = 0;
+ uint32_t tmpreg2 = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_INJECTED_LENGTH(Length));
+
+ /* Get the old register value */
+ tmpreg1 = ADCx->JSQR;
+
+ /* Clear the old injected sequence length JL bits */
+ tmpreg1 &= JSQR_JL_RESET;
+
+ /* Set the injected sequence length JL bits */
+ tmpreg2 = Length - 1;
+ tmpreg1 |= tmpreg2 << 20;
+
+ /* Store the new register value */
+ ADCx->JSQR = tmpreg1;
+}
+
+/**
+ * @brief Set the injected channels conversion value offset
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_InjectedChannel: the ADC injected channel to set its offset.
+ * This parameter can be one of the following values:
+ * @arg ADC_InjectedChannel_1: Injected Channel1 selected
+ * @arg ADC_InjectedChannel_2: Injected Channel2 selected
+ * @arg ADC_InjectedChannel_3: Injected Channel3 selected
+ * @arg ADC_InjectedChannel_4: Injected Channel4 selected
+ * @param Offset: the offset value for the selected ADC injected channel
+ * This parameter must be a 12bit value.
+ * @retval None
+ */
+void ADC_SetInjectedOffset(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel, uint16_t Offset)
+{
+ __IO uint32_t tmp = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_INJECTED_CHANNEL(ADC_InjectedChannel));
+ assert_param(IS_ADC_OFFSET(Offset));
+
+ tmp = (uint32_t)ADCx;
+ tmp += ADC_InjectedChannel;
+
+ /* Set the selected injected channel data offset */
+ *(__IO uint32_t *) tmp = (uint32_t)Offset;
+}
+
+ /**
+ * @brief Configures the ADCx external trigger for injected channels conversion.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_ExternalTrigInjecConv: specifies the ADC trigger to start injected conversion.
+ * This parameter can be one of the following values:
+ * @arg ADC_ExternalTrigInjecConv_T1_CC4: Timer1 capture compare4 selected
+ * @arg ADC_ExternalTrigInjecConv_T1_TRGO: Timer1 TRGO event selected
+ * @arg ADC_ExternalTrigInjecConv_T2_CC1: Timer2 capture compare1 selected
+ * @arg ADC_ExternalTrigInjecConv_T2_TRGO: Timer2 TRGO event selected
+ * @arg ADC_ExternalTrigInjecConv_T3_CC2: Timer3 capture compare2 selected
+ * @arg ADC_ExternalTrigInjecConv_T3_CC4: Timer3 capture compare4 selected
+ * @arg ADC_ExternalTrigInjecConv_T4_CC1: Timer4 capture compare1 selected
+ * @arg ADC_ExternalTrigInjecConv_T4_CC2: Timer4 capture compare2 selected
+ * @arg ADC_ExternalTrigInjecConv_T4_CC3: Timer4 capture compare3 selected
+ * @arg ADC_ExternalTrigInjecConv_T4_TRGO: Timer4 TRGO event selected
+ * @arg ADC_ExternalTrigInjecConv_T5_CC4: Timer5 capture compare4 selected
+ * @arg ADC_ExternalTrigInjecConv_T5_TRGO: Timer5 TRGO event selected
+ * @arg ADC_ExternalTrigInjecConv_T8_CC2: Timer8 capture compare2 selected
+ * @arg ADC_ExternalTrigInjecConv_T8_CC3: Timer8 capture compare3 selected
+ * @arg ADC_ExternalTrigInjecConv_T8_CC4: Timer8 capture compare4 selected
+ * @arg ADC_ExternalTrigInjecConv_Ext_IT15: External interrupt line 15 event selected
+ * @retval None
+ */
+void ADC_ExternalTrigInjectedConvConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConv)
+{
+ uint32_t tmpreg = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_EXT_INJEC_TRIG(ADC_ExternalTrigInjecConv));
+
+ /* Get the old register value */
+ tmpreg = ADCx->CR2;
+
+ /* Clear the old external event selection for injected group */
+ tmpreg &= CR2_JEXTSEL_RESET;
+
+ /* Set the external event selection for injected group */
+ tmpreg |= ADC_ExternalTrigInjecConv;
+
+ /* Store the new register value */
+ ADCx->CR2 = tmpreg;
+}
+
+/**
+ * @brief Configures the ADCx external trigger edge for injected channels conversion.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_ExternalTrigInjecConvEdge: specifies the ADC external trigger edge
+ * to start injected conversion.
+ * This parameter can be one of the following values:
+ * @arg ADC_ExternalTrigInjecConvEdge_None: external trigger disabled for
+ * injected conversion
+ * @arg ADC_ExternalTrigInjecConvEdge_Rising: detection on rising edge
+ * @arg ADC_ExternalTrigInjecConvEdge_Falling: detection on falling edge
+ * @arg ADC_ExternalTrigInjecConvEdge_RisingFalling: detection on both rising
+ * and falling edge
+ * @retval None
+ */
+void ADC_ExternalTrigInjectedConvEdgeConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConvEdge)
+{
+ uint32_t tmpreg = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_EXT_INJEC_TRIG_EDGE(ADC_ExternalTrigInjecConvEdge));
+ /* Get the old register value */
+ tmpreg = ADCx->CR2;
+ /* Clear the old external trigger edge for injected group */
+ tmpreg &= CR2_JEXTEN_RESET;
+ /* Set the new external trigger edge for injected group */
+ tmpreg |= ADC_ExternalTrigInjecConvEdge;
+ /* Store the new register value */
+ ADCx->CR2 = tmpreg;
+}
+
+/**
+ * @brief Enables the selected ADC software start conversion of the injected channels.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @retval None
+ */
+void ADC_SoftwareStartInjectedConv(ADC_TypeDef* ADCx)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ /* Enable the selected ADC conversion for injected group */
+ ADCx->CR2 |= (uint32_t)ADC_CR2_JSWSTART;
+}
+
+/**
+ * @brief Gets the selected ADC Software start injected conversion Status.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @retval The new state of ADC software start injected conversion (SET or RESET).
+ */
+FlagStatus ADC_GetSoftwareStartInjectedConvCmdStatus(ADC_TypeDef* ADCx)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+
+ /* Check the status of JSWSTART bit */
+ if ((ADCx->CR2 & ADC_CR2_JSWSTART) != (uint32_t)RESET)
+ {
+ /* JSWSTART bit is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* JSWSTART bit is reset */
+ bitstatus = RESET;
+ }
+ /* Return the JSWSTART bit status */
+ return bitstatus;
+}
+
+/**
+ * @brief Enables or disables the selected ADC automatic injected group
+ * conversion after regular one.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param NewState: new state of the selected ADC auto injected conversion
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_AutoInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC automatic injected group conversion */
+ ADCx->CR1 |= (uint32_t)ADC_CR1_JAUTO;
+ }
+ else
+ {
+ /* Disable the selected ADC automatic injected group conversion */
+ ADCx->CR1 &= (uint32_t)(~ADC_CR1_JAUTO);
+ }
+}
+
+/**
+ * @brief Enables or disables the discontinuous mode for injected group
+ * channel for the specified ADC
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param NewState: new state of the selected ADC discontinuous mode on injected
+ * group channel.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_InjectedDiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC injected discontinuous mode */
+ ADCx->CR1 |= (uint32_t)ADC_CR1_JDISCEN;
+ }
+ else
+ {
+ /* Disable the selected ADC injected discontinuous mode */
+ ADCx->CR1 &= (uint32_t)(~ADC_CR1_JDISCEN);
+ }
+}
+
+/**
+ * @brief Returns the ADC injected channel conversion result
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_InjectedChannel: the converted ADC injected channel.
+ * This parameter can be one of the following values:
+ * @arg ADC_InjectedChannel_1: Injected Channel1 selected
+ * @arg ADC_InjectedChannel_2: Injected Channel2 selected
+ * @arg ADC_InjectedChannel_3: Injected Channel3 selected
+ * @arg ADC_InjectedChannel_4: Injected Channel4 selected
+ * @retval The Data conversion value.
+ */
+uint16_t ADC_GetInjectedConversionValue(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel)
+{
+ __IO uint32_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_INJECTED_CHANNEL(ADC_InjectedChannel));
+
+ tmp = (uint32_t)ADCx;
+ tmp += ADC_InjectedChannel + JDR_OFFSET;
+
+ /* Returns the selected injected channel conversion data value */
+ return (uint16_t) (*(__IO uint32_t*) tmp);
+}
+/**
+ * @}
+ */
+
+/** @defgroup ADC_Group7 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts and flags management functions
+ ===============================================================================
+
+ This section provides functions allowing to configure the ADC Interrupts and
+ to get the status and clear flags and Interrupts pending bits.
+
+ Each ADC provides 4 Interrupts sources and 6 Flags which can be divided into
+ 3 groups:
+
+ I. Flags and Interrupts for ADC regular channels
+ =================================================
+ Flags :
+ ----------
+ 1. ADC_FLAG_OVR : Overrun detection when regular converted data are lost
+
+ 2. ADC_FLAG_EOC : Regular channel end of conversion ==> to indicate (depending
+ on EOCS bit, managed by ADC_EOCOnEachRegularChannelCmd() ) the end of:
+ ==> a regular CHANNEL conversion
+ ==> sequence of regular GROUP conversions .
+
+ 3. ADC_FLAG_STRT: Regular channel start ==> to indicate when regular CHANNEL
+ conversion starts.
+
+ Interrupts :
+ ------------
+ 1. ADC_IT_OVR : specifies the interrupt source for Overrun detection event.
+ 2. ADC_IT_EOC : specifies the interrupt source for Regular channel end of
+ conversion event.
+
+
+ II. Flags and Interrupts for ADC Injected channels
+ =================================================
+ Flags :
+ ----------
+ 1. ADC_FLAG_JEOC : Injected channel end of conversion ==> to indicate at
+ the end of injected GROUP conversion
+
+ 2. ADC_FLAG_JSTRT: Injected channel start ==> to indicate hardware when
+ injected GROUP conversion starts.
+
+ Interrupts :
+ ------------
+ 1. ADC_IT_JEOC : specifies the interrupt source for Injected channel end of
+ conversion event.
+
+ III. General Flags and Interrupts for the ADC
+ =================================================
+ Flags :
+ ----------
+ 1. ADC_FLAG_AWD: Analog watchdog ==> to indicate if the converted voltage
+ crosses the programmed thresholds values.
+
+ Interrupts :
+ ------------
+ 1. ADC_IT_AWD : specifies the interrupt source for Analog watchdog event.
+
+
+ The user should identify which mode will be used in his application to manage
+ the ADC controller events: Polling mode or Interrupt mode.
+
+ In the Polling Mode it is advised to use the following functions:
+ - ADC_GetFlagStatus() : to check if flags events occur.
+ - ADC_ClearFlag() : to clear the flags events.
+
+ In the Interrupt Mode it is advised to use the following functions:
+ - ADC_ITConfig() : to enable or disable the interrupt source.
+ - ADC_GetITStatus() : to check if Interrupt occurs.
+ - ADC_ClearITPendingBit() : to clear the Interrupt pending Bit
+ (corresponding Flag).
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Enables or disables the specified ADC interrupts.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_IT: specifies the ADC interrupt sources to be enabled or disabled.
+ * This parameter can be one of the following values:
+ * @arg ADC_IT_EOC: End of conversion interrupt mask
+ * @arg ADC_IT_AWD: Analog watchdog interrupt mask
+ * @arg ADC_IT_JEOC: End of injected conversion interrupt mask
+ * @arg ADC_IT_OVR: Overrun interrupt enable
+ * @param NewState: new state of the specified ADC interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void ADC_ITConfig(ADC_TypeDef* ADCx, uint16_t ADC_IT, FunctionalState NewState)
+{
+ uint32_t itmask = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ assert_param(IS_ADC_IT(ADC_IT));
+
+ /* Get the ADC IT index */
+ itmask = (uint8_t)ADC_IT;
+ itmask = (uint32_t)0x01 << itmask;
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected ADC interrupts */
+ ADCx->CR1 |= itmask;
+ }
+ else
+ {
+ /* Disable the selected ADC interrupts */
+ ADCx->CR1 &= (~(uint32_t)itmask);
+ }
+}
+
+/**
+ * @brief Checks whether the specified ADC flag is set or not.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg ADC_FLAG_AWD: Analog watchdog flag
+ * @arg ADC_FLAG_EOC: End of conversion flag
+ * @arg ADC_FLAG_JEOC: End of injected group conversion flag
+ * @arg ADC_FLAG_JSTRT: Start of injected group conversion flag
+ * @arg ADC_FLAG_STRT: Start of regular group conversion flag
+ * @arg ADC_FLAG_OVR: Overrun flag
+ * @retval The new state of ADC_FLAG (SET or RESET).
+ */
+FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint8_t ADC_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_GET_FLAG(ADC_FLAG));
+
+ /* Check the status of the specified ADC flag */
+ if ((ADCx->SR & ADC_FLAG) != (uint8_t)RESET)
+ {
+ /* ADC_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* ADC_FLAG is reset */
+ bitstatus = RESET;
+ }
+ /* Return the ADC_FLAG status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the ADCx's pending flags.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_FLAG: specifies the flag to clear.
+ * This parameter can be any combination of the following values:
+ * @arg ADC_FLAG_AWD: Analog watchdog flag
+ * @arg ADC_FLAG_EOC: End of conversion flag
+ * @arg ADC_FLAG_JEOC: End of injected group conversion flag
+ * @arg ADC_FLAG_JSTRT: Start of injected group conversion flag
+ * @arg ADC_FLAG_STRT: Start of regular group conversion flag
+ * @arg ADC_FLAG_OVR: Overrun flag
+ * @retval None
+ */
+void ADC_ClearFlag(ADC_TypeDef* ADCx, uint8_t ADC_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_CLEAR_FLAG(ADC_FLAG));
+
+ /* Clear the selected ADC flags */
+ ADCx->SR = ~(uint32_t)ADC_FLAG;
+}
+
+/**
+ * @brief Checks whether the specified ADC interrupt has occurred or not.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_IT: specifies the ADC interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg ADC_IT_EOC: End of conversion interrupt mask
+ * @arg ADC_IT_AWD: Analog watchdog interrupt mask
+ * @arg ADC_IT_JEOC: End of injected conversion interrupt mask
+ * @arg ADC_IT_OVR: Overrun interrupt mask
+ * @retval The new state of ADC_IT (SET or RESET).
+ */
+ITStatus ADC_GetITStatus(ADC_TypeDef* ADCx, uint16_t ADC_IT)
+{
+ ITStatus bitstatus = RESET;
+ uint32_t itmask = 0, enablestatus = 0;
+
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_IT(ADC_IT));
+
+ /* Get the ADC IT index */
+ itmask = ADC_IT >> 8;
+
+ /* Get the ADC_IT enable bit status */
+ enablestatus = (ADCx->CR1 & ((uint32_t)0x01 << (uint8_t)ADC_IT)) ;
+
+ /* Check the status of the specified ADC interrupt */
+ if (((ADCx->SR & itmask) != (uint32_t)RESET) && enablestatus)
+ {
+ /* ADC_IT is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* ADC_IT is reset */
+ bitstatus = RESET;
+ }
+ /* Return the ADC_IT status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the ADCx's interrupt pending bits.
+ * @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
+ * @param ADC_IT: specifies the ADC interrupt pending bit to clear.
+ * This parameter can be one of the following values:
+ * @arg ADC_IT_EOC: End of conversion interrupt mask
+ * @arg ADC_IT_AWD: Analog watchdog interrupt mask
+ * @arg ADC_IT_JEOC: End of injected conversion interrupt mask
+ * @arg ADC_IT_OVR: Overrun interrupt mask
+ * @retval None
+ */
+void ADC_ClearITPendingBit(ADC_TypeDef* ADCx, uint16_t ADC_IT)
+{
+ uint8_t itmask = 0;
+ /* Check the parameters */
+ assert_param(IS_ADC_ALL_PERIPH(ADCx));
+ assert_param(IS_ADC_IT(ADC_IT));
+ /* Get the ADC IT index */
+ itmask = (uint8_t)(ADC_IT >> 8);
+ /* Clear the selected ADC interrupt pending bits */
+ ADCx->SR = ~(uint32_t)itmask;
+}
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_can.c b/TimerCounter/SPL/src/stm32f4xx_can.c
new file mode 100644
index 0000000..8543ab8
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_can.c
@@ -0,0 +1,1698 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_can.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Controller area network (CAN) peripheral:
+ * - Initialization and Configuration
+ * - CAN Frames Transmission
+ * - CAN Frames Reception
+ * - Operation modes switch
+ * - Error management
+ * - Interrupts and flags
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+
+ * 1. Enable the CAN controller interface clock using
+ * RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE); for CAN1
+ * and RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN2, ENABLE); for CAN2
+ * @note In case you are using CAN2 only, you have to enable the CAN1 clock.
+ *
+ * 2. CAN pins configuration
+ * - Enable the clock for the CAN GPIOs using the following function:
+ * RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
+ * - Connect the involved CAN pins to AF9 using the following function
+ * GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_CANx);
+ * - Configure these CAN pins in alternate function mode by calling
+ * the function GPIO_Init();
+ *
+ * 3. Initialise and configure the CAN using CAN_Init() and
+ * CAN_FilterInit() functions.
+ *
+ * 4. Transmit the desired CAN frame using CAN_Transmit() function.
+ *
+ * 5. Check the transmission of a CAN frame using CAN_TransmitStatus()
+ * function.
+ *
+ * 6. Cancel the transmission of a CAN frame using CAN_CancelTransmit()
+ * function.
+ *
+ * 7. Receive a CAN frame using CAN_Recieve() function.
+ *
+ * 8. Release the receive FIFOs using CAN_FIFORelease() function.
+ *
+ * 9. Return the number of pending received frames using
+ * CAN_MessagePending() function.
+ *
+ * 10. To control CAN events you can use one of the following two methods:
+ * - Check on CAN flags using the CAN_GetFlagStatus() function.
+ * - Use CAN interrupts through the function CAN_ITConfig() at
+ * initialization phase and CAN_GetITStatus() function into
+ * interrupt routines to check if the event has occurred or not.
+ * After checking on a flag you should clear it using CAN_ClearFlag()
+ * function. And after checking on an interrupt event you should
+ * clear it using CAN_ClearITPendingBit() function.
+ *
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_crc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup CRC
+ * @brief CRC driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup CRC_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief Resets the CRC Data register (DR).
+ * @param None
+ * @retval None
+ */
+void CRC_ResetDR(void)
+{
+ /* Reset CRC generator */
+ CRC->CR = CRC_CR_RESET;
+}
+
+/**
+ * @brief Computes the 32-bit CRC of a given data word(32-bit).
+ * @param Data: data word(32-bit) to compute its CRC
+ * @retval 32-bit CRC
+ */
+uint32_t CRC_CalcCRC(uint32_t Data)
+{
+ CRC->DR = Data;
+
+ return (CRC->DR);
+}
+
+/**
+ * @brief Computes the 32-bit CRC of a given buffer of data word(32-bit).
+ * @param pBuffer: pointer to the buffer containing the data to be computed
+ * @param BufferLength: length of the buffer to be computed
+ * @retval 32-bit CRC
+ */
+uint32_t CRC_CalcBlockCRC(uint32_t pBuffer[], uint32_t BufferLength)
+{
+ uint32_t index = 0;
+
+ for(index = 0; index < BufferLength; index++)
+ {
+ CRC->DR = pBuffer[index];
+ }
+ return (CRC->DR);
+}
+
+/**
+ * @brief Returns the current CRC value.
+ * @param None
+ * @retval 32-bit CRC
+ */
+uint32_t CRC_GetCRC(void)
+{
+ return (CRC->DR);
+}
+
+/**
+ * @brief Stores a 8-bit data in the Independent Data(ID) register.
+ * @param IDValue: 8-bit value to be stored in the ID register
+ * @retval None
+ */
+void CRC_SetIDRegister(uint8_t IDValue)
+{
+ CRC->IDR = IDValue;
+}
+
+/**
+ * @brief Returns the 8-bit data stored in the Independent Data(ID) register
+ * @param None
+ * @retval 8-bit value of the ID register
+ */
+uint8_t CRC_GetIDRegister(void)
+{
+ return (CRC->IDR);
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_cryp.c b/TimerCounter/SPL/src/stm32f4xx_cryp.c
new file mode 100644
index 0000000..dcdbef8
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_cryp.c
@@ -0,0 +1,850 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_cryp.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Cryptographic processor (CRYP) peripheral:
+ * - Initialization and Configuration functions
+ * - Data treatment functions
+ * - Context swapping functions
+ * - DMA interface function
+ * - Interrupts and flags management
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ * 1. Enable the CRYP controller clock using
+ * RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_CRYP, ENABLE); function.
+ *
+ * 2. Initialise the CRYP using CRYP_Init(), CRYP_KeyInit() and if
+ * needed CRYP_IVInit().
+ *
+ * 3. Flush the IN and OUT FIFOs by using CRYP_FIFOFlush() function.
+ *
+ * 4. Enable the CRYP controller using the CRYP_Cmd() function.
+ *
+ * 5. If using DMA for Data input and output transfer,
+ * Activate the needed DMA Requests using CRYP_DMACmd() function
+
+ * 6. If DMA is not used for data transfer, use CRYP_DataIn() and
+ * CRYP_DataOut() functions to enter data to IN FIFO and get result
+ * from OUT FIFO.
+ *
+ * 7. To control CRYP events you can use one of the following
+ * two methods:
+ * - Check on CRYP flags using the CRYP_GetFlagStatus() function.
+ * - Use CRYP interrupts through the function CRYP_ITConfig() at
+ * initialization phase and CRYP_GetITStatus() function into
+ * interrupt routines in processing phase.
+ *
+ * 8. Save and restore Cryptographic processor context using
+ * CRYP_SaveContext() and CRYP_RestoreContext() functions.
+ *
+ *
+ * ===================================================================
+ * Procedure to perform an encryption or a decryption
+ * ===================================================================
+ *
+ * Initialization
+ * ===============
+ * 1. Initialize the peripheral using CRYP_Init(), CRYP_KeyInit() and
+ * CRYP_IVInit functions:
+ * - Configure the key size (128-, 192- or 256-bit, in the AES only)
+ * - Enter the symmetric key
+ * - Configure the data type
+ * - In case of decryption in AES-ECB or AES-CBC, you must prepare
+ * the key: configure the key preparation mode. Then Enable the CRYP
+ * peripheral using CRYP_Cmd() function: the BUSY flag is set.
+ * Wait until BUSY flag is reset : the key is prepared for decryption
+ * - Configure the algorithm and chaining (the DES/TDES in ECB/CBC, the
+ * AES in ECB/CBC/CTR)
+ * - Configure the direction (encryption/decryption).
+ * - Write the initialization vectors (in CBC or CTR modes only)
+ *
+ * 2. Flush the IN and OUT FIFOs using the CRYP_FIFOFlush() function
+ *
+ *
+ * Basic Processing mode (polling mode)
+ * ====================================
+ * 1. Enable the cryptographic processor using CRYP_Cmd() function.
+ *
+ * 2. Write the first blocks in the input FIFO (2 to 8 words) using
+ * CRYP_DataIn() function.
+ *
+ * 3. Repeat the following sequence until the complete message has been
+ * processed:
+ *
+ * a) Wait for flag CRYP_FLAG_OFNE occurs (using CRYP_GetFlagStatus()
+ * function), then read the OUT-FIFO using CRYP_DataOut() function
+ * (1 block or until the FIFO is empty)
+ *
+ * b) Wait for flag CRYP_FLAG_IFNF occurs, (using CRYP_GetFlagStatus()
+ * function then write the IN FIFO using CRYP_DataIn() function
+ * (1 block or until the FIFO is full)
+ *
+ * 4. At the end of the processing, CRYP_FLAG_BUSY flag will be reset and
+ * both FIFOs are empty (CRYP_FLAG_IFEM is set and CRYP_FLAG_OFNE is
+ * reset). You can disable the peripheral using CRYP_Cmd() function.
+ *
+ * Interrupts Processing mode
+ * ===========================
+ * In this mode, Processing is done when the data are transferred by the
+ * CPU during interrupts.
+ *
+ * 1. Enable the interrupts CRYP_IT_INI and CRYP_IT_OUTI using
+ * CRYP_ITConfig() function.
+ *
+ * 2. Enable the cryptographic processor using CRYP_Cmd() function.
+ *
+ * 3. In the CRYP_IT_INI interrupt handler : load the input message into the
+ * IN FIFO using CRYP_DataIn() function . You can load 2 or 4 words at a
+ * time, or load data until the IN FIFO is full. When the last word of
+ * the message has been entered into the IN FIFO, disable the CRYP_IT_INI
+ * interrupt (using CRYP_ITConfig() function).
+ *
+ * 4. In the CRYP_IT_OUTI interrupt handler : read the output message from
+ * the OUT FIFO using CRYP_DataOut() function. You can read 1 block (2 or
+ * 4 words) at a time or read data until the FIFO is empty.
+ * When the last word has been read, INIM=0, BUSY=0 and both FIFOs are
+ * empty (CRYP_FLAG_IFEM is set and CRYP_FLAG_OFNE is reset).
+ * You can disable the CRYP_IT_OUTI interrupt (using CRYP_ITConfig()
+ * function) and you can disable the peripheral using CRYP_Cmd() function.
+ *
+ * DMA Processing mode
+ * ====================
+ * In this mode, Processing is done when the DMA is used to transfer the
+ * data from/to the memory.
+ *
+ * 1. Configure the DMA controller to transfer the input data from the
+ * memory using DMA_Init() function.
+ * The transfer length is the length of the message.
+ * As message padding is not managed by the peripheral, the message
+ * length must be an entire number of blocks. The data are transferred
+ * in burst mode. The burst length is 4 words in the AES and 2 or 4
+ * words in the DES/TDES. The DMA should be configured to set an
+ * interrupt on transfer completion of the output data to indicate that
+ * the processing is finished.
+ * Refer to DMA peripheral driver for more details.
+ *
+ * 2. Enable the cryptographic processor using CRYP_Cmd() function.
+ * Enable the DMA requests CRYP_DMAReq_DataIN and CRYP_DMAReq_DataOUT
+ * using CRYP_DMACmd() function.
+ *
+ * 3. All the transfers and processing are managed by the DMA and the
+ * cryptographic processor. The DMA transfer complete interrupt indicates
+ * that the processing is complete. Both FIFOs are normally empty and
+ * CRYP_FLAG_BUSY flag is reset.
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_cryp.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup CRYP
+ * @brief CRYP driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+#define FLAG_MASK ((uint8_t)0x20)
+#define MAX_TIMEOUT ((uint16_t)0xFFFF)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup CRYP_Private_Functions
+ * @{
+ */
+
+/** @defgroup CRYP_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Initialization and Configuration functions
+ ===============================================================================
+ This section provides functions allowing to
+ - Initialize the cryptographic Processor using CRYP_Init() function
+ - Encrypt or Decrypt
+ - mode : TDES-ECB, TDES-CBC,
+ DES-ECB, DES-CBC,
+ AES-ECB, AES-CBC, AES-CTR, AES-Key
+ - DataType : 32-bit data, 16-bit data, bit data or bit-string
+ - Key Size (only in AES modes)
+ - Configure the Encrypt or Decrypt Key using CRYP_KeyInit() function
+ - Configure the Initialization Vectors(IV) for CBC and CTR modes using
+ CRYP_IVInit() function.
+ - Flushes the IN and OUT FIFOs : using CRYP_FIFOFlush() function.
+ - Enable or disable the CRYP Processor using CRYP_Cmd() function
+
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Deinitializes the CRYP peripheral registers to their default reset values
+ * @param None
+ * @retval None
+ */
+void CRYP_DeInit(void)
+{
+ /* Enable CRYP reset state */
+ RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_CRYP, ENABLE);
+
+ /* Release CRYP from reset state */
+ RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_CRYP, DISABLE);
+}
+
+/**
+ * @brief Initializes the CRYP peripheral according to the specified parameters
+ * in the CRYP_InitStruct.
+ * @param CRYP_InitStruct: pointer to a CRYP_InitTypeDef structure that contains
+ * the configuration information for the CRYP peripheral.
+ * @retval None
+ */
+void CRYP_Init(CRYP_InitTypeDef* CRYP_InitStruct)
+{
+ /* Check the parameters */
+ assert_param(IS_CRYP_ALGOMODE(CRYP_InitStruct->CRYP_AlgoMode));
+ assert_param(IS_CRYP_DATATYPE(CRYP_InitStruct->CRYP_DataType));
+ assert_param(IS_CRYP_ALGODIR(CRYP_InitStruct->CRYP_AlgoDir));
+
+ /* Select Algorithm mode*/
+ CRYP->CR &= ~CRYP_CR_ALGOMODE;
+ CRYP->CR |= CRYP_InitStruct->CRYP_AlgoMode;
+
+ /* Select dataType */
+ CRYP->CR &= ~CRYP_CR_DATATYPE;
+ CRYP->CR |= CRYP_InitStruct->CRYP_DataType;
+
+ /* select Key size (used only with AES algorithm) */
+ if ((CRYP_InitStruct->CRYP_AlgoMode == CRYP_AlgoMode_AES_ECB) ||
+ (CRYP_InitStruct->CRYP_AlgoMode == CRYP_AlgoMode_AES_CBC) ||
+ (CRYP_InitStruct->CRYP_AlgoMode == CRYP_AlgoMode_AES_CTR) ||
+ (CRYP_InitStruct->CRYP_AlgoMode == CRYP_AlgoMode_AES_Key))
+ {
+ assert_param(IS_CRYP_KEYSIZE(CRYP_InitStruct->CRYP_KeySize));
+ CRYP->CR &= ~CRYP_CR_KEYSIZE;
+ CRYP->CR |= CRYP_InitStruct->CRYP_KeySize; /* Key size and value must be
+ configured once the key has
+ been prepared */
+ }
+
+ /* Select data Direction */
+ CRYP->CR &= ~CRYP_CR_ALGODIR;
+ CRYP->CR |= CRYP_InitStruct->CRYP_AlgoDir;
+}
+
+/**
+ * @brief Fills each CRYP_InitStruct member with its default value.
+ * @param CRYP_InitStruct: pointer to a CRYP_InitTypeDef structure which will
+ * be initialized.
+ * @retval None
+ */
+void CRYP_StructInit(CRYP_InitTypeDef* CRYP_InitStruct)
+{
+ /* Initialize the CRYP_AlgoDir member */
+ CRYP_InitStruct->CRYP_AlgoDir = CRYP_AlgoDir_Encrypt;
+
+ /* initialize the CRYP_AlgoMode member */
+ CRYP_InitStruct->CRYP_AlgoMode = CRYP_AlgoMode_TDES_ECB;
+
+ /* initialize the CRYP_DataType member */
+ CRYP_InitStruct->CRYP_DataType = CRYP_DataType_32b;
+
+ /* Initialize the CRYP_KeySize member */
+ CRYP_InitStruct->CRYP_KeySize = CRYP_KeySize_128b;
+}
+
+/**
+ * @brief Initializes the CRYP Keys according to the specified parameters in
+ * the CRYP_KeyInitStruct.
+ * @param CRYP_KeyInitStruct: pointer to a CRYP_KeyInitTypeDef structure that
+ * contains the configuration information for the CRYP Keys.
+ * @retval None
+ */
+void CRYP_KeyInit(CRYP_KeyInitTypeDef* CRYP_KeyInitStruct)
+{
+ /* Key Initialisation */
+ CRYP->K0LR = CRYP_KeyInitStruct->CRYP_Key0Left;
+ CRYP->K0RR = CRYP_KeyInitStruct->CRYP_Key0Right;
+ CRYP->K1LR = CRYP_KeyInitStruct->CRYP_Key1Left;
+ CRYP->K1RR = CRYP_KeyInitStruct->CRYP_Key1Right;
+ CRYP->K2LR = CRYP_KeyInitStruct->CRYP_Key2Left;
+ CRYP->K2RR = CRYP_KeyInitStruct->CRYP_Key2Right;
+ CRYP->K3LR = CRYP_KeyInitStruct->CRYP_Key3Left;
+ CRYP->K3RR = CRYP_KeyInitStruct->CRYP_Key3Right;
+}
+
+/**
+ * @brief Fills each CRYP_KeyInitStruct member with its default value.
+ * @param CRYP_KeyInitStruct: pointer to a CRYP_KeyInitTypeDef structure
+ * which will be initialized.
+ * @retval None
+ */
+void CRYP_KeyStructInit(CRYP_KeyInitTypeDef* CRYP_KeyInitStruct)
+{
+ CRYP_KeyInitStruct->CRYP_Key0Left = 0;
+ CRYP_KeyInitStruct->CRYP_Key0Right = 0;
+ CRYP_KeyInitStruct->CRYP_Key1Left = 0;
+ CRYP_KeyInitStruct->CRYP_Key1Right = 0;
+ CRYP_KeyInitStruct->CRYP_Key2Left = 0;
+ CRYP_KeyInitStruct->CRYP_Key2Right = 0;
+ CRYP_KeyInitStruct->CRYP_Key3Left = 0;
+ CRYP_KeyInitStruct->CRYP_Key3Right = 0;
+}
+/**
+ * @brief Initializes the CRYP Initialization Vectors(IV) according to the
+ * specified parameters in the CRYP_IVInitStruct.
+ * @param CRYP_IVInitStruct: pointer to a CRYP_IVInitTypeDef structure that contains
+ * the configuration information for the CRYP Initialization Vectors(IV).
+ * @retval None
+ */
+void CRYP_IVInit(CRYP_IVInitTypeDef* CRYP_IVInitStruct)
+{
+ CRYP->IV0LR = CRYP_IVInitStruct->CRYP_IV0Left;
+ CRYP->IV0RR = CRYP_IVInitStruct->CRYP_IV0Right;
+ CRYP->IV1LR = CRYP_IVInitStruct->CRYP_IV1Left;
+ CRYP->IV1RR = CRYP_IVInitStruct->CRYP_IV1Right;
+}
+
+/**
+ * @brief Fills each CRYP_IVInitStruct member with its default value.
+ * @param CRYP_IVInitStruct: pointer to a CRYP_IVInitTypeDef Initialization
+ * Vectors(IV) structure which will be initialized.
+ * @retval None
+ */
+void CRYP_IVStructInit(CRYP_IVInitTypeDef* CRYP_IVInitStruct)
+{
+ CRYP_IVInitStruct->CRYP_IV0Left = 0;
+ CRYP_IVInitStruct->CRYP_IV0Right = 0;
+ CRYP_IVInitStruct->CRYP_IV1Left = 0;
+ CRYP_IVInitStruct->CRYP_IV1Right = 0;
+}
+
+/**
+ * @brief Flushes the IN and OUT FIFOs (that is read and write pointers of the
+ * FIFOs are reset)
+ * @note The FIFOs must be flushed only when BUSY flag is reset.
+ * @param None
+ * @retval None
+ */
+void CRYP_FIFOFlush(void)
+{
+ /* Reset the read and write pointers of the FIFOs */
+ CRYP->CR |= CRYP_CR_FFLUSH;
+}
+
+/**
+ * @brief Enables or disables the CRYP peripheral.
+ * @param NewState: new state of the CRYP peripheral.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void CRYP_Cmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the Cryptographic processor */
+ CRYP->CR |= CRYP_CR_CRYPEN;
+ }
+ else
+ {
+ /* Disable the Cryptographic processor */
+ CRYP->CR &= ~CRYP_CR_CRYPEN;
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup CRYP_Group2 CRYP Data processing functions
+ * @brief CRYP Data processing functions
+ *
+@verbatim
+ ===============================================================================
+ CRYP Data processing functions
+ ===============================================================================
+ This section provides functions allowing the encryption and decryption
+ operations:
+ - Enter data to be treated in the IN FIFO : using CRYP_DataIn() function.
+ - Get the data result from the OUT FIFO : using CRYP_DataOut() function.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Writes data in the Data Input register (DIN).
+ * @note After the DIN register has been read once or several times,
+ * the FIFO must be flushed (using CRYP_FIFOFlush() function).
+ * @param Data: data to write in Data Input register
+ * @retval None
+ */
+void CRYP_DataIn(uint32_t Data)
+{
+ CRYP->DR = Data;
+}
+
+/**
+ * @brief Returns the last data entered into the output FIFO.
+ * @param None
+ * @retval Last data entered into the output FIFO.
+ */
+uint32_t CRYP_DataOut(void)
+{
+ return CRYP->DOUT;
+}
+/**
+ * @}
+ */
+
+/** @defgroup CRYP_Group3 Context swapping functions
+ * @brief Context swapping functions
+ *
+@verbatim
+ ===============================================================================
+ Context swapping functions
+ ===============================================================================
+
+ This section provides functions allowing to save and store CRYP Context
+
+ It is possible to interrupt an encryption/ decryption/ key generation process
+ to perform another processing with a higher priority, and to complete the
+ interrupted process later on, when the higher-priority task is complete. To do
+ so, the context of the interrupted task must be saved from the CRYP registers
+ to memory, and then be restored from memory to the CRYP registers.
+
+ 1. To save the current context, use CRYP_SaveContext() function
+ 2. To restore the saved context, use CRYP_RestoreContext() function
+
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Saves the CRYP peripheral Context.
+ * @note This function stops DMA transfer before to save the context. After
+ * restoring the context, you have to enable the DMA again (if the DMA
+ * was previously used).
+ * @param CRYP_ContextSave: pointer to a CRYP_Context structure that contains
+ * the repository for current context.
+ * @param CRYP_KeyInitStruct: pointer to a CRYP_KeyInitTypeDef structure that
+ * contains the configuration information for the CRYP Keys.
+ * @retval None
+ */
+ErrorStatus CRYP_SaveContext(CRYP_Context* CRYP_ContextSave,
+ CRYP_KeyInitTypeDef* CRYP_KeyInitStruct)
+{
+ __IO uint32_t timeout = 0;
+ uint32_t ckeckmask = 0, bitstatus;
+ ErrorStatus status = ERROR;
+
+ /* Stop DMA transfers on the IN FIFO by clearing the DIEN bit in the CRYP_DMACR */
+ CRYP->DMACR &= ~(uint32_t)CRYP_DMACR_DIEN;
+
+ /* Wait until both the IN and OUT FIFOs are empty
+ (IFEM=1 and OFNE=0 in the CRYP_SR register) and the
+ BUSY bit is cleared. */
+
+ if ((CRYP->CR & (uint32_t)(CRYP_CR_ALGOMODE_TDES_ECB | CRYP_CR_ALGOMODE_TDES_CBC)) != (uint32_t)0 )/* TDES */
+ {
+ ckeckmask = CRYP_SR_IFEM | CRYP_SR_BUSY ;
+ }
+ else /* AES or DES */
+ {
+ ckeckmask = CRYP_SR_IFEM | CRYP_SR_BUSY | CRYP_SR_OFNE;
+ }
+
+ do
+ {
+ bitstatus = CRYP->SR & ckeckmask;
+ timeout++;
+ }
+ while ((timeout != MAX_TIMEOUT) && (bitstatus != CRYP_SR_IFEM));
+
+ if ((CRYP->SR & ckeckmask) != CRYP_SR_IFEM)
+ {
+ status = ERROR;
+ }
+ else
+ {
+ /* Stop DMA transfers on the OUT FIFO by
+ - writing the DOEN bit to 0 in the CRYP_DMACR register
+ - and clear the CRYPEN bit. */
+
+ CRYP->DMACR &= ~(uint32_t)CRYP_DMACR_DOEN;
+ CRYP->CR &= ~(uint32_t)CRYP_CR_CRYPEN;
+
+ /* Save the current configuration (bits [9:2] in the CRYP_CR register) */
+ CRYP_ContextSave->CR_bits9to2 = CRYP->CR & (CRYP_CR_KEYSIZE |
+ CRYP_CR_DATATYPE |
+ CRYP_CR_ALGOMODE |
+ CRYP_CR_ALGODIR);
+
+ /* and, if not in ECB mode, the initialization vectors. */
+ CRYP_ContextSave->CRYP_IV0LR = CRYP->IV0LR;
+ CRYP_ContextSave->CRYP_IV0RR = CRYP->IV0RR;
+ CRYP_ContextSave->CRYP_IV1LR = CRYP->IV1LR;
+ CRYP_ContextSave->CRYP_IV1RR = CRYP->IV1RR;
+
+ /* save The key value */
+ CRYP_ContextSave->CRYP_K0LR = CRYP_KeyInitStruct->CRYP_Key0Left;
+ CRYP_ContextSave->CRYP_K0RR = CRYP_KeyInitStruct->CRYP_Key0Right;
+ CRYP_ContextSave->CRYP_K1LR = CRYP_KeyInitStruct->CRYP_Key1Left;
+ CRYP_ContextSave->CRYP_K1RR = CRYP_KeyInitStruct->CRYP_Key1Right;
+ CRYP_ContextSave->CRYP_K2LR = CRYP_KeyInitStruct->CRYP_Key2Left;
+ CRYP_ContextSave->CRYP_K2RR = CRYP_KeyInitStruct->CRYP_Key2Right;
+ CRYP_ContextSave->CRYP_K3LR = CRYP_KeyInitStruct->CRYP_Key3Left;
+ CRYP_ContextSave->CRYP_K3RR = CRYP_KeyInitStruct->CRYP_Key3Right;
+
+ /* When needed, save the DMA status (pointers for IN and OUT messages,
+ number of remaining bytes, etc.) */
+
+ status = SUCCESS;
+ }
+
+ return status;
+}
+
+/**
+ * @brief Restores the CRYP peripheral Context.
+ * @note Since teh DMA transfer is stopped in CRYP_SaveContext() function,
+ * after restoring the context, you have to enable the DMA again (if the
+ * DMA was previously used).
+ * @param CRYP_ContextRestore: pointer to a CRYP_Context structure that contains
+ * the repository for saved context.
+ * @note The data that were saved during context saving must be rewrited into
+ * the IN FIFO.
+ * @retval None
+ */
+void CRYP_RestoreContext(CRYP_Context* CRYP_ContextRestore)
+{
+
+ /* Configure the processor with the saved configuration */
+ CRYP->CR = CRYP_ContextRestore->CR_bits9to2;
+
+ /* restore The key value */
+ CRYP->K0LR = CRYP_ContextRestore->CRYP_K0LR;
+ CRYP->K0RR = CRYP_ContextRestore->CRYP_K0RR;
+ CRYP->K1LR = CRYP_ContextRestore->CRYP_K1LR;
+ CRYP->K1RR = CRYP_ContextRestore->CRYP_K1RR;
+ CRYP->K2LR = CRYP_ContextRestore->CRYP_K2LR;
+ CRYP->K2RR = CRYP_ContextRestore->CRYP_K2RR;
+ CRYP->K3LR = CRYP_ContextRestore->CRYP_K3LR;
+ CRYP->K3RR = CRYP_ContextRestore->CRYP_K3RR;
+
+ /* and the initialization vectors. */
+ CRYP->IV0LR = CRYP_ContextRestore->CRYP_IV0LR;
+ CRYP->IV0RR = CRYP_ContextRestore->CRYP_IV0RR;
+ CRYP->IV1LR = CRYP_ContextRestore->CRYP_IV1LR;
+ CRYP->IV1RR = CRYP_ContextRestore->CRYP_IV1RR;
+
+ /* Enable the cryptographic processor */
+ CRYP->CR |= CRYP_CR_CRYPEN;
+}
+/**
+ * @}
+ */
+
+/** @defgroup CRYP_Group4 CRYP's DMA interface Configuration function
+ * @brief CRYP's DMA interface Configuration function
+ *
+@verbatim
+ ===============================================================================
+ CRYP's DMA interface Configuration function
+ ===============================================================================
+
+ This section provides functions allowing to configure the DMA interface for
+ CRYP data input and output transfer.
+
+ When the DMA mode is enabled (using the CRYP_DMACmd() function), data can be
+ transferred:
+ - From memory to the CRYP IN FIFO using the DMA peripheral by enabling
+ the CRYP_DMAReq_DataIN request.
+ - From the CRYP OUT FIFO to the memory using the DMA peripheral by enabling
+ the CRYP_DMAReq_DataOUT request.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the CRYP DMA interface.
+ * @param CRYP_DMAReq: specifies the CRYP DMA transfer request to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg CRYP_DMAReq_DataOUT: DMA for outgoing(Tx) data transfer
+ * @arg CRYP_DMAReq_DataIN: DMA for incoming(Rx) data transfer
+ * @param NewState: new state of the selected CRYP DMA transfer request.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void CRYP_DMACmd(uint8_t CRYP_DMAReq, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_CRYP_DMAREQ(CRYP_DMAReq));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected CRYP DMA request */
+ CRYP->DMACR |= CRYP_DMAReq;
+ }
+ else
+ {
+ /* Disable the selected CRYP DMA request */
+ CRYP->DMACR &= (uint8_t)~CRYP_DMAReq;
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup CRYP_Group5 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts and flags management functions
+ ===============================================================================
+
+ This section provides functions allowing to configure the CRYP Interrupts and
+ to get the status and Interrupts pending bits.
+
+ The CRYP provides 2 Interrupts sources and 7 Flags:
+
+ Flags :
+ -------
+
+ 1. CRYP_FLAG_IFEM : Set when Input FIFO is empty.
+ This Flag is cleared only by hardware.
+
+ 2. CRYP_FLAG_IFNF : Set when Input FIFO is not full.
+ This Flag is cleared only by hardware.
+
+
+ 3. CRYP_FLAG_INRIS : Set when Input FIFO Raw interrupt is pending
+ it gives the raw interrupt state prior to masking
+ of the input FIFO service interrupt.
+ This Flag is cleared only by hardware.
+
+ 4. CRYP_FLAG_OFNE : Set when Output FIFO not empty.
+ This Flag is cleared only by hardware.
+
+ 5. CRYP_FLAG_OFFU : Set when Output FIFO is full.
+ This Flag is cleared only by hardware.
+
+ 6. CRYP_FLAG_OUTRIS : Set when Output FIFO Raw interrupt is pending
+ it gives the raw interrupt state prior to masking
+ of the output FIFO service interrupt.
+ This Flag is cleared only by hardware.
+
+ 7. CRYP_FLAG_BUSY : Set when the CRYP core is currently processing a
+ block of data or a key preparation (for AES
+ decryption).
+ This Flag is cleared only by hardware.
+ To clear it, the CRYP core must be disabled and the
+ last processing has completed.
+
+ Interrupts :
+ ------------
+
+ 1. CRYP_IT_INI : The input FIFO service interrupt is asserted when there
+ are less than 4 words in the input FIFO.
+ This interrupt is associated to CRYP_FLAG_INRIS flag.
+
+ @note This interrupt is cleared by performing write operations
+ to the input FIFO until it holds 4 or more words. The
+ input FIFO service interrupt INMIS is enabled with the
+ CRYP enable bit. Consequently, when CRYP is disabled, the
+ INMIS signal is low even if the input FIFO is empty.
+
+
+
+ 2. CRYP_IT_OUTI : The output FIFO service interrupt is asserted when there
+ is one or more (32-bit word) data items in the output FIFO.
+ This interrupt is associated to CRYP_FLAG_OUTRIS flag.
+
+ @note This interrupt is cleared by reading data from the output
+ FIFO until there is no valid (32-bit) word left (that is,
+ the interrupt follows the state of the OFNE (output FIFO
+ not empty) flag).
+
+
+ Managing the CRYP controller events :
+ ------------------------------------
+ The user should identify which mode will be used in his application to manage
+ the CRYP controller events: Polling mode or Interrupt mode.
+
+ 1. In the Polling Mode it is advised to use the following functions:
+ - CRYP_GetFlagStatus() : to check if flags events occur.
+
+ @note The CRYPT flags do not need to be cleared since they are cleared as
+ soon as the associated event are reset.
+
+
+ 2. In the Interrupt Mode it is advised to use the following functions:
+ - CRYP_ITConfig() : to enable or disable the interrupt source.
+ - CRYP_GetITStatus() : to check if Interrupt occurs.
+
+ @note The CRYPT interrupts have no pending bits, the interrupt is cleared as
+ soon as the associated event is reset.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified CRYP interrupts.
+ * @param CRYP_IT: specifies the CRYP interrupt source to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg CRYP_IT_INI: Input FIFO interrupt
+ * @arg CRYP_IT_OUTI: Output FIFO interrupt
+ * @param NewState: new state of the specified CRYP interrupt.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void CRYP_ITConfig(uint8_t CRYP_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_CRYP_CONFIG_IT(CRYP_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected CRYP interrupt */
+ CRYP->IMSCR |= CRYP_IT;
+ }
+ else
+ {
+ /* Disable the selected CRYP interrupt */
+ CRYP->IMSCR &= (uint8_t)~CRYP_IT;
+ }
+}
+
+/**
+ * @brief Checks whether the specified CRYP interrupt has occurred or not.
+ * @note This function checks the status of the masked interrupt (i.e the
+ * interrupt should be previously enabled).
+ * @param CRYP_IT: specifies the CRYP (masked) interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg CRYP_IT_INI: Input FIFO interrupt
+ * @arg CRYP_IT_OUTI: Output FIFO interrupt
+ * @retval The new state of CRYP_IT (SET or RESET).
+ */
+ITStatus CRYP_GetITStatus(uint8_t CRYP_IT)
+{
+ ITStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_CRYP_GET_IT(CRYP_IT));
+
+ /* Check the status of the specified CRYP interrupt */
+ if ((CRYP->MISR & CRYP_IT) != (uint8_t)RESET)
+ {
+ /* CRYP_IT is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* CRYP_IT is reset */
+ bitstatus = RESET;
+ }
+ /* Return the CRYP_IT status */
+ return bitstatus;
+}
+
+/**
+ * @brief Checks whether the specified CRYP flag is set or not.
+ * @param CRYP_FLAG: specifies the CRYP flag to check.
+ * This parameter can be one of the following values:
+ * @arg CRYP_FLAG_IFEM: Input FIFO Empty flag.
+ * @arg CRYP_FLAG_IFNF: Input FIFO Not Full flag.
+ * @arg CRYP_FLAG_OFNE: Output FIFO Not Empty flag.
+ * @arg CRYP_FLAG_OFFU: Output FIFO Full flag.
+ * @arg CRYP_FLAG_BUSY: Busy flag.
+ * @arg CRYP_FLAG_OUTRIS: Output FIFO raw interrupt flag.
+ * @arg CRYP_FLAG_INRIS: Input FIFO raw interrupt flag.
+ * @retval The new state of CRYP_FLAG (SET or RESET).
+ */
+FlagStatus CRYP_GetFlagStatus(uint8_t CRYP_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ uint32_t tempreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_CRYP_GET_FLAG(CRYP_FLAG));
+
+ /* check if the FLAG is in RISR register */
+ if ((CRYP_FLAG & FLAG_MASK) != 0x00)
+ {
+ tempreg = CRYP->RISR;
+ }
+ else /* The FLAG is in SR register */
+ {
+ tempreg = CRYP->SR;
+ }
+
+
+ /* Check the status of the specified CRYP flag */
+ if ((tempreg & CRYP_FLAG ) != (uint8_t)RESET)
+ {
+ /* CRYP_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* CRYP_FLAG is reset */
+ bitstatus = RESET;
+ }
+
+ /* Return the CRYP_FLAG status */
+ return bitstatus;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_cryp_aes.c b/TimerCounter/SPL/src/stm32f4xx_cryp_aes.c
new file mode 100644
index 0000000..2866809
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_cryp_aes.c
@@ -0,0 +1,638 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_cryp_aes.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides high level functions to encrypt and decrypt an
+ * input message using AES in ECB/CBC/CTR modes.
+ * It uses the stm32f4xx_cryp.c/.h drivers to access the STM32F4xx CRYP
+ * peripheral.
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ * 1. Enable The CRYP controller clock using
+ * RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_CRYP, ENABLE); function.
+ *
+ * 2. Encrypt and decrypt using AES in ECB Mode using CRYP_AES_ECB()
+ * function.
+ *
+ * 3. Encrypt and decrypt using AES in CBC Mode using CRYP_AES_CBC()
+ * function.
+ *
+ * 4. Encrypt and decrypt using AES in CTR Mode using CRYP_AES_CTR()
+ * function.
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_dbgmcu.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup DBGMCU
+ * @brief DBGMCU driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+#define IDCODE_DEVID_MASK ((uint32_t)0x00000FFF)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup DBGMCU_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief Returns the device revision identifier.
+ * @param None
+ * @retval Device revision identifier
+ */
+uint32_t DBGMCU_GetREVID(void)
+{
+ return(DBGMCU->IDCODE >> 16);
+}
+
+/**
+ * @brief Returns the device identifier.
+ * @param None
+ * @retval Device identifier
+ */
+uint32_t DBGMCU_GetDEVID(void)
+{
+ return(DBGMCU->IDCODE & IDCODE_DEVID_MASK);
+}
+
+/**
+ * @brief Configures low power mode behavior when the MCU is in Debug mode.
+ * @param DBGMCU_Periph: specifies the low power mode.
+ * This parameter can be any combination of the following values:
+ * @arg DBGMCU_SLEEP: Keep debugger connection during SLEEP mode
+ * @arg DBGMCU_STOP: Keep debugger connection during STOP mode
+ * @arg DBGMCU_STANDBY: Keep debugger connection during STANDBY mode
+ * @param NewState: new state of the specified low power mode in Debug mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DBGMCU_Config(uint32_t DBGMCU_Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DBGMCU_PERIPH(DBGMCU_Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ DBGMCU->CR |= DBGMCU_Periph;
+ }
+ else
+ {
+ DBGMCU->CR &= ~DBGMCU_Periph;
+ }
+}
+
+/**
+ * @brief Configures APB1 peripheral behavior when the MCU is in Debug mode.
+ * @param DBGMCU_Periph: specifies the APB1 peripheral.
+ * This parameter can be any combination of the following values:
+ * @arg DBGMCU_TIM2_STOP: TIM2 counter stopped when Core is halted
+ * @arg DBGMCU_TIM3_STOP: TIM3 counter stopped when Core is halted
+ * @arg DBGMCU_TIM4_STOP: TIM4 counter stopped when Core is halted
+ * @arg DBGMCU_TIM5_STOP: TIM5 counter stopped when Core is halted
+ * @arg DBGMCU_TIM6_STOP: TIM6 counter stopped when Core is halted
+ * @arg DBGMCU_TIM7_STOP: TIM7 counter stopped when Core is halted
+ * @arg DBGMCU_TIM12_STOP: TIM12 counter stopped when Core is halted
+ * @arg DBGMCU_TIM13_STOP: TIM13 counter stopped when Core is halted
+ * @arg DBGMCU_TIM14_STOP: TIM14 counter stopped when Core is halted
+ * @arg DBGMCU_RTC_STOP: RTC Calendar and Wakeup counter stopped when Core is halted.
+ * @arg DBGMCU_WWDG_STOP: Debug WWDG stopped when Core is halted
+ * @arg DBGMCU_IWDG_STOP: Debug IWDG stopped when Core is halted
+ * @arg DBGMCU_I2C1_SMBUS_TIMEOUT: I2C1 SMBUS timeout mode stopped when Core is halted
+ * @arg DBGMCU_I2C2_SMBUS_TIMEOUT: I2C2 SMBUS timeout mode stopped when Core is halted
+ * @arg DBGMCU_I2C3_SMBUS_TIMEOUT: I2C3 SMBUS timeout mode stopped when Core is halted
+ * @arg DBGMCU_CAN2_STOP: Debug CAN1 stopped when Core is halted
+ * @arg DBGMCU_CAN1_STOP: Debug CAN2 stopped when Core is halted
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DBGMCU_APB1PeriphConfig(uint32_t DBGMCU_Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DBGMCU_APB1PERIPH(DBGMCU_Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ DBGMCU->APB1FZ |= DBGMCU_Periph;
+ }
+ else
+ {
+ DBGMCU->APB1FZ &= ~DBGMCU_Periph;
+ }
+}
+
+/**
+ * @brief Configures APB2 peripheral behavior when the MCU is in Debug mode.
+ * @param DBGMCU_Periph: specifies the APB2 peripheral.
+ * This parameter can be any combination of the following values:
+ * @arg DBGMCU_TIM1_STOP: TIM1 counter stopped when Core is halted
+ * @arg DBGMCU_TIM8_STOP: TIM8 counter stopped when Core is halted
+ * @arg DBGMCU_TIM9_STOP: TIM9 counter stopped when Core is halted
+ * @arg DBGMCU_TIM10_STOP: TIM10 counter stopped when Core is halted
+ * @arg DBGMCU_TIM11_STOP: TIM11 counter stopped when Core is halted
+ * @param NewState: new state of the specified peripheral in Debug mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DBGMCU_APB2PeriphConfig(uint32_t DBGMCU_Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DBGMCU_APB2PERIPH(DBGMCU_Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ DBGMCU->APB2FZ |= DBGMCU_Periph;
+ }
+ else
+ {
+ DBGMCU->APB2FZ &= ~DBGMCU_Periph;
+ }
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_dcmi.c b/TimerCounter/SPL/src/stm32f4xx_dcmi.c
new file mode 100644
index 0000000..3ffc36d
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_dcmi.c
@@ -0,0 +1,534 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_dcmi.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the DCMI peripheral:
+ * - Initialization and Configuration
+ * - Image capture functions
+ * - Interrupts and flags management
+ *
+ * @verbatim
+ *
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ *
+ * The sequence below describes how to use this driver to capture image
+ * from a camera module connected to the DCMI Interface.
+ * This sequence does not take into account the configuration of the
+ * camera module, which should be made before to configure and enable
+ * the DCMI to capture images.
+ *
+ * 1. Enable the clock for the DCMI and associated GPIOs using the following functions:
+ * RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_DCMI, ENABLE);
+ * RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
+ *
+ * 2. DCMI pins configuration
+ * - Connect the involved DCMI pins to AF13 using the following function
+ * GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_DCMI);
+ * - Configure these DCMI pins in alternate function mode by calling the function
+ * GPIO_Init();
+ *
+ * 3. Declare a DCMI_InitTypeDef structure, for example:
+ * DCMI_InitTypeDef DCMI_InitStructure;
+ * and fill the DCMI_InitStructure variable with the allowed values
+ * of the structure member.
+ *
+ * 4. Initialize the DCMI interface by calling the function
+ * DCMI_Init(&DCMI_InitStructure);
+ *
+ * 5. Configure the DMA2_Stream1 channel1 to transfer Data from DCMI DR
+ * register to the destination memory buffer.
+ *
+ * 6. Enable DCMI interface using the function
+ * DCMI_Cmd(ENABLE);
+ *
+ * 7. Start the image capture using the function
+ * DCMI_CaptureCmd(ENABLE);
+ *
+ * 8. At this stage the DCMI interface waits for the first start of frame,
+ * then a DMA request is generated continuously/once (depending on the
+ * mode used, Continuous/Snapshot) to transfer the received data into
+ * the destination memory.
+ *
+ * @note If you need to capture only a rectangular window from the received
+ * image, you have to use the DCMI_CROPConfig() function to configure
+ * the coordinates and size of the window to be captured, then enable
+ * the Crop feature using DCMI_CROPCmd(ENABLE);
+ * In this case, the Crop configuration should be made before to enable
+ * and start the DCMI interface.
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_dcmi.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup DCMI
+ * @brief DCMI driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup DCMI_Private_Functions
+ * @{
+ */
+
+/** @defgroup DCMI_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Initialization and Configuration functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the DCMI registers to their default reset values.
+ * @param None
+ * @retval None
+ */
+void DCMI_DeInit(void)
+{
+ DCMI->CR = 0x0;
+ DCMI->IER = 0x0;
+ DCMI->ICR = 0x1F;
+ DCMI->ESCR = 0x0;
+ DCMI->ESUR = 0x0;
+ DCMI->CWSTRTR = 0x0;
+ DCMI->CWSIZER = 0x0;
+}
+
+/**
+ * @brief Initializes the DCMI according to the specified parameters in the DCMI_InitStruct.
+ * @param DCMI_InitStruct: pointer to a DCMI_InitTypeDef structure that contains
+ * the configuration information for the DCMI.
+ * @retval None
+ */
+void DCMI_Init(DCMI_InitTypeDef* DCMI_InitStruct)
+{
+ uint32_t temp = 0x0;
+
+ /* Check the parameters */
+ assert_param(IS_DCMI_CAPTURE_MODE(DCMI_InitStruct->DCMI_CaptureMode));
+ assert_param(IS_DCMI_SYNCHRO(DCMI_InitStruct->DCMI_SynchroMode));
+ assert_param(IS_DCMI_PCKPOLARITY(DCMI_InitStruct->DCMI_PCKPolarity));
+ assert_param(IS_DCMI_VSPOLARITY(DCMI_InitStruct->DCMI_VSPolarity));
+ assert_param(IS_DCMI_HSPOLARITY(DCMI_InitStruct->DCMI_HSPolarity));
+ assert_param(IS_DCMI_CAPTURE_RATE(DCMI_InitStruct->DCMI_CaptureRate));
+ assert_param(IS_DCMI_EXTENDED_DATA(DCMI_InitStruct->DCMI_ExtendedDataMode));
+
+ /* The DCMI configuration registers should be programmed correctly before
+ enabling the CR_ENABLE Bit and the CR_CAPTURE Bit */
+ DCMI->CR &= ~(DCMI_CR_ENABLE | DCMI_CR_CAPTURE);
+
+ /* Reset the old DCMI configuration */
+ temp = DCMI->CR;
+
+ temp &= ~((uint32_t)DCMI_CR_CM | DCMI_CR_ESS | DCMI_CR_PCKPOL |
+ DCMI_CR_HSPOL | DCMI_CR_VSPOL | DCMI_CR_FCRC_0 |
+ DCMI_CR_FCRC_1 | DCMI_CR_EDM_0 | DCMI_CR_EDM_1);
+
+ /* Sets the new configuration of the DCMI peripheral */
+ temp |= ((uint32_t)DCMI_InitStruct->DCMI_CaptureMode |
+ DCMI_InitStruct->DCMI_SynchroMode |
+ DCMI_InitStruct->DCMI_PCKPolarity |
+ DCMI_InitStruct->DCMI_VSPolarity |
+ DCMI_InitStruct->DCMI_HSPolarity |
+ DCMI_InitStruct->DCMI_CaptureRate |
+ DCMI_InitStruct->DCMI_ExtendedDataMode);
+
+ DCMI->CR = temp;
+}
+
+/**
+ * @brief Fills each DCMI_InitStruct member with its default value.
+ * @param DCMI_InitStruct : pointer to a DCMI_InitTypeDef structure which will
+ * be initialized.
+ * @retval None
+ */
+void DCMI_StructInit(DCMI_InitTypeDef* DCMI_InitStruct)
+{
+ /* Set the default configuration */
+ DCMI_InitStruct->DCMI_CaptureMode = DCMI_CaptureMode_Continuous;
+ DCMI_InitStruct->DCMI_SynchroMode = DCMI_SynchroMode_Hardware;
+ DCMI_InitStruct->DCMI_PCKPolarity = DCMI_PCKPolarity_Falling;
+ DCMI_InitStruct->DCMI_VSPolarity = DCMI_VSPolarity_Low;
+ DCMI_InitStruct->DCMI_HSPolarity = DCMI_HSPolarity_Low;
+ DCMI_InitStruct->DCMI_CaptureRate = DCMI_CaptureRate_All_Frame;
+ DCMI_InitStruct->DCMI_ExtendedDataMode = DCMI_ExtendedDataMode_8b;
+}
+
+/**
+ * @brief Initializes the DCMI peripheral CROP mode according to the specified
+ * parameters in the DCMI_CROPInitStruct.
+ * @note This function should be called before to enable and start the DCMI interface.
+ * @param DCMI_CROPInitStruct: pointer to a DCMI_CROPInitTypeDef structure that
+ * contains the configuration information for the DCMI peripheral CROP mode.
+ * @retval None
+ */
+void DCMI_CROPConfig(DCMI_CROPInitTypeDef* DCMI_CROPInitStruct)
+{
+ /* Sets the CROP window coordinates */
+ DCMI->CWSTRTR = (uint32_t)((uint32_t)DCMI_CROPInitStruct->DCMI_HorizontalOffsetCount |
+ ((uint32_t)DCMI_CROPInitStruct->DCMI_VerticalStartLine << 16));
+
+ /* Sets the CROP window size */
+ DCMI->CWSIZER = (uint32_t)(DCMI_CROPInitStruct->DCMI_CaptureCount |
+ ((uint32_t)DCMI_CROPInitStruct->DCMI_VerticalLineCount << 16));
+}
+
+/**
+ * @brief Enables or disables the DCMI Crop feature.
+ * @note This function should be called before to enable and start the DCMI interface.
+ * @param NewState: new state of the DCMI Crop feature.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DCMI_CROPCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the DCMI Crop feature */
+ DCMI->CR |= (uint32_t)DCMI_CR_CROP;
+ }
+ else
+ {
+ /* Disable the DCMI Crop feature */
+ DCMI->CR &= ~(uint32_t)DCMI_CR_CROP;
+ }
+}
+
+/**
+ * @brief Sets the embedded synchronization codes
+ * @param DCMI_CodesInitTypeDef: pointer to a DCMI_CodesInitTypeDef structure that
+ * contains the embedded synchronization codes for the DCMI peripheral.
+ * @retval None
+ */
+void DCMI_SetEmbeddedSynchroCodes(DCMI_CodesInitTypeDef* DCMI_CodesInitStruct)
+{
+ DCMI->ESCR = (uint32_t)(DCMI_CodesInitStruct->DCMI_FrameStartCode |
+ ((uint32_t)DCMI_CodesInitStruct->DCMI_LineStartCode << 8)|
+ ((uint32_t)DCMI_CodesInitStruct->DCMI_LineEndCode << 16)|
+ ((uint32_t)DCMI_CodesInitStruct->DCMI_FrameEndCode << 24));
+}
+
+/**
+ * @brief Enables or disables the DCMI JPEG format.
+ * @note The Crop and Embedded Synchronization features cannot be used in this mode.
+ * @param NewState: new state of the DCMI JPEG format.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DCMI_JPEGCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the DCMI JPEG format */
+ DCMI->CR |= (uint32_t)DCMI_CR_JPEG;
+ }
+ else
+ {
+ /* Disable the DCMI JPEG format */
+ DCMI->CR &= ~(uint32_t)DCMI_CR_JPEG;
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup DCMI_Group2 Image capture functions
+ * @brief Image capture functions
+ *
+@verbatim
+ ===============================================================================
+ Image capture functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the DCMI interface.
+ * @param NewState: new state of the DCMI interface.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DCMI_Cmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the DCMI by setting ENABLE bit */
+ DCMI->CR |= (uint32_t)DCMI_CR_ENABLE;
+ }
+ else
+ {
+ /* Disable the DCMI by clearing ENABLE bit */
+ DCMI->CR &= ~(uint32_t)DCMI_CR_ENABLE;
+ }
+}
+
+/**
+ * @brief Enables or disables the DCMI Capture.
+ * @param NewState: new state of the DCMI capture.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DCMI_CaptureCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the DCMI Capture */
+ DCMI->CR |= (uint32_t)DCMI_CR_CAPTURE;
+ }
+ else
+ {
+ /* Disable the DCMI Capture */
+ DCMI->CR &= ~(uint32_t)DCMI_CR_CAPTURE;
+ }
+}
+
+/**
+ * @brief Reads the data stored in the DR register.
+ * @param None
+ * @retval Data register value
+ */
+uint32_t DCMI_ReadData(void)
+{
+ return DCMI->DR;
+}
+/**
+ * @}
+ */
+
+/** @defgroup DCMI_Group3 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts and flags management functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the DCMI interface interrupts.
+ * @param DCMI_IT: specifies the DCMI interrupt sources to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg DCMI_IT_FRAME: Frame capture complete interrupt mask
+ * @arg DCMI_IT_OVF: Overflow interrupt mask
+ * @arg DCMI_IT_ERR: Synchronization error interrupt mask
+ * @arg DCMI_IT_VSYNC: VSYNC interrupt mask
+ * @arg DCMI_IT_LINE: Line interrupt mask
+ * @param NewState: new state of the specified DCMI interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DCMI_ITConfig(uint16_t DCMI_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DCMI_CONFIG_IT(DCMI_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the Interrupt sources */
+ DCMI->IER |= DCMI_IT;
+ }
+ else
+ {
+ /* Disable the Interrupt sources */
+ DCMI->IER &= (uint16_t)(~DCMI_IT);
+ }
+}
+
+/**
+ * @brief Checks whether the DCMI interface flag is set or not.
+ * @param DCMI_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg DCMI_FLAG_FRAMERI: Frame capture complete Raw flag mask
+ * @arg DCMI_FLAG_OVFRI: Overflow Raw flag mask
+ * @arg DCMI_FLAG_ERRRI: Synchronization error Raw flag mask
+ * @arg DCMI_FLAG_VSYNCRI: VSYNC Raw flag mask
+ * @arg DCMI_FLAG_LINERI: Line Raw flag mask
+ * @arg DCMI_FLAG_FRAMEMI: Frame capture complete Masked flag mask
+ * @arg DCMI_FLAG_OVFMI: Overflow Masked flag mask
+ * @arg DCMI_FLAG_ERRMI: Synchronization error Masked flag mask
+ * @arg DCMI_FLAG_VSYNCMI: VSYNC Masked flag mask
+ * @arg DCMI_FLAG_LINEMI: Line Masked flag mask
+ * @arg DCMI_FLAG_HSYNC: HSYNC flag mask
+ * @arg DCMI_FLAG_VSYNC: VSYNC flag mask
+ * @arg DCMI_FLAG_FNE: Fifo not empty flag mask
+ * @retval The new state of DCMI_FLAG (SET or RESET).
+ */
+FlagStatus DCMI_GetFlagStatus(uint16_t DCMI_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ uint32_t dcmireg, tempreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DCMI_GET_FLAG(DCMI_FLAG));
+
+ /* Get the DCMI register index */
+ dcmireg = (((uint16_t)DCMI_FLAG) >> 12);
+
+ if (dcmireg == 0x01) /* The FLAG is in RISR register */
+ {
+ tempreg= DCMI->RISR;
+ }
+ else if (dcmireg == 0x02) /* The FLAG is in SR register */
+ {
+ tempreg = DCMI->SR;
+ }
+ else /* The FLAG is in MISR register */
+ {
+ tempreg = DCMI->MISR;
+ }
+
+ if ((tempreg & DCMI_FLAG) != (uint16_t)RESET )
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ /* Return the DCMI_FLAG status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the DCMI's pending flags.
+ * @param DCMI_FLAG: specifies the flag to clear.
+ * This parameter can be any combination of the following values:
+ * @arg DCMI_FLAG_FRAMERI: Frame capture complete Raw flag mask
+ * @arg DCMI_FLAG_OVFRI: Overflow Raw flag mask
+ * @arg DCMI_FLAG_ERRRI: Synchronization error Raw flag mask
+ * @arg DCMI_FLAG_VSYNCRI: VSYNC Raw flag mask
+ * @arg DCMI_FLAG_LINERI: Line Raw flag mask
+ * @retval None
+ */
+void DCMI_ClearFlag(uint16_t DCMI_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_DCMI_CLEAR_FLAG(DCMI_FLAG));
+
+ /* Clear the flag by writing in the ICR register 1 in the corresponding
+ Flag position*/
+
+ DCMI->ICR = DCMI_FLAG;
+}
+
+/**
+ * @brief Checks whether the DCMI interrupt has occurred or not.
+ * @param DCMI_IT: specifies the DCMI interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg DCMI_IT_FRAME: Frame capture complete interrupt mask
+ * @arg DCMI_IT_OVF: Overflow interrupt mask
+ * @arg DCMI_IT_ERR: Synchronization error interrupt mask
+ * @arg DCMI_IT_VSYNC: VSYNC interrupt mask
+ * @arg DCMI_IT_LINE: Line interrupt mask
+ * @retval The new state of DCMI_IT (SET or RESET).
+ */
+ITStatus DCMI_GetITStatus(uint16_t DCMI_IT)
+{
+ ITStatus bitstatus = RESET;
+ uint32_t itstatus = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DCMI_GET_IT(DCMI_IT));
+
+ itstatus = DCMI->MISR & DCMI_IT; /* Only masked interrupts are checked */
+
+ if ((itstatus != (uint16_t)RESET))
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the DCMI's interrupt pending bits.
+ * @param DCMI_IT: specifies the DCMI interrupt pending bit to clear.
+ * This parameter can be any combination of the following values:
+ * @arg DCMI_IT_FRAME: Frame capture complete interrupt mask
+ * @arg DCMI_IT_OVF: Overflow interrupt mask
+ * @arg DCMI_IT_ERR: Synchronization error interrupt mask
+ * @arg DCMI_IT_VSYNC: VSYNC interrupt mask
+ * @arg DCMI_IT_LINE: Line interrupt mask
+ * @retval None
+ */
+void DCMI_ClearITPendingBit(uint16_t DCMI_IT)
+{
+ /* Clear the interrupt pending Bit by writing in the ICR register 1 in the
+ corresponding pending Bit position*/
+
+ DCMI->ICR = DCMI_IT;
+}
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_dma.c b/TimerCounter/SPL/src/stm32f4xx_dma.c
new file mode 100644
index 0000000..c2868cf
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_dma.c
@@ -0,0 +1,1283 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_dma.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Direct Memory Access controller (DMA):
+ * - Initialization and Configuration
+ * - Data Counter
+ * - Double Buffer mode configuration and command
+ * - Interrupts and flags management
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ * 1. Enable The DMA controller clock using RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_DMA1, ENABLE)
+ * function for DMA1 or using RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_DMA2, ENABLE)
+ * function for DMA2.
+ *
+ * 2. Enable and configure the peripheral to be connected to the DMA Stream
+ * (except for internal SRAM / FLASH memories: no initialization is
+ * necessary).
+ *
+ * 3. For a given Stream, program the required configuration through following parameters:
+ * Source and Destination addresses, Transfer Direction, Transfer size, Source and Destination
+ * data formats, Circular or Normal mode, Stream Priority level, Source and Destination
+ * Incrementation mode, FIFO mode and its Threshold (if needed), Burst mode for Source and/or
+ * Destination (if needed) using the DMA_Init() function.
+ * To avoid filling un-nesecessary fields, you can call DMA_StructInit() function
+ * to initialize a given structure with default values (reset values), the modify
+ * only necessary fields (ie. Source and Destination addresses, Transfer size and Data Formats).
+ *
+ * 4. Enable the NVIC and the corresponding interrupt(s) using the function
+ * DMA_ITConfig() if you need to use DMA interrupts.
+ *
+ * 5. Optionally, if the Circular mode is enabled, you can use the Double buffer mode by configuring
+ * the second Memory address and the first Memory to be used through the function
+ * DMA_DoubleBufferModeConfig(). Then enable the Double buffer mode through the function
+ * DMA_DoubleBufferModeCmd(). These operations must be done before step 6.
+ *
+ * 6. Enable the DMA stream using the DMA_Cmd() function.
+ *
+ * 7. Activate the needed Stream Request using PPP_DMACmd() function for
+ * any PPP peripheral except internal SRAM and FLASH (ie. SPI, USART ...)
+ * The function allowing this operation is provided in each PPP peripheral
+ * driver (ie. SPI_DMACmd for SPI peripheral).
+ * Once the Stream is enabled, it is not possible to modify its configuration
+ * unless the stream is stopped and disabled.
+ * After enabling the Stream, it is advised to monitor the EN bit status using
+ * the function DMA_GetCmdStatus(). In case of configuration errors or bus errors
+ * this bit will remain reset and all transfers on this Stream will remain on hold.
+ *
+ * 8. Optionally, you can configure the number of data to be transferred
+ * when the Stream is disabled (ie. after each Transfer Complete event
+ * or when a Transfer Error occurs) using the function DMA_SetCurrDataCounter().
+ * And you can get the number of remaining data to be transferred using
+ * the function DMA_GetCurrDataCounter() at run time (when the DMA Stream is
+ * enabled and running).
+ *
+ * 9. To control DMA events you can use one of the following
+ * two methods:
+ * a- Check on DMA Stream flags using the function DMA_GetFlagStatus().
+ * b- Use DMA interrupts through the function DMA_ITConfig() at initialization
+ * phase and DMA_GetITStatus() function into interrupt routines in
+ * communication phase.
+ * After checking on a flag you should clear it using DMA_ClearFlag()
+ * function. And after checking on an interrupt event you should
+ * clear it using DMA_ClearITPendingBit() function.
+ *
+ * 10. Optionally, if Circular mode and Double Buffer mode are enabled, you can modify
+ * the Memory Addresses using the function DMA_MemoryTargetConfig(). Make sure that
+ * the Memory Address to be modified is not the one currently in use by DMA Stream.
+ * This condition can be monitored using the function DMA_GetCurrentMemoryTarget().
+ *
+ * 11. Optionally, Pause-Resume operations may be performed:
+ * The DMA_Cmd() function may be used to perform Pause-Resume operation. When a
+ * transfer is ongoing, calling this function to disable the Stream will cause the
+ * transfer to be paused. All configuration registers and the number of remaining
+ * data will be preserved. When calling again this function to re-enable the Stream,
+ * the transfer will be resumed from the point where it was paused.
+ *
+ * @note Memory-to-Memory transfer is possible by setting the address of the memory into
+ * the Peripheral registers. In this mode, Circular mode and Double Buffer mode
+ * are not allowed.
+ *
+ * @note The FIFO is used mainly to reduce bus usage and to allow data packing/unpacking: it is
+ * possible to set different Data Sizes for the Peripheral and the Memory (ie. you can set
+ * Half-Word data size for the peripheral to access its data register and set Word data size
+ * for the Memory to gain in access time. Each two Half-words will be packed and written in
+ * a single access to a Word in the Memory).
+ *
+ * @note When FIFO is disabled, it is not allowed to configure different Data Sizes for Source
+ * and Destination. In this case the Peripheral Data Size will be applied to both Source
+ * and Destination.
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_dma.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup DMA
+ * @brief DMA driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/* Masks Definition */
+#define TRANSFER_IT_ENABLE_MASK (uint32_t)(DMA_SxCR_TCIE | DMA_SxCR_HTIE | \
+ DMA_SxCR_TEIE | DMA_SxCR_DMEIE)
+
+#define DMA_Stream0_IT_MASK (uint32_t)(DMA_LISR_FEIF0 | DMA_LISR_DMEIF0 | \
+ DMA_LISR_TEIF0 | DMA_LISR_HTIF0 | \
+ DMA_LISR_TCIF0)
+
+#define DMA_Stream1_IT_MASK (uint32_t)(DMA_Stream0_IT_MASK << 6)
+#define DMA_Stream2_IT_MASK (uint32_t)(DMA_Stream0_IT_MASK << 16)
+#define DMA_Stream3_IT_MASK (uint32_t)(DMA_Stream0_IT_MASK << 22)
+#define DMA_Stream4_IT_MASK (uint32_t)(DMA_Stream0_IT_MASK | (uint32_t)0x20000000)
+#define DMA_Stream5_IT_MASK (uint32_t)(DMA_Stream1_IT_MASK | (uint32_t)0x20000000)
+#define DMA_Stream6_IT_MASK (uint32_t)(DMA_Stream2_IT_MASK | (uint32_t)0x20000000)
+#define DMA_Stream7_IT_MASK (uint32_t)(DMA_Stream3_IT_MASK | (uint32_t)0x20000000)
+#define TRANSFER_IT_MASK (uint32_t)0x0F3C0F3C
+#define HIGH_ISR_MASK (uint32_t)0x20000000
+#define RESERVED_MASK (uint32_t)0x0F7D0F7D
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+
+/** @defgroup DMA_Private_Functions
+ * @{
+ */
+
+/** @defgroup DMA_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Initialization and Configuration functions
+ ===============================================================================
+
+ This subsection provides functions allowing to initialize the DMA Stream source
+ and destination addresses, incrementation and data sizes, transfer direction,
+ buffer size, circular/normal mode selection, memory-to-memory mode selection
+ and Stream priority value.
+
+ The DMA_Init() function follows the DMA configuration procedures as described in
+ reference manual (RM0090) except the first point: waiting on EN bit to be reset.
+ This condition should be checked by user application using the function DMA_GetCmdStatus()
+ before calling the DMA_Init() function.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitialize the DMAy Streamx registers to their default reset values.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @retval None
+ */
+void DMA_DeInit(DMA_Stream_TypeDef* DMAy_Streamx)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+
+ /* Disable the selected DMAy Streamx */
+ DMAy_Streamx->CR &= ~((uint32_t)DMA_SxCR_EN);
+
+ /* Reset DMAy Streamx control register */
+ DMAy_Streamx->CR = 0;
+
+ /* Reset DMAy Streamx Number of Data to Transfer register */
+ DMAy_Streamx->NDTR = 0;
+
+ /* Reset DMAy Streamx peripheral address register */
+ DMAy_Streamx->PAR = 0;
+
+ /* Reset DMAy Streamx memory 0 address register */
+ DMAy_Streamx->M0AR = 0;
+
+ /* Reset DMAy Streamx memory 1 address register */
+ DMAy_Streamx->M1AR = 0;
+
+ /* Reset DMAy Streamx FIFO control register */
+ DMAy_Streamx->FCR = (uint32_t)0x00000021;
+
+ /* Reset interrupt pending bits for the selected stream */
+ if (DMAy_Streamx == DMA1_Stream0)
+ {
+ /* Reset interrupt pending bits for DMA1 Stream0 */
+ DMA1->LIFCR = DMA_Stream0_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA1_Stream1)
+ {
+ /* Reset interrupt pending bits for DMA1 Stream1 */
+ DMA1->LIFCR = DMA_Stream1_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA1_Stream2)
+ {
+ /* Reset interrupt pending bits for DMA1 Stream2 */
+ DMA1->LIFCR = DMA_Stream2_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA1_Stream3)
+ {
+ /* Reset interrupt pending bits for DMA1 Stream3 */
+ DMA1->LIFCR = DMA_Stream3_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA1_Stream4)
+ {
+ /* Reset interrupt pending bits for DMA1 Stream4 */
+ DMA1->HIFCR = DMA_Stream4_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA1_Stream5)
+ {
+ /* Reset interrupt pending bits for DMA1 Stream5 */
+ DMA1->HIFCR = DMA_Stream5_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA1_Stream6)
+ {
+ /* Reset interrupt pending bits for DMA1 Stream6 */
+ DMA1->HIFCR = (uint32_t)DMA_Stream6_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA1_Stream7)
+ {
+ /* Reset interrupt pending bits for DMA1 Stream7 */
+ DMA1->HIFCR = DMA_Stream7_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA2_Stream0)
+ {
+ /* Reset interrupt pending bits for DMA2 Stream0 */
+ DMA2->LIFCR = DMA_Stream0_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA2_Stream1)
+ {
+ /* Reset interrupt pending bits for DMA2 Stream1 */
+ DMA2->LIFCR = DMA_Stream1_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA2_Stream2)
+ {
+ /* Reset interrupt pending bits for DMA2 Stream2 */
+ DMA2->LIFCR = DMA_Stream2_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA2_Stream3)
+ {
+ /* Reset interrupt pending bits for DMA2 Stream3 */
+ DMA2->LIFCR = DMA_Stream3_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA2_Stream4)
+ {
+ /* Reset interrupt pending bits for DMA2 Stream4 */
+ DMA2->HIFCR = DMA_Stream4_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA2_Stream5)
+ {
+ /* Reset interrupt pending bits for DMA2 Stream5 */
+ DMA2->HIFCR = DMA_Stream5_IT_MASK;
+ }
+ else if (DMAy_Streamx == DMA2_Stream6)
+ {
+ /* Reset interrupt pending bits for DMA2 Stream6 */
+ DMA2->HIFCR = DMA_Stream6_IT_MASK;
+ }
+ else
+ {
+ if (DMAy_Streamx == DMA2_Stream7)
+ {
+ /* Reset interrupt pending bits for DMA2 Stream7 */
+ DMA2->HIFCR = DMA_Stream7_IT_MASK;
+ }
+ }
+}
+
+/**
+ * @brief Initializes the DMAy Streamx according to the specified parameters in
+ * the DMA_InitStruct structure.
+ * @note Before calling this function, it is recommended to check that the Stream
+ * is actually disabled using the function DMA_GetCmdStatus().
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @param DMA_InitStruct: pointer to a DMA_InitTypeDef structure that contains
+ * the configuration information for the specified DMA Stream.
+ * @retval None
+ */
+void DMA_Init(DMA_Stream_TypeDef* DMAy_Streamx, DMA_InitTypeDef* DMA_InitStruct)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+ assert_param(IS_DMA_CHANNEL(DMA_InitStruct->DMA_Channel));
+ assert_param(IS_DMA_DIRECTION(DMA_InitStruct->DMA_DIR));
+ assert_param(IS_DMA_BUFFER_SIZE(DMA_InitStruct->DMA_BufferSize));
+ assert_param(IS_DMA_PERIPHERAL_INC_STATE(DMA_InitStruct->DMA_PeripheralInc));
+ assert_param(IS_DMA_MEMORY_INC_STATE(DMA_InitStruct->DMA_MemoryInc));
+ assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(DMA_InitStruct->DMA_PeripheralDataSize));
+ assert_param(IS_DMA_MEMORY_DATA_SIZE(DMA_InitStruct->DMA_MemoryDataSize));
+ assert_param(IS_DMA_MODE(DMA_InitStruct->DMA_Mode));
+ assert_param(IS_DMA_PRIORITY(DMA_InitStruct->DMA_Priority));
+ assert_param(IS_DMA_FIFO_MODE_STATE(DMA_InitStruct->DMA_FIFOMode));
+ assert_param(IS_DMA_FIFO_THRESHOLD(DMA_InitStruct->DMA_FIFOThreshold));
+ assert_param(IS_DMA_MEMORY_BURST(DMA_InitStruct->DMA_MemoryBurst));
+ assert_param(IS_DMA_PERIPHERAL_BURST(DMA_InitStruct->DMA_PeripheralBurst));
+
+ /*------------------------- DMAy Streamx CR Configuration ------------------*/
+ /* Get the DMAy_Streamx CR value */
+ tmpreg = DMAy_Streamx->CR;
+
+ /* Clear CHSEL, MBURST, PBURST, PL, MSIZE, PSIZE, MINC, PINC, CIRC and DIR bits */
+ tmpreg &= ((uint32_t)~(DMA_SxCR_CHSEL | DMA_SxCR_MBURST | DMA_SxCR_PBURST | \
+ DMA_SxCR_PL | DMA_SxCR_MSIZE | DMA_SxCR_PSIZE | \
+ DMA_SxCR_MINC | DMA_SxCR_PINC | DMA_SxCR_CIRC | \
+ DMA_SxCR_DIR));
+
+ /* Configure DMAy Streamx: */
+ /* Set CHSEL bits according to DMA_CHSEL value */
+ /* Set DIR bits according to DMA_DIR value */
+ /* Set PINC bit according to DMA_PeripheralInc value */
+ /* Set MINC bit according to DMA_MemoryInc value */
+ /* Set PSIZE bits according to DMA_PeripheralDataSize value */
+ /* Set MSIZE bits according to DMA_MemoryDataSize value */
+ /* Set CIRC bit according to DMA_Mode value */
+ /* Set PL bits according to DMA_Priority value */
+ /* Set MBURST bits according to DMA_MemoryBurst value */
+ /* Set PBURST bits according to DMA_PeripheralBurst value */
+ tmpreg |= DMA_InitStruct->DMA_Channel | DMA_InitStruct->DMA_DIR |
+ DMA_InitStruct->DMA_PeripheralInc | DMA_InitStruct->DMA_MemoryInc |
+ DMA_InitStruct->DMA_PeripheralDataSize | DMA_InitStruct->DMA_MemoryDataSize |
+ DMA_InitStruct->DMA_Mode | DMA_InitStruct->DMA_Priority |
+ DMA_InitStruct->DMA_MemoryBurst | DMA_InitStruct->DMA_PeripheralBurst;
+
+ /* Write to DMAy Streamx CR register */
+ DMAy_Streamx->CR = tmpreg;
+
+ /*------------------------- DMAy Streamx FCR Configuration -----------------*/
+ /* Get the DMAy_Streamx FCR value */
+ tmpreg = DMAy_Streamx->FCR;
+
+ /* Clear DMDIS and FTH bits */
+ tmpreg &= (uint32_t)~(DMA_SxFCR_DMDIS | DMA_SxFCR_FTH);
+
+ /* Configure DMAy Streamx FIFO:
+ Set DMDIS bits according to DMA_FIFOMode value
+ Set FTH bits according to DMA_FIFOThreshold value */
+ tmpreg |= DMA_InitStruct->DMA_FIFOMode | DMA_InitStruct->DMA_FIFOThreshold;
+
+ /* Write to DMAy Streamx CR */
+ DMAy_Streamx->FCR = tmpreg;
+
+ /*------------------------- DMAy Streamx NDTR Configuration ----------------*/
+ /* Write to DMAy Streamx NDTR register */
+ DMAy_Streamx->NDTR = DMA_InitStruct->DMA_BufferSize;
+
+ /*------------------------- DMAy Streamx PAR Configuration -----------------*/
+ /* Write to DMAy Streamx PAR */
+ DMAy_Streamx->PAR = DMA_InitStruct->DMA_PeripheralBaseAddr;
+
+ /*------------------------- DMAy Streamx M0AR Configuration ----------------*/
+ /* Write to DMAy Streamx M0AR */
+ DMAy_Streamx->M0AR = DMA_InitStruct->DMA_Memory0BaseAddr;
+}
+
+/**
+ * @brief Fills each DMA_InitStruct member with its default value.
+ * @param DMA_InitStruct : pointer to a DMA_InitTypeDef structure which will
+ * be initialized.
+ * @retval None
+ */
+void DMA_StructInit(DMA_InitTypeDef* DMA_InitStruct)
+{
+ /*-------------- Reset DMA init structure parameters values ----------------*/
+ /* Initialize the DMA_Channel member */
+ DMA_InitStruct->DMA_Channel = 0;
+
+ /* Initialize the DMA_PeripheralBaseAddr member */
+ DMA_InitStruct->DMA_PeripheralBaseAddr = 0;
+
+ /* Initialize the DMA_Memory0BaseAddr member */
+ DMA_InitStruct->DMA_Memory0BaseAddr = 0;
+
+ /* Initialize the DMA_DIR member */
+ DMA_InitStruct->DMA_DIR = DMA_DIR_PeripheralToMemory;
+
+ /* Initialize the DMA_BufferSize member */
+ DMA_InitStruct->DMA_BufferSize = 0;
+
+ /* Initialize the DMA_PeripheralInc member */
+ DMA_InitStruct->DMA_PeripheralInc = DMA_PeripheralInc_Disable;
+
+ /* Initialize the DMA_MemoryInc member */
+ DMA_InitStruct->DMA_MemoryInc = DMA_MemoryInc_Disable;
+
+ /* Initialize the DMA_PeripheralDataSize member */
+ DMA_InitStruct->DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
+
+ /* Initialize the DMA_MemoryDataSize member */
+ DMA_InitStruct->DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
+
+ /* Initialize the DMA_Mode member */
+ DMA_InitStruct->DMA_Mode = DMA_Mode_Normal;
+
+ /* Initialize the DMA_Priority member */
+ DMA_InitStruct->DMA_Priority = DMA_Priority_Low;
+
+ /* Initialize the DMA_FIFOMode member */
+ DMA_InitStruct->DMA_FIFOMode = DMA_FIFOMode_Disable;
+
+ /* Initialize the DMA_FIFOThreshold member */
+ DMA_InitStruct->DMA_FIFOThreshold = DMA_FIFOThreshold_1QuarterFull;
+
+ /* Initialize the DMA_MemoryBurst member */
+ DMA_InitStruct->DMA_MemoryBurst = DMA_MemoryBurst_Single;
+
+ /* Initialize the DMA_PeripheralBurst member */
+ DMA_InitStruct->DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
+}
+
+/**
+ * @brief Enables or disables the specified DMAy Streamx.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @param NewState: new state of the DMAy Streamx.
+ * This parameter can be: ENABLE or DISABLE.
+ *
+ * @note This function may be used to perform Pause-Resume operation. When a
+ * transfer is ongoing, calling this function to disable the Stream will
+ * cause the transfer to be paused. All configuration registers and the
+ * number of remaining data will be preserved. When calling again this
+ * function to re-enable the Stream, the transfer will be resumed from
+ * the point where it was paused.
+ *
+ * @note After configuring the DMA Stream (DMA_Init() function) and enabling the
+ * stream, it is recommended to check (or wait until) the DMA Stream is
+ * effectively enabled. A Stream may remain disabled if a configuration
+ * parameter is wrong.
+ * After disabling a DMA Stream, it is also recommended to check (or wait
+ * until) the DMA Stream is effectively disabled. If a Stream is disabled
+ * while a data transfer is ongoing, the current data will be transferred
+ * and the Stream will be effectively disabled only after the transfer of
+ * this single data is finished.
+ *
+ * @retval None
+ */
+void DMA_Cmd(DMA_Stream_TypeDef* DMAy_Streamx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected DMAy Streamx by setting EN bit */
+ DMAy_Streamx->CR |= (uint32_t)DMA_SxCR_EN;
+ }
+ else
+ {
+ /* Disable the selected DMAy Streamx by clearing EN bit */
+ DMAy_Streamx->CR &= ~(uint32_t)DMA_SxCR_EN;
+ }
+}
+
+/**
+ * @brief Configures, when the PINC (Peripheral Increment address mode) bit is
+ * set, if the peripheral address should be incremented with the data
+ * size (configured with PSIZE bits) or by a fixed offset equal to 4
+ * (32-bit aligned addresses).
+ *
+ * @note This function has no effect if the Peripheral Increment mode is disabled.
+ *
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @param DMA_Pincos: specifies the Peripheral increment offset size.
+ * This parameter can be one of the following values:
+ * @arg DMA_PINCOS_Psize: Peripheral address increment is done
+ * accordingly to PSIZE parameter.
+ * @arg DMA_PINCOS_WordAligned: Peripheral address increment offset is
+ * fixed to 4 (32-bit aligned addresses).
+ * @retval None
+ */
+void DMA_PeriphIncOffsetSizeConfig(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_Pincos)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+ assert_param(IS_DMA_PINCOS_SIZE(DMA_Pincos));
+
+ /* Check the needed Peripheral increment offset */
+ if(DMA_Pincos != DMA_PINCOS_Psize)
+ {
+ /* Configure DMA_SxCR_PINCOS bit with the input parameter */
+ DMAy_Streamx->CR |= (uint32_t)DMA_SxCR_PINCOS;
+ }
+ else
+ {
+ /* Clear the PINCOS bit: Peripheral address incremented according to PSIZE */
+ DMAy_Streamx->CR &= ~(uint32_t)DMA_SxCR_PINCOS;
+ }
+}
+
+/**
+ * @brief Configures, when the DMAy Streamx is disabled, the flow controller for
+ * the next transactions (Peripheral or Memory).
+ *
+ * @note Before enabling this feature, check if the used peripheral supports
+ * the Flow Controller mode or not.
+ *
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @param DMA_FlowCtrl: specifies the DMA flow controller.
+ * This parameter can be one of the following values:
+ * @arg DMA_FlowCtrl_Memory: DMAy_Streamx transactions flow controller is
+ * the DMA controller.
+ * @arg DMA_FlowCtrl_Peripheral: DMAy_Streamx transactions flow controller
+ * is the peripheral.
+ * @retval None
+ */
+void DMA_FlowControllerConfig(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_FlowCtrl)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+ assert_param(IS_DMA_FLOW_CTRL(DMA_FlowCtrl));
+
+ /* Check the needed flow controller */
+ if(DMA_FlowCtrl != DMA_FlowCtrl_Memory)
+ {
+ /* Configure DMA_SxCR_PFCTRL bit with the input parameter */
+ DMAy_Streamx->CR |= (uint32_t)DMA_SxCR_PFCTRL;
+ }
+ else
+ {
+ /* Clear the PFCTRL bit: Memory is the flow controller */
+ DMAy_Streamx->CR &= ~(uint32_t)DMA_SxCR_PFCTRL;
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Group2 Data Counter functions
+ * @brief Data Counter functions
+ *
+@verbatim
+ ===============================================================================
+ Data Counter functions
+ ===============================================================================
+
+ This subsection provides function allowing to configure and read the buffer size
+ (number of data to be transferred).
+
+ The DMA data counter can be written only when the DMA Stream is disabled
+ (ie. after transfer complete event).
+
+ The following function can be used to write the Stream data counter value:
+ - void DMA_SetCurrDataCounter(DMA_Stream_TypeDef* DMAy_Streamx, uint16_t Counter);
+
+@note It is advised to use this function rather than DMA_Init() in situations where
+ only the Data buffer needs to be reloaded.
+
+@note If the Source and Destination Data Sizes are different, then the value written in
+ data counter, expressing the number of transfers, is relative to the number of
+ transfers from the Peripheral point of view.
+ ie. If Memory data size is Word, Peripheral data size is Half-Words, then the value
+ to be configured in the data counter is the number of Half-Words to be transferred
+ from/to the peripheral.
+
+ The DMA data counter can be read to indicate the number of remaining transfers for
+ the relative DMA Stream. This counter is decremented at the end of each data
+ transfer and when the transfer is complete:
+ - If Normal mode is selected: the counter is set to 0.
+ - If Circular mode is selected: the counter is reloaded with the initial value
+ (configured before enabling the DMA Stream)
+
+ The following function can be used to read the Stream data counter value:
+ - uint16_t DMA_GetCurrDataCounter(DMA_Stream_TypeDef* DMAy_Streamx);
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Writes the number of data units to be transferred on the DMAy Streamx.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @param Counter: Number of data units to be transferred (from 0 to 65535)
+ * Number of data items depends only on the Peripheral data format.
+ *
+ * @note If Peripheral data format is Bytes: number of data units is equal
+ * to total number of bytes to be transferred.
+ *
+ * @note If Peripheral data format is Half-Word: number of data units is
+ * equal to total number of bytes to be transferred / 2.
+ *
+ * @note If Peripheral data format is Word: number of data units is equal
+ * to total number of bytes to be transferred / 4.
+ *
+ * @note In Memory-to-Memory transfer mode, the memory buffer pointed by
+ * DMAy_SxPAR register is considered as Peripheral.
+ *
+ * @retval The number of remaining data units in the current DMAy Streamx transfer.
+ */
+void DMA_SetCurrDataCounter(DMA_Stream_TypeDef* DMAy_Streamx, uint16_t Counter)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+
+ /* Write the number of data units to be transferred */
+ DMAy_Streamx->NDTR = (uint16_t)Counter;
+}
+
+/**
+ * @brief Returns the number of remaining data units in the current DMAy Streamx transfer.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @retval The number of remaining data units in the current DMAy Streamx transfer.
+ */
+uint16_t DMA_GetCurrDataCounter(DMA_Stream_TypeDef* DMAy_Streamx)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+
+ /* Return the number of remaining data units for DMAy Streamx */
+ return ((uint16_t)(DMAy_Streamx->NDTR));
+}
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Group3 Double Buffer mode functions
+ * @brief Double Buffer mode functions
+ *
+@verbatim
+ ===============================================================================
+ Double Buffer mode functions
+ ===============================================================================
+
+ This subsection provides function allowing to configure and control the double
+ buffer mode parameters.
+
+ The Double Buffer mode can be used only when Circular mode is enabled.
+ The Double Buffer mode cannot be used when transferring data from Memory to Memory.
+
+ The Double Buffer mode allows to set two different Memory addresses from/to which
+ the DMA controller will access alternatively (after completing transfer to/from target
+ memory 0, it will start transfer to/from target memory 1).
+ This allows to reduce software overhead for double buffering and reduce the CPU
+ access time.
+
+ Two functions must be called before calling the DMA_Init() function:
+ - void DMA_DoubleBufferModeConfig(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t Memory1BaseAddr,
+ uint32_t DMA_CurrentMemory);
+ - void DMA_DoubleBufferModeCmd(DMA_Stream_TypeDef* DMAy_Streamx, FunctionalState NewState);
+
+ DMA_DoubleBufferModeConfig() is called to configure the Memory 1 base address and the first
+ Memory target from/to which the transfer will start after enabling the DMA Stream.
+ Then DMA_DoubleBufferModeCmd() must be called to enable the Double Buffer mode (or disable
+ it when it should not be used).
+
+
+ Two functions can be called dynamically when the transfer is ongoing (or when the DMA Stream is
+ stopped) to modify on of the target Memories addresses or to check wich Memory target is currently
+ used:
+ - void DMA_MemoryTargetConfig(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t MemoryBaseAddr,
+ uint32_t DMA_MemoryTarget);
+ - uint32_t DMA_GetCurrentMemoryTarget(DMA_Stream_TypeDef* DMAy_Streamx);
+
+ DMA_MemoryTargetConfig() can be called to modify the base address of one of the two target Memories.
+ The Memory of which the base address will be modified must not be currently be used by the DMA Stream
+ (ie. if the DMA Stream is currently transferring from Memory 1 then you can only modify base address
+ of target Memory 0 and vice versa).
+ To check this condition, it is recommended to use the function DMA_GetCurrentMemoryTarget() which
+ returns the index of the Memory target currently in use by the DMA Stream.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures, when the DMAy Streamx is disabled, the double buffer mode
+ * and the current memory target.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @param Memory1BaseAddr: the base address of the second buffer (Memory 1)
+ * @param DMA_CurrentMemory: specifies which memory will be first buffer for
+ * the transactions when the Stream will be enabled.
+ * This parameter can be one of the following values:
+ * @arg DMA_Memory_0: Memory 0 is the current buffer.
+ * @arg DMA_Memory_1: Memory 1 is the current buffer.
+ *
+ * @note Memory0BaseAddr is set by the DMA structure configuration in DMA_Init().
+ *
+ * @retval None
+ */
+void DMA_DoubleBufferModeConfig(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t Memory1BaseAddr,
+ uint32_t DMA_CurrentMemory)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+ assert_param(IS_DMA_CURRENT_MEM(DMA_CurrentMemory));
+
+ if (DMA_CurrentMemory != DMA_Memory_0)
+ {
+ /* Set Memory 1 as current memory address */
+ DMAy_Streamx->CR |= (uint32_t)(DMA_SxCR_CT);
+ }
+ else
+ {
+ /* Set Memory 0 as current memory address */
+ DMAy_Streamx->CR &= ~(uint32_t)(DMA_SxCR_CT);
+ }
+
+ /* Write to DMAy Streamx M1AR */
+ DMAy_Streamx->M1AR = Memory1BaseAddr;
+}
+
+/**
+ * @brief Enables or disables the double buffer mode for the selected DMA stream.
+ * @note This function can be called only when the DMA Stream is disabled.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @param NewState: new state of the DMAy Streamx double buffer mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DMA_DoubleBufferModeCmd(DMA_Stream_TypeDef* DMAy_Streamx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ /* Configure the Double Buffer mode */
+ if (NewState != DISABLE)
+ {
+ /* Enable the Double buffer mode */
+ DMAy_Streamx->CR |= (uint32_t)DMA_SxCR_DBM;
+ }
+ else
+ {
+ /* Disable the Double buffer mode */
+ DMAy_Streamx->CR &= ~(uint32_t)DMA_SxCR_DBM;
+ }
+}
+
+/**
+ * @brief Configures the Memory address for the next buffer transfer in double
+ * buffer mode (for dynamic use). This function can be called when the
+ * DMA Stream is enabled and when the transfer is ongoing.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @param MemoryBaseAddr: The base address of the target memory buffer
+ * @param DMA_MemoryTarget: Next memory target to be used.
+ * This parameter can be one of the following values:
+ * @arg DMA_Memory_0: To use the memory address 0
+ * @arg DMA_Memory_1: To use the memory address 1
+ *
+ * @note It is not allowed to modify the Base Address of a target Memory when
+ * this target is involved in the current transfer. ie. If the DMA Stream
+ * is currently transferring to/from Memory 1, then it not possible to
+ * modify Base address of Memory 1, but it is possible to modify Base
+ * address of Memory 0.
+ * To know which Memory is currently used, you can use the function
+ * DMA_GetCurrentMemoryTarget().
+ *
+ * @retval None
+ */
+void DMA_MemoryTargetConfig(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t MemoryBaseAddr,
+ uint32_t DMA_MemoryTarget)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+ assert_param(IS_DMA_CURRENT_MEM(DMA_MemoryTarget));
+
+ /* Check the Memory target to be configured */
+ if (DMA_MemoryTarget != DMA_Memory_0)
+ {
+ /* Write to DMAy Streamx M1AR */
+ DMAy_Streamx->M1AR = MemoryBaseAddr;
+ }
+ else
+ {
+ /* Write to DMAy Streamx M0AR */
+ DMAy_Streamx->M0AR = MemoryBaseAddr;
+ }
+}
+
+/**
+ * @brief Returns the current memory target used by double buffer transfer.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @retval The memory target number: 0 for Memory0 or 1 for Memory1.
+ */
+uint32_t DMA_GetCurrentMemoryTarget(DMA_Stream_TypeDef* DMAy_Streamx)
+{
+ uint32_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+
+ /* Get the current memory target */
+ if ((DMAy_Streamx->CR & DMA_SxCR_CT) != 0)
+ {
+ /* Current memory buffer used is Memory 1 */
+ tmp = 1;
+ }
+ else
+ {
+ /* Current memory buffer used is Memory 0 */
+ tmp = 0;
+ }
+ return tmp;
+}
+/**
+ * @}
+ */
+
+/** @defgroup DMA_Group4 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts and flags management functions
+ ===============================================================================
+
+ This subsection provides functions allowing to
+ - Check the DMA enable status
+ - Check the FIFO status
+ - Configure the DMA Interrupts sources and check or clear the flags or pending bits status.
+
+ 1. DMA Enable status:
+ After configuring the DMA Stream (DMA_Init() function) and enabling the stream,
+ it is recommended to check (or wait until) the DMA Stream is effectively enabled.
+ A Stream may remain disabled if a configuration parameter is wrong.
+ After disabling a DMA Stream, it is also recommended to check (or wait until) the DMA
+ Stream is effectively disabled. If a Stream is disabled while a data transfer is ongoing,
+ the current data will be transferred and the Stream will be effectively disabled only after
+ this data transfer completion.
+ To monitor this state it is possible to use the following function:
+ - FunctionalState DMA_GetCmdStatus(DMA_Stream_TypeDef* DMAy_Streamx);
+
+ 2. FIFO Status:
+ It is possible to monitor the FIFO status when a transfer is ongoing using the following
+ function:
+ - uint32_t DMA_GetFIFOStatus(DMA_Stream_TypeDef* DMAy_Streamx);
+
+ 3. DMA Interrupts and Flags:
+ The user should identify which mode will be used in his application to manage the
+ DMA controller events: Polling mode or Interrupt mode.
+
+ Polling Mode
+ =============
+ Each DMA stream can be managed through 4 event Flags:
+ (x : DMA Stream number )
+ 1. DMA_FLAG_FEIFx : to indicate that a FIFO Mode Transfer Error event occurred.
+ 2. DMA_FLAG_DMEIFx : to indicate that a Direct Mode Transfer Error event occurred.
+ 3. DMA_FLAG_TEIFx : to indicate that a Transfer Error event occurred.
+ 4. DMA_FLAG_HTIFx : to indicate that a Half-Transfer Complete event occurred.
+ 5. DMA_FLAG_TCIFx : to indicate that a Transfer Complete event occurred .
+
+ In this Mode it is advised to use the following functions:
+ - FlagStatus DMA_GetFlagStatus(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_FLAG);
+ - void DMA_ClearFlag(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_FLAG);
+
+ Interrupt Mode
+ ===============
+ Each DMA Stream can be managed through 4 Interrupts:
+
+ Interrupt Source
+ ----------------
+ 1. DMA_IT_FEIFx : specifies the interrupt source for the FIFO Mode Transfer Error event.
+ 2. DMA_IT_DMEIFx : specifies the interrupt source for the Direct Mode Transfer Error event.
+ 3. DMA_IT_TEIFx : specifies the interrupt source for the Transfer Error event.
+ 4. DMA_IT_HTIFx : specifies the interrupt source for the Half-Transfer Complete event.
+ 5. DMA_IT_TCIFx : specifies the interrupt source for the a Transfer Complete event.
+
+ In this Mode it is advised to use the following functions:
+ - void DMA_ITConfig(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_IT, FunctionalState NewState);
+ - ITStatus DMA_GetITStatus(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_IT);
+ - void DMA_ClearITPendingBit(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_IT);
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Returns the status of EN bit for the specified DMAy Streamx.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ *
+ * @note After configuring the DMA Stream (DMA_Init() function) and enabling
+ * the stream, it is recommended to check (or wait until) the DMA Stream
+ * is effectively enabled. A Stream may remain disabled if a configuration
+ * parameter is wrong.
+ * After disabling a DMA Stream, it is also recommended to check (or wait
+ * until) the DMA Stream is effectively disabled. If a Stream is disabled
+ * while a data transfer is ongoing, the current data will be transferred
+ * and the Stream will be effectively disabled only after the transfer
+ * of this single data is finished.
+ *
+ * @retval Current state of the DMAy Streamx (ENABLE or DISABLE).
+ */
+FunctionalState DMA_GetCmdStatus(DMA_Stream_TypeDef* DMAy_Streamx)
+{
+ FunctionalState state = DISABLE;
+
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+
+ if ((DMAy_Streamx->CR & (uint32_t)DMA_SxCR_EN) != 0)
+ {
+ /* The selected DMAy Streamx EN bit is set (DMA is still transferring) */
+ state = ENABLE;
+ }
+ else
+ {
+ /* The selected DMAy Streamx EN bit is cleared (DMA is disabled and
+ all transfers are complete) */
+ state = DISABLE;
+ }
+ return state;
+}
+
+/**
+ * @brief Returns the current DMAy Streamx FIFO filled level.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @retval The FIFO filling state.
+ * - DMA_FIFOStatus_Less1QuarterFull: when FIFO is less than 1 quarter-full
+ * and not empty.
+ * - DMA_FIFOStatus_1QuarterFull: if more than 1 quarter-full.
+ * - DMA_FIFOStatus_HalfFull: if more than 1 half-full.
+ * - DMA_FIFOStatus_3QuartersFull: if more than 3 quarters-full.
+ * - DMA_FIFOStatus_Empty: when FIFO is empty
+ * - DMA_FIFOStatus_Full: when FIFO is full
+ */
+uint32_t DMA_GetFIFOStatus(DMA_Stream_TypeDef* DMAy_Streamx)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+
+ /* Get the FIFO level bits */
+ tmpreg = (uint32_t)((DMAy_Streamx->FCR & DMA_SxFCR_FS));
+
+ return tmpreg;
+}
+
+/**
+ * @brief Checks whether the specified DMAy Streamx flag is set or not.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @param DMA_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg DMA_FLAG_TCIFx: Streamx transfer complete flag
+ * @arg DMA_FLAG_HTIFx: Streamx half transfer complete flag
+ * @arg DMA_FLAG_TEIFx: Streamx transfer error flag
+ * @arg DMA_FLAG_DMEIFx: Streamx direct mode error flag
+ * @arg DMA_FLAG_FEIFx: Streamx FIFO error flag
+ * Where x can be 0 to 7 to select the DMA Stream.
+ * @retval The new state of DMA_FLAG (SET or RESET).
+ */
+FlagStatus DMA_GetFlagStatus(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ DMA_TypeDef* DMAy;
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+ assert_param(IS_DMA_GET_FLAG(DMA_FLAG));
+
+ /* Determine the DMA to which belongs the stream */
+ if (DMAy_Streamx < DMA2_Stream0)
+ {
+ /* DMAy_Streamx belongs to DMA1 */
+ DMAy = DMA1;
+ }
+ else
+ {
+ /* DMAy_Streamx belongs to DMA2 */
+ DMAy = DMA2;
+ }
+
+ /* Check if the flag is in HISR or LISR */
+ if ((DMA_FLAG & HIGH_ISR_MASK) != (uint32_t)RESET)
+ {
+ /* Get DMAy HISR register value */
+ tmpreg = DMAy->HISR;
+ }
+ else
+ {
+ /* Get DMAy LISR register value */
+ tmpreg = DMAy->LISR;
+ }
+
+ /* Mask the reserved bits */
+ tmpreg &= (uint32_t)RESERVED_MASK;
+
+ /* Check the status of the specified DMA flag */
+ if ((tmpreg & DMA_FLAG) != (uint32_t)RESET)
+ {
+ /* DMA_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* DMA_FLAG is reset */
+ bitstatus = RESET;
+ }
+
+ /* Return the DMA_FLAG status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the DMAy Streamx's pending flags.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @param DMA_FLAG: specifies the flag to clear.
+ * This parameter can be any combination of the following values:
+ * @arg DMA_FLAG_TCIFx: Streamx transfer complete flag
+ * @arg DMA_FLAG_HTIFx: Streamx half transfer complete flag
+ * @arg DMA_FLAG_TEIFx: Streamx transfer error flag
+ * @arg DMA_FLAG_DMEIFx: Streamx direct mode error flag
+ * @arg DMA_FLAG_FEIFx: Streamx FIFO error flag
+ * Where x can be 0 to 7 to select the DMA Stream.
+ * @retval None
+ */
+void DMA_ClearFlag(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_FLAG)
+{
+ DMA_TypeDef* DMAy;
+
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+ assert_param(IS_DMA_CLEAR_FLAG(DMA_FLAG));
+
+ /* Determine the DMA to which belongs the stream */
+ if (DMAy_Streamx < DMA2_Stream0)
+ {
+ /* DMAy_Streamx belongs to DMA1 */
+ DMAy = DMA1;
+ }
+ else
+ {
+ /* DMAy_Streamx belongs to DMA2 */
+ DMAy = DMA2;
+ }
+
+ /* Check if LIFCR or HIFCR register is targeted */
+ if ((DMA_FLAG & HIGH_ISR_MASK) != (uint32_t)RESET)
+ {
+ /* Set DMAy HIFCR register clear flag bits */
+ DMAy->HIFCR = (uint32_t)(DMA_FLAG & RESERVED_MASK);
+ }
+ else
+ {
+ /* Set DMAy LIFCR register clear flag bits */
+ DMAy->LIFCR = (uint32_t)(DMA_FLAG & RESERVED_MASK);
+ }
+}
+
+/**
+ * @brief Enables or disables the specified DMAy Streamx interrupts.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @param DMA_IT: specifies the DMA interrupt sources to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg DMA_IT_TC: Transfer complete interrupt mask
+ * @arg DMA_IT_HT: Half transfer complete interrupt mask
+ * @arg DMA_IT_TE: Transfer error interrupt mask
+ * @arg DMA_IT_FE: FIFO error interrupt mask
+ * @param NewState: new state of the specified DMA interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void DMA_ITConfig(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+ assert_param(IS_DMA_CONFIG_IT(DMA_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ /* Check if the DMA_IT parameter contains a FIFO interrupt */
+ if ((DMA_IT & DMA_IT_FE) != 0)
+ {
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected DMA FIFO interrupts */
+ DMAy_Streamx->FCR |= (uint32_t)DMA_IT_FE;
+ }
+ else
+ {
+ /* Disable the selected DMA FIFO interrupts */
+ DMAy_Streamx->FCR &= ~(uint32_t)DMA_IT_FE;
+ }
+ }
+
+ /* Check if the DMA_IT parameter contains a Transfer interrupt */
+ if (DMA_IT != DMA_IT_FE)
+ {
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected DMA transfer interrupts */
+ DMAy_Streamx->CR |= (uint32_t)(DMA_IT & TRANSFER_IT_ENABLE_MASK);
+ }
+ else
+ {
+ /* Disable the selected DMA transfer interrupts */
+ DMAy_Streamx->CR &= ~(uint32_t)(DMA_IT & TRANSFER_IT_ENABLE_MASK);
+ }
+ }
+}
+
+/**
+ * @brief Checks whether the specified DMAy Streamx interrupt has occurred or not.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @param DMA_IT: specifies the DMA interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg DMA_IT_TCIFx: Streamx transfer complete interrupt
+ * @arg DMA_IT_HTIFx: Streamx half transfer complete interrupt
+ * @arg DMA_IT_TEIFx: Streamx transfer error interrupt
+ * @arg DMA_IT_DMEIFx: Streamx direct mode error interrupt
+ * @arg DMA_IT_FEIFx: Streamx FIFO error interrupt
+ * Where x can be 0 to 7 to select the DMA Stream.
+ * @retval The new state of DMA_IT (SET or RESET).
+ */
+ITStatus DMA_GetITStatus(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_IT)
+{
+ ITStatus bitstatus = RESET;
+ DMA_TypeDef* DMAy;
+ uint32_t tmpreg = 0, enablestatus = 0;
+
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+ assert_param(IS_DMA_GET_IT(DMA_IT));
+
+ /* Determine the DMA to which belongs the stream */
+ if (DMAy_Streamx < DMA2_Stream0)
+ {
+ /* DMAy_Streamx belongs to DMA1 */
+ DMAy = DMA1;
+ }
+ else
+ {
+ /* DMAy_Streamx belongs to DMA2 */
+ DMAy = DMA2;
+ }
+
+ /* Check if the interrupt enable bit is in the CR or FCR register */
+ if ((DMA_IT & TRANSFER_IT_MASK) != (uint32_t)RESET)
+ {
+ /* Get the interrupt enable position mask in CR register */
+ tmpreg = (uint32_t)((DMA_IT >> 11) & TRANSFER_IT_ENABLE_MASK);
+
+ /* Check the enable bit in CR register */
+ enablestatus = (uint32_t)(DMAy_Streamx->CR & tmpreg);
+ }
+ else
+ {
+ /* Check the enable bit in FCR register */
+ enablestatus = (uint32_t)(DMAy_Streamx->FCR & DMA_IT_FE);
+ }
+
+ /* Check if the interrupt pending flag is in LISR or HISR */
+ if ((DMA_IT & HIGH_ISR_MASK) != (uint32_t)RESET)
+ {
+ /* Get DMAy HISR register value */
+ tmpreg = DMAy->HISR ;
+ }
+ else
+ {
+ /* Get DMAy LISR register value */
+ tmpreg = DMAy->LISR ;
+ }
+
+ /* mask all reserved bits */
+ tmpreg &= (uint32_t)RESERVED_MASK;
+
+ /* Check the status of the specified DMA interrupt */
+ if (((tmpreg & DMA_IT) != (uint32_t)RESET) && (enablestatus != (uint32_t)RESET))
+ {
+ /* DMA_IT is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* DMA_IT is reset */
+ bitstatus = RESET;
+ }
+
+ /* Return the DMA_IT status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the DMAy Streamx's interrupt pending bits.
+ * @param DMAy_Streamx: where y can be 1 or 2 to select the DMA and x can be 0
+ * to 7 to select the DMA Stream.
+ * @param DMA_IT: specifies the DMA interrupt pending bit to clear.
+ * This parameter can be any combination of the following values:
+ * @arg DMA_IT_TCIFx: Streamx transfer complete interrupt
+ * @arg DMA_IT_HTIFx: Streamx half transfer complete interrupt
+ * @arg DMA_IT_TEIFx: Streamx transfer error interrupt
+ * @arg DMA_IT_DMEIFx: Streamx direct mode error interrupt
+ * @arg DMA_IT_FEIFx: Streamx FIFO error interrupt
+ * Where x can be 0 to 7 to select the DMA Stream.
+ * @retval None
+ */
+void DMA_ClearITPendingBit(DMA_Stream_TypeDef* DMAy_Streamx, uint32_t DMA_IT)
+{
+ DMA_TypeDef* DMAy;
+
+ /* Check the parameters */
+ assert_param(IS_DMA_ALL_PERIPH(DMAy_Streamx));
+ assert_param(IS_DMA_CLEAR_IT(DMA_IT));
+
+ /* Determine the DMA to which belongs the stream */
+ if (DMAy_Streamx < DMA2_Stream0)
+ {
+ /* DMAy_Streamx belongs to DMA1 */
+ DMAy = DMA1;
+ }
+ else
+ {
+ /* DMAy_Streamx belongs to DMA2 */
+ DMAy = DMA2;
+ }
+
+ /* Check if LIFCR or HIFCR register is targeted */
+ if ((DMA_IT & HIGH_ISR_MASK) != (uint32_t)RESET)
+ {
+ /* Set DMAy HIFCR register clear interrupt bits */
+ DMAy->HIFCR = (uint32_t)(DMA_IT & RESERVED_MASK);
+ }
+ else
+ {
+ /* Set DMAy LIFCR register clear interrupt bits */
+ DMAy->LIFCR = (uint32_t)(DMA_IT & RESERVED_MASK);
+ }
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_exti.c b/TimerCounter/SPL/src/stm32f4xx_exti.c
new file mode 100644
index 0000000..f1cf7c9
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_exti.c
@@ -0,0 +1,306 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_exti.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the EXTI peripheral:
+ * - Initialization and Configuration
+ * - Interrupts and flags management
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * EXTI features
+ * ===================================================================
+ *
+ * External interrupt/event lines are mapped as following:
+ * 1- All available GPIO pins are connected to the 16 external
+ * interrupt/event lines from EXTI0 to EXTI15.
+ * 2- EXTI line 16 is connected to the PVD Output
+ * 3- EXTI line 17 is connected to the RTC Alarm event
+ * 4- EXTI line 18 is connected to the USB OTG FS Wakeup from suspend event
+ * 5- EXTI line 19 is connected to the Ethernet Wakeup event
+ * 6- EXTI line 20 is connected to the USB OTG HS (configured in FS) Wakeup event
+ * 7- EXTI line 21 is connected to the RTC Tamper and Time Stamp events
+ * 8- EXTI line 22 is connected to the RTC Wakeup event
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ *
+ * In order to use an I/O pin as an external interrupt source, follow
+ * steps below:
+ * 1- Configure the I/O in input mode using GPIO_Init()
+ * 2- Select the input source pin for the EXTI line using SYSCFG_EXTILineConfig()
+ * 3- Select the mode(interrupt, event) and configure the trigger
+ * selection (Rising, falling or both) using EXTI_Init()
+ * 4- Configure NVIC IRQ channel mapped to the EXTI line using NVIC_Init()
+ *
+ * @note SYSCFG APB clock must be enabled to get write access to SYSCFG_EXTICRx
+ * registers using RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_flash.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup FLASH
+ * @brief FLASH driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+#define SECTOR_MASK ((uint32_t)0xFFFFFF07)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup FLASH_Private_Functions
+ * @{
+ */
+
+/** @defgroup FLASH_Group1 FLASH Interface configuration functions
+ * @brief FLASH Interface configuration functions
+ *
+
+@verbatim
+ ===============================================================================
+ FLASH Interface configuration functions
+ ===============================================================================
+
+ This group includes the following functions:
+ - void FLASH_SetLatency(uint32_t FLASH_Latency)
+ To correctly read data from FLASH memory, the number of wait states (LATENCY)
+ must be correctly programmed according to the frequency of the CPU clock
+ (HCLK) and the supply voltage of the device.
+ +-------------------------------------------------------------------------------------+
+ | Latency | HCLK clock frequency (MHz) |
+ | |---------------------------------------------------------------------|
+ | | voltage range | voltage range | voltage range | voltage range |
+ | | 2.7 V - 3.6 V | 2.4 V - 2.7 V | 2.1 V - 2.4 V | 1.8 V - 2.1 V |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |0WS(1CPU cycle)|0 < HCLK <= 30 |0 < HCLK <= 24 |0 < HCLK <= 18 |0 < HCLK <= 16 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |1WS(2CPU cycle)|30 < HCLK <= 60 |24 < HCLK <= 48 |18 < HCLK <= 36 |16 < HCLK <= 32 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |2WS(3CPU cycle)|60 < HCLK <= 90 |48 < HCLK <= 72 |36 < HCLK <= 54 |32 < HCLK <= 48 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |3WS(4CPU cycle)|90 < HCLK <= 120|72 < HCLK <= 96 |54 < HCLK <= 72 |48 < HCLK <= 64 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |4WS(5CPU cycle)|120< HCLK <= 150|96 < HCLK <= 120|72 < HCLK <= 90 |64 < HCLK <= 80 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |5WS(6CPU cycle)|120< HCLK <= 168|120< HCLK <= 144|90 < HCLK <= 108 |80 < HCLK <= 96 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |6WS(7CPU cycle)| NA |144< HCLK <= 168|108 < HCLK <= 120|96 < HCLK <= 112 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |7WS(8CPU cycle)| NA | NA |120 < HCLK <= 138|112 < HCLK <= 120|
+ |***************|****************|****************|*****************|*****************|*****************************+
+ | | voltage range | voltage range | voltage range | voltage range | voltage range 2.7 V - 3.6 V |
+ | | 2.7 V - 3.6 V | 2.4 V - 2.7 V | 2.1 V - 2.4 V | 1.8 V - 2.1 V | with External Vpp = 9V |
+ |---------------|----------------|----------------|-----------------|-----------------|-----------------------------|
+ |Max Parallelism| x32 | x16 | x8 | x64 |
+ |---------------|----------------|----------------|-----------------|-----------------|-----------------------------|
+ |PSIZE[1:0] | 10 | 01 | 00 | 11 |
+ +-------------------------------------------------------------------------------------------------------------------+
+ @note When VOS bit (in PWR_CR register) is reset to '0’, the maximum value of HCLK is 144 MHz.
+ You can use PWR_MainRegulatorModeConfig() function to set or reset this bit.
+
+ - void FLASH_PrefetchBufferCmd(FunctionalState NewState)
+ - void FLASH_InstructionCacheCmd(FunctionalState NewState)
+ - void FLASH_DataCacheCmd(FunctionalState NewState)
+ - void FLASH_InstructionCacheReset(void)
+ - void FLASH_DataCacheReset(void)
+
+ The unlock sequence is not needed for these functions.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Sets the code latency value.
+ * @param FLASH_Latency: specifies the FLASH Latency value.
+ * This parameter can be one of the following values:
+ * @arg FLASH_Latency_0: FLASH Zero Latency cycle
+ * @arg FLASH_Latency_1: FLASH One Latency cycle
+ * @arg FLASH_Latency_2: FLASH Two Latency cycles
+ * @arg FLASH_Latency_3: FLASH Three Latency cycles
+ * @arg FLASH_Latency_4: FLASH Four Latency cycles
+ * @arg FLASH_Latency_5: FLASH Five Latency cycles
+ * @arg FLASH_Latency_6: FLASH Six Latency cycles
+ * @arg FLASH_Latency_7: FLASH Seven Latency cycles
+ * @retval None
+ */
+void FLASH_SetLatency(uint32_t FLASH_Latency)
+{
+ /* Check the parameters */
+ assert_param(IS_FLASH_LATENCY(FLASH_Latency));
+
+ /* Perform Byte access to FLASH_ACR[8:0] to set the Latency value */
+ *(__IO uint8_t *)ACR_BYTE0_ADDRESS = (uint8_t)FLASH_Latency;
+}
+
+/**
+ * @brief Enables or disables the Prefetch Buffer.
+ * @param NewState: new state of the Prefetch Buffer.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void FLASH_PrefetchBufferCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ /* Enable or disable the Prefetch Buffer */
+ if(NewState != DISABLE)
+ {
+ FLASH->ACR |= FLASH_ACR_PRFTEN;
+ }
+ else
+ {
+ FLASH->ACR &= (~FLASH_ACR_PRFTEN);
+ }
+}
+
+/**
+ * @brief Enables or disables the Instruction Cache feature.
+ * @param NewState: new state of the Instruction Cache.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void FLASH_InstructionCacheCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if(NewState != DISABLE)
+ {
+ FLASH->ACR |= FLASH_ACR_ICEN;
+ }
+ else
+ {
+ FLASH->ACR &= (~FLASH_ACR_ICEN);
+ }
+}
+
+/**
+ * @brief Enables or disables the Data Cache feature.
+ * @param NewState: new state of the Data Cache.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void FLASH_DataCacheCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if(NewState != DISABLE)
+ {
+ FLASH->ACR |= FLASH_ACR_DCEN;
+ }
+ else
+ {
+ FLASH->ACR &= (~FLASH_ACR_DCEN);
+ }
+}
+
+/**
+ * @brief Resets the Instruction Cache.
+ * @note This function must be used only when the Instruction Cache is disabled.
+ * @param None
+ * @retval None
+ */
+void FLASH_InstructionCacheReset(void)
+{
+ FLASH->ACR |= FLASH_ACR_ICRST;
+}
+
+/**
+ * @brief Resets the Data Cache.
+ * @note This function must be used only when the Data Cache is disabled.
+ * @param None
+ * @retval None
+ */
+void FLASH_DataCacheReset(void)
+{
+ FLASH->ACR |= FLASH_ACR_DCRST;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASH_Group2 FLASH Memory Programming functions
+ * @brief FLASH Memory Programming functions
+ *
+@verbatim
+ ===============================================================================
+ FLASH Memory Programming functions
+ ===============================================================================
+
+ This group includes the following functions:
+ - void FLASH_Unlock(void)
+ - void FLASH_Lock(void)
+ - FLASH_Status FLASH_EraseSector(uint32_t FLASH_Sector, uint8_t VoltageRange)
+ - FLASH_Status FLASH_EraseAllSectors(uint8_t VoltageRange)
+ - FLASH_Status FLASH_ProgramDoubleWord(uint32_t Address, uint64_t Data)
+ - FLASH_Status FLASH_ProgramWord(uint32_t Address, uint32_t Data)
+ - FLASH_Status FLASH_ProgramHalfWord(uint32_t Address, uint16_t Data)
+ - FLASH_Status FLASH_ProgramByte(uint32_t Address, uint8_t Data)
+
+ Any operation of erase or program should follow these steps:
+ 1. Call the FLASH_Unlock() function to enable the FLASH control register access
+
+ 2. Call the desired function to erase sector(s) or program data
+
+ 3. Call the FLASH_Lock() function to disable the FLASH control register access
+ (recommended to protect the FLASH memory against possible unwanted operation)
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Unlocks the FLASH control register access
+ * @param None
+ * @retval None
+ */
+void FLASH_Unlock(void)
+{
+ if((FLASH->CR & FLASH_CR_LOCK) != RESET)
+ {
+ /* Authorize the FLASH Registers access */
+ FLASH->KEYR = FLASH_KEY1;
+ FLASH->KEYR = FLASH_KEY2;
+ }
+}
+
+/**
+ * @brief Locks the FLASH control register access
+ * @param None
+ * @retval None
+ */
+void FLASH_Lock(void)
+{
+ /* Set the LOCK Bit to lock the FLASH Registers access */
+ FLASH->CR |= FLASH_CR_LOCK;
+}
+
+/**
+ * @brief Erases a specified FLASH Sector.
+ *
+ * @param FLASH_Sector: The Sector number to be erased.
+ * This parameter can be a value between FLASH_Sector_0 and FLASH_Sector_11
+ *
+ * @param VoltageRange: The device voltage range which defines the erase parallelism.
+ * This parameter can be one of the following values:
+ * @arg VoltageRange_1: when the device voltage range is 1.8V to 2.1V,
+ * the operation will be done by byte (8-bit)
+ * @arg VoltageRange_2: when the device voltage range is 2.1V to 2.7V,
+ * the operation will be done by half word (16-bit)
+ * @arg VoltageRange_3: when the device voltage range is 2.7V to 3.6V,
+ * the operation will be done by word (32-bit)
+ * @arg VoltageRange_4: when the device voltage range is 2.7V to 3.6V + External Vpp,
+ * the operation will be done by double word (64-bit)
+ *
+ * @retval FLASH Status: The returned value can be: FLASH_BUSY, FLASH_ERROR_PROGRAM,
+ * FLASH_ERROR_WRP, FLASH_ERROR_OPERATION or FLASH_COMPLETE.
+ */
+FLASH_Status FLASH_EraseSector(uint32_t FLASH_Sector, uint8_t VoltageRange)
+{
+ uint32_t tmp_psize = 0x0;
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Check the parameters */
+ assert_param(IS_FLASH_SECTOR(FLASH_Sector));
+ assert_param(IS_VOLTAGERANGE(VoltageRange));
+
+ if(VoltageRange == VoltageRange_1)
+ {
+ tmp_psize = FLASH_PSIZE_BYTE;
+ }
+ else if(VoltageRange == VoltageRange_2)
+ {
+ tmp_psize = FLASH_PSIZE_HALF_WORD;
+ }
+ else if(VoltageRange == VoltageRange_3)
+ {
+ tmp_psize = FLASH_PSIZE_WORD;
+ }
+ else
+ {
+ tmp_psize = FLASH_PSIZE_DOUBLE_WORD;
+ }
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+
+ if(status == FLASH_COMPLETE)
+ {
+ /* if the previous operation is completed, proceed to erase the sector */
+ FLASH->CR &= CR_PSIZE_MASK;
+ FLASH->CR |= tmp_psize;
+ FLASH->CR &= SECTOR_MASK;
+ FLASH->CR |= FLASH_CR_SER | FLASH_Sector;
+ FLASH->CR |= FLASH_CR_STRT;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+
+ /* if the erase operation is completed, disable the SER Bit */
+ FLASH->CR &= (~FLASH_CR_SER);
+ FLASH->CR &= SECTOR_MASK;
+ }
+ /* Return the Erase Status */
+ return status;
+}
+
+/**
+ * @brief Erases all FLASH Sectors.
+ *
+ * @param VoltageRange: The device voltage range which defines the erase parallelism.
+ * This parameter can be one of the following values:
+ * @arg VoltageRange_1: when the device voltage range is 1.8V to 2.1V,
+ * the operation will be done by byte (8-bit)
+ * @arg VoltageRange_2: when the device voltage range is 2.1V to 2.7V,
+ * the operation will be done by half word (16-bit)
+ * @arg VoltageRange_3: when the device voltage range is 2.7V to 3.6V,
+ * the operation will be done by word (32-bit)
+ * @arg VoltageRange_4: when the device voltage range is 2.7V to 3.6V + External Vpp,
+ * the operation will be done by double word (64-bit)
+ *
+ * @retval FLASH Status: The returned value can be: FLASH_BUSY, FLASH_ERROR_PROGRAM,
+ * FLASH_ERROR_WRP, FLASH_ERROR_OPERATION or FLASH_COMPLETE.
+ */
+FLASH_Status FLASH_EraseAllSectors(uint8_t VoltageRange)
+{
+ uint32_t tmp_psize = 0x0;
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+ assert_param(IS_VOLTAGERANGE(VoltageRange));
+
+ if(VoltageRange == VoltageRange_1)
+ {
+ tmp_psize = FLASH_PSIZE_BYTE;
+ }
+ else if(VoltageRange == VoltageRange_2)
+ {
+ tmp_psize = FLASH_PSIZE_HALF_WORD;
+ }
+ else if(VoltageRange == VoltageRange_3)
+ {
+ tmp_psize = FLASH_PSIZE_WORD;
+ }
+ else
+ {
+ tmp_psize = FLASH_PSIZE_DOUBLE_WORD;
+ }
+ if(status == FLASH_COMPLETE)
+ {
+ /* if the previous operation is completed, proceed to erase all sectors */
+ FLASH->CR &= CR_PSIZE_MASK;
+ FLASH->CR |= tmp_psize;
+ FLASH->CR |= FLASH_CR_MER;
+ FLASH->CR |= FLASH_CR_STRT;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+
+ /* if the erase operation is completed, disable the MER Bit */
+ FLASH->CR &= (~FLASH_CR_MER);
+
+ }
+ /* Return the Erase Status */
+ return status;
+}
+
+/**
+ * @brief Programs a double word (64-bit) at a specified address.
+ * @note This function must be used when the device voltage range is from
+ * 2.7V to 3.6V and an External Vpp is present.
+ * @param Address: specifies the address to be programmed.
+ * @param Data: specifies the data to be programmed.
+ * @retval FLASH Status: The returned value can be: FLASH_BUSY, FLASH_ERROR_PROGRAM,
+ * FLASH_ERROR_WRP, FLASH_ERROR_OPERATION or FLASH_COMPLETE.
+ */
+FLASH_Status FLASH_ProgramDoubleWord(uint32_t Address, uint64_t Data)
+{
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Check the parameters */
+ assert_param(IS_FLASH_ADDRESS(Address));
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+
+ if(status == FLASH_COMPLETE)
+ {
+ /* if the previous operation is completed, proceed to program the new data */
+ FLASH->CR &= CR_PSIZE_MASK;
+ FLASH->CR |= FLASH_PSIZE_DOUBLE_WORD;
+ FLASH->CR |= FLASH_CR_PG;
+
+ *(__IO uint64_t*)Address = Data;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+
+ /* if the program operation is completed, disable the PG Bit */
+ FLASH->CR &= (~FLASH_CR_PG);
+ }
+ /* Return the Program Status */
+ return status;
+}
+
+/**
+ * @brief Programs a word (32-bit) at a specified address.
+ * @param Address: specifies the address to be programmed.
+ * This parameter can be any address in Program memory zone or in OTP zone.
+ * @note This function must be used when the device voltage range is from 2.7V to 3.6V.
+ * @param Data: specifies the data to be programmed.
+ * @retval FLASH Status: The returned value can be: FLASH_BUSY, FLASH_ERROR_PROGRAM,
+ * FLASH_ERROR_WRP, FLASH_ERROR_OPERATION or FLASH_COMPLETE.
+ */
+FLASH_Status FLASH_ProgramWord(uint32_t Address, uint32_t Data)
+{
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Check the parameters */
+ assert_param(IS_FLASH_ADDRESS(Address));
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+
+ if(status == FLASH_COMPLETE)
+ {
+ /* if the previous operation is completed, proceed to program the new data */
+ FLASH->CR &= CR_PSIZE_MASK;
+ FLASH->CR |= FLASH_PSIZE_WORD;
+ FLASH->CR |= FLASH_CR_PG;
+
+ *(__IO uint32_t*)Address = Data;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+
+ /* if the program operation is completed, disable the PG Bit */
+ FLASH->CR &= (~FLASH_CR_PG);
+ }
+ /* Return the Program Status */
+ return status;
+}
+
+/**
+ * @brief Programs a half word (16-bit) at a specified address.
+ * @note This function must be used when the device voltage range is from 2.1V to 3.6V.
+ * @param Address: specifies the address to be programmed.
+ * This parameter can be any address in Program memory zone or in OTP zone.
+ * @param Data: specifies the data to be programmed.
+ * @retval FLASH Status: The returned value can be: FLASH_BUSY, FLASH_ERROR_PROGRAM,
+ * FLASH_ERROR_WRP, FLASH_ERROR_OPERATION or FLASH_COMPLETE.
+ */
+FLASH_Status FLASH_ProgramHalfWord(uint32_t Address, uint16_t Data)
+{
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Check the parameters */
+ assert_param(IS_FLASH_ADDRESS(Address));
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+
+ if(status == FLASH_COMPLETE)
+ {
+ /* if the previous operation is completed, proceed to program the new data */
+ FLASH->CR &= CR_PSIZE_MASK;
+ FLASH->CR |= FLASH_PSIZE_HALF_WORD;
+ FLASH->CR |= FLASH_CR_PG;
+
+ *(__IO uint16_t*)Address = Data;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+
+ /* if the program operation is completed, disable the PG Bit */
+ FLASH->CR &= (~FLASH_CR_PG);
+ }
+ /* Return the Program Status */
+ return status;
+}
+
+/**
+ * @brief Programs a byte (8-bit) at a specified address.
+ * @note This function can be used within all the device supply voltage ranges.
+ * @param Address: specifies the address to be programmed.
+ * This parameter can be any address in Program memory zone or in OTP zone.
+ * @param Data: specifies the data to be programmed.
+ * @retval FLASH Status: The returned value can be: FLASH_BUSY, FLASH_ERROR_PROGRAM,
+ * FLASH_ERROR_WRP, FLASH_ERROR_OPERATION or FLASH_COMPLETE.
+ */
+FLASH_Status FLASH_ProgramByte(uint32_t Address, uint8_t Data)
+{
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Check the parameters */
+ assert_param(IS_FLASH_ADDRESS(Address));
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+
+ if(status == FLASH_COMPLETE)
+ {
+ /* if the previous operation is completed, proceed to program the new data */
+ FLASH->CR &= CR_PSIZE_MASK;
+ FLASH->CR |= FLASH_PSIZE_BYTE;
+ FLASH->CR |= FLASH_CR_PG;
+
+ *(__IO uint8_t*)Address = Data;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+
+ /* if the program operation is completed, disable the PG Bit */
+ FLASH->CR &= (~FLASH_CR_PG);
+ }
+
+ /* Return the Program Status */
+ return status;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASH_Group3 Option Bytes Programming functions
+ * @brief Option Bytes Programming functions
+ *
+@verbatim
+ ===============================================================================
+ Option Bytes Programming functions
+ ===============================================================================
+
+ This group includes the following functions:
+ - void FLASH_OB_Unlock(void)
+ - void FLASH_OB_Lock(void)
+ - void FLASH_OB_WRPConfig(uint32_t OB_WRP, FunctionalState NewState)
+ - void FLASH_OB_RDPConfig(uint8_t OB_RDP)
+ - void FLASH_OB_UserConfig(uint8_t OB_IWDG, uint8_t OB_STOP, uint8_t OB_STDBY)
+ - void FLASH_OB_BORConfig(uint8_t OB_BOR)
+ - FLASH_Status FLASH_ProgramOTP(uint32_t Address, uint32_t Data)
+ - FLASH_Status FLASH_OB_Launch(void)
+ - uint32_t FLASH_OB_GetUser(void)
+ - uint8_t FLASH_OB_GetWRP(void)
+ - uint8_t FLASH_OB_GetRDP(void)
+ - uint8_t FLASH_OB_GetBOR(void)
+
+ Any operation of erase or program should follow these steps:
+ 1. Call the FLASH_OB_Unlock() function to enable the FLASH option control register access
+
+ 2. Call one or several functions to program the desired Option Bytes:
+ - void FLASH_OB_WRPConfig(uint32_t OB_WRP, FunctionalState NewState) => to Enable/Disable
+ the desired sector write protection
+ - void FLASH_OB_RDPConfig(uint8_t OB_RDP) => to set the desired read Protection Level
+ - void FLASH_OB_UserConfig(uint8_t OB_IWDG, uint8_t OB_STOP, uint8_t OB_STDBY) => to configure
+ the user Option Bytes.
+ - void FLASH_OB_BORConfig(uint8_t OB_BOR) => to set the BOR Level
+
+ 3. Once all needed Option Bytes to be programmed are correctly written, call the
+ FLASH_OB_Launch() function to launch the Option Bytes programming process.
+
+ @note When changing the IWDG mode from HW to SW or from SW to HW, a system
+ reset is needed to make the change effective.
+
+ 4. Call the FLASH_OB_Lock() function to disable the FLASH option control register
+ access (recommended to protect the Option Bytes against possible unwanted operations)
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Unlocks the FLASH Option Control Registers access.
+ * @param None
+ * @retval None
+ */
+void FLASH_OB_Unlock(void)
+{
+ if((FLASH->OPTCR & FLASH_OPTCR_OPTLOCK) != RESET)
+ {
+ /* Authorizes the Option Byte register programming */
+ FLASH->OPTKEYR = FLASH_OPT_KEY1;
+ FLASH->OPTKEYR = FLASH_OPT_KEY2;
+ }
+}
+
+/**
+ * @brief Locks the FLASH Option Control Registers access.
+ * @param None
+ * @retval None
+ */
+void FLASH_OB_Lock(void)
+{
+ /* Set the OPTLOCK Bit to lock the FLASH Option Byte Registers access */
+ FLASH->OPTCR |= FLASH_OPTCR_OPTLOCK;
+}
+
+/**
+ * @brief Enables or disables the write protection of the desired sectors
+ * @param OB_WRP: specifies the sector(s) to be write protected or unprotected.
+ * This parameter can be one of the following values:
+ * @arg OB_WRP: A value between OB_WRP_Sector0 and OB_WRP_Sector11
+ * @arg OB_WRP_Sector_All
+ * @param Newstate: new state of the Write Protection.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void FLASH_OB_WRPConfig(uint32_t OB_WRP, FunctionalState NewState)
+{
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Check the parameters */
+ assert_param(IS_OB_WRP(OB_WRP));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ status = FLASH_WaitForLastOperation();
+
+ if(status == FLASH_COMPLETE)
+ {
+ if(NewState != DISABLE)
+ {
+ *(__IO uint16_t*)OPTCR_BYTE2_ADDRESS &= (~OB_WRP);
+ }
+ else
+ {
+ *(__IO uint16_t*)OPTCR_BYTE2_ADDRESS |= (uint16_t)OB_WRP;
+ }
+ }
+}
+
+/**
+ * @brief Sets the read protection level.
+ * @param OB_RDP: specifies the read protection level.
+ * This parameter can be one of the following values:
+ * @arg OB_RDP_Level_0: No protection
+ * @arg OB_RDP_Level_1: Read protection of the memory
+ * @arg OB_RDP_Level_2: Full chip protection
+ *
+ * !!!Warning!!! When enabling OB_RDP level 2 it's no more possible to go back to level 1 or 0
+ *
+ * @retval None
+ */
+void FLASH_OB_RDPConfig(uint8_t OB_RDP)
+{
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Check the parameters */
+ assert_param(IS_OB_RDP(OB_RDP));
+
+ status = FLASH_WaitForLastOperation();
+
+ if(status == FLASH_COMPLETE)
+ {
+ *(__IO uint8_t*)OPTCR_BYTE1_ADDRESS = OB_RDP;
+
+ }
+}
+
+/**
+ * @brief Programs the FLASH User Option Byte: IWDG_SW / RST_STOP / RST_STDBY.
+ * @param OB_IWDG: Selects the IWDG mode
+ * This parameter can be one of the following values:
+ * @arg OB_IWDG_SW: Software IWDG selected
+ * @arg OB_IWDG_HW: Hardware IWDG selected
+ * @param OB_STOP: Reset event when entering STOP mode.
+ * This parameter can be one of the following values:
+ * @arg OB_STOP_NoRST: No reset generated when entering in STOP
+ * @arg OB_STOP_RST: Reset generated when entering in STOP
+ * @param OB_STDBY: Reset event when entering Standby mode.
+ * This parameter can be one of the following values:
+ * @arg OB_STDBY_NoRST: No reset generated when entering in STANDBY
+ * @arg OB_STDBY_RST: Reset generated when entering in STANDBY
+ * @retval None
+ */
+void FLASH_OB_UserConfig(uint8_t OB_IWDG, uint8_t OB_STOP, uint8_t OB_STDBY)
+{
+ uint8_t optiontmp = 0xFF;
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Check the parameters */
+ assert_param(IS_OB_IWDG_SOURCE(OB_IWDG));
+ assert_param(IS_OB_STOP_SOURCE(OB_STOP));
+ assert_param(IS_OB_STDBY_SOURCE(OB_STDBY));
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+
+ if(status == FLASH_COMPLETE)
+ {
+ /* Mask OPTLOCK, OPTSTRT and BOR_LEV bits */
+ optiontmp = (uint8_t)((*(__IO uint8_t *)OPTCR_BYTE0_ADDRESS) & (uint8_t)0x0F);
+
+ /* Update User Option Byte */
+ *(__IO uint8_t *)OPTCR_BYTE0_ADDRESS = OB_IWDG | (uint8_t)(OB_STDBY | (uint8_t)(OB_STOP | ((uint8_t)optiontmp)));
+ }
+}
+
+/**
+ * @brief Sets the BOR Level.
+ * @param OB_BOR: specifies the Option Bytes BOR Reset Level.
+ * This parameter can be one of the following values:
+ * @arg OB_BOR_LEVEL3: Supply voltage ranges from 2.7 to 3.6 V
+ * @arg OB_BOR_LEVEL2: Supply voltage ranges from 2.4 to 2.7 V
+ * @arg OB_BOR_LEVEL1: Supply voltage ranges from 2.1 to 2.4 V
+ * @arg OB_BOR_OFF: Supply voltage ranges from 1.62 to 2.1 V
+ * @retval None
+ */
+void FLASH_OB_BORConfig(uint8_t OB_BOR)
+{
+ /* Check the parameters */
+ assert_param(IS_OB_BOR(OB_BOR));
+
+ /* Set the BOR Level */
+ *(__IO uint8_t *)OPTCR_BYTE0_ADDRESS &= (~FLASH_OPTCR_BOR_LEV);
+ *(__IO uint8_t *)OPTCR_BYTE0_ADDRESS |= OB_BOR;
+
+}
+
+/**
+ * @brief Launch the option byte loading.
+ * @param None
+ * @retval FLASH Status: The returned value can be: FLASH_BUSY, FLASH_ERROR_PROGRAM,
+ * FLASH_ERROR_WRP, FLASH_ERROR_OPERATION or FLASH_COMPLETE.
+ */
+FLASH_Status FLASH_OB_Launch(void)
+{
+ FLASH_Status status = FLASH_COMPLETE;
+
+ /* Set the OPTSTRT bit in OPTCR register */
+ *(__IO uint8_t *)OPTCR_BYTE0_ADDRESS |= FLASH_OPTCR_OPTSTRT;
+
+ /* Wait for last operation to be completed */
+ status = FLASH_WaitForLastOperation();
+
+ return status;
+}
+
+/**
+ * @brief Returns the FLASH User Option Bytes values.
+ * @param None
+ * @retval The FLASH User Option Bytes values: IWDG_SW(Bit0), RST_STOP(Bit1)
+ * and RST_STDBY(Bit2).
+ */
+uint8_t FLASH_OB_GetUser(void)
+{
+ /* Return the User Option Byte */
+ return (uint8_t)(FLASH->OPTCR >> 5);
+}
+
+/**
+ * @brief Returns the FLASH Write Protection Option Bytes value.
+ * @param None
+ * @retval The FLASH Write Protection Option Bytes value
+ */
+uint16_t FLASH_OB_GetWRP(void)
+{
+ /* Return the FLASH write protection Register value */
+ return (*(__IO uint16_t *)(OPTCR_BYTE2_ADDRESS));
+}
+
+/**
+ * @brief Returns the FLASH Read Protection level.
+ * @param None
+ * @retval FLASH ReadOut Protection Status:
+ * - SET, when OB_RDP_Level_1 or OB_RDP_Level_2 is set
+ * - RESET, when OB_RDP_Level_0 is set
+ */
+FlagStatus FLASH_OB_GetRDP(void)
+{
+ FlagStatus readstatus = RESET;
+
+ if ((*(__IO uint8_t*)(OPTCR_BYTE1_ADDRESS) != (uint8_t)OB_RDP_Level_0))
+ {
+ readstatus = SET;
+ }
+ else
+ {
+ readstatus = RESET;
+ }
+ return readstatus;
+}
+
+/**
+ * @brief Returns the FLASH BOR level.
+ * @param None
+ * @retval The FLASH BOR level:
+ * - OB_BOR_LEVEL3: Supply voltage ranges from 2.7 to 3.6 V
+ * - OB_BOR_LEVEL2: Supply voltage ranges from 2.4 to 2.7 V
+ * - OB_BOR_LEVEL1: Supply voltage ranges from 2.1 to 2.4 V
+ * - OB_BOR_OFF : Supply voltage ranges from 1.62 to 2.1 V
+ */
+uint8_t FLASH_OB_GetBOR(void)
+{
+ /* Return the FLASH BOR level */
+ return (uint8_t)(*(__IO uint8_t *)(OPTCR_BYTE0_ADDRESS) & (uint8_t)0x0C);
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup FLASH_Group4 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts and flags management functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified FLASH interrupts.
+ * @param FLASH_IT: specifies the FLASH interrupt sources to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg FLASH_IT_ERR: FLASH Error Interrupt
+ * @arg FLASH_IT_EOP: FLASH end of operation Interrupt
+ * @retval None
+ */
+void FLASH_ITConfig(uint32_t FLASH_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FLASH_IT(FLASH_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if(NewState != DISABLE)
+ {
+ /* Enable the interrupt sources */
+ FLASH->CR |= FLASH_IT;
+ }
+ else
+ {
+ /* Disable the interrupt sources */
+ FLASH->CR &= ~(uint32_t)FLASH_IT;
+ }
+}
+
+/**
+ * @brief Checks whether the specified FLASH flag is set or not.
+ * @param FLASH_FLAG: specifies the FLASH flag to check.
+ * This parameter can be one of the following values:
+ * @arg FLASH_FLAG_EOP: FLASH End of Operation flag
+ * @arg FLASH_FLAG_OPERR: FLASH operation Error flag
+ * @arg FLASH_FLAG_WRPERR: FLASH Write protected error flag
+ * @arg FLASH_FLAG_PGAERR: FLASH Programming Alignment error flag
+ * @arg FLASH_FLAG_PGPERR: FLASH Programming Parallelism error flag
+ * @arg FLASH_FLAG_PGSERR: FLASH Programming Sequence error flag
+ * @arg FLASH_FLAG_BSY: FLASH Busy flag
+ * @retval The new state of FLASH_FLAG (SET or RESET).
+ */
+FlagStatus FLASH_GetFlagStatus(uint32_t FLASH_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_FLASH_GET_FLAG(FLASH_FLAG));
+
+ if((FLASH->SR & FLASH_FLAG) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ /* Return the new state of FLASH_FLAG (SET or RESET) */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the FLASH's pending flags.
+ * @param FLASH_FLAG: specifies the FLASH flags to clear.
+ * This parameter can be any combination of the following values:
+ * @arg FLASH_FLAG_EOP: FLASH End of Operation flag
+ * @arg FLASH_FLAG_OPERR: FLASH operation Error flag
+ * @arg FLASH_FLAG_WRPERR: FLASH Write protected error flag
+ * @arg FLASH_FLAG_PGAERR: FLASH Programming Alignment error flag
+ * @arg FLASH_FLAG_PGPERR: FLASH Programming Parallelism error flag
+ * @arg FLASH_FLAG_PGSERR: FLASH Programming Sequence error flag
+ * @retval None
+ */
+void FLASH_ClearFlag(uint32_t FLASH_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_FLASH_CLEAR_FLAG(FLASH_FLAG));
+
+ /* Clear the flags */
+ FLASH->SR = FLASH_FLAG;
+}
+
+/**
+ * @brief Returns the FLASH Status.
+ * @param None
+ * @retval FLASH Status: The returned value can be: FLASH_BUSY, FLASH_ERROR_PROGRAM,
+ * FLASH_ERROR_WRP, FLASH_ERROR_OPERATION or FLASH_COMPLETE.
+ */
+FLASH_Status FLASH_GetStatus(void)
+{
+ FLASH_Status flashstatus = FLASH_COMPLETE;
+
+ if((FLASH->SR & FLASH_FLAG_BSY) == FLASH_FLAG_BSY)
+ {
+ flashstatus = FLASH_BUSY;
+ }
+ else
+ {
+ if((FLASH->SR & FLASH_FLAG_WRPERR) != (uint32_t)0x00)
+ {
+ flashstatus = FLASH_ERROR_WRP;
+ }
+ else
+ {
+ if((FLASH->SR & (uint32_t)0xEF) != (uint32_t)0x00)
+ {
+ flashstatus = FLASH_ERROR_PROGRAM;
+ }
+ else
+ {
+ if((FLASH->SR & FLASH_FLAG_OPERR) != (uint32_t)0x00)
+ {
+ flashstatus = FLASH_ERROR_OPERATION;
+ }
+ else
+ {
+ flashstatus = FLASH_COMPLETE;
+ }
+ }
+ }
+ }
+ /* Return the FLASH Status */
+ return flashstatus;
+}
+
+/**
+ * @brief Waits for a FLASH operation to complete.
+ * @param None
+ * @retval FLASH Status: The returned value can be: FLASH_BUSY, FLASH_ERROR_PROGRAM,
+ * FLASH_ERROR_WRP, FLASH_ERROR_OPERATION or FLASH_COMPLETE.
+ */
+FLASH_Status FLASH_WaitForLastOperation(void)
+{
+ __IO FLASH_Status status = FLASH_COMPLETE;
+
+ /* Check for the FLASH Status */
+ status = FLASH_GetStatus();
+
+ /* Wait for the FLASH operation to complete by polling on BUSY flag to be reset.
+ Even if the FLASH operation fails, the BUSY flag will be reset and an error
+ flag will be set */
+ while(status == FLASH_BUSY)
+ {
+ status = FLASH_GetStatus();
+ }
+ /* Return the operation status */
+ return status;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_fsmc.c b/TimerCounter/SPL/src/stm32f4xx_fsmc.c
new file mode 100644
index 0000000..c9780a5
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_fsmc.c
@@ -0,0 +1,982 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_fsmc.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the FSMC peripheral:
+ * - Interface with SRAM, PSRAM, NOR and OneNAND memories
+ * - Interface with NAND memories
+ * - Interface with 16-bit PC Card compatible memories
+ * - Interrupts and flags management
+ *
+ ******************************************************************************
+
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_gpio.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup GPIO
+ * @brief GPIO driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup GPIO_Private_Functions
+ * @{
+ */
+
+/** @defgroup GPIO_Group1 Initialization and Configuration
+ * @brief Initialization and Configuration
+ *
+@verbatim
+ ===============================================================================
+ Initialization and Configuration
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the GPIOx peripheral registers to their default reset values.
+ * @note By default, The GPIO pins are configured in input floating mode (except JTAG pins).
+ * @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
+ * @retval None
+ */
+void GPIO_DeInit(GPIO_TypeDef* GPIOx)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+
+ if (GPIOx == GPIOA)
+ {
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOA, ENABLE);
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOA, DISABLE);
+ }
+ else if (GPIOx == GPIOB)
+ {
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOB, ENABLE);
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOB, DISABLE);
+ }
+ else if (GPIOx == GPIOC)
+ {
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOC, ENABLE);
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOC, DISABLE);
+ }
+ else if (GPIOx == GPIOD)
+ {
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOD, ENABLE);
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOD, DISABLE);
+ }
+ else if (GPIOx == GPIOE)
+ {
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOE, ENABLE);
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOE, DISABLE);
+ }
+ else if (GPIOx == GPIOF)
+ {
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOF, ENABLE);
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOF, DISABLE);
+ }
+ else if (GPIOx == GPIOG)
+ {
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOG, ENABLE);
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOG, DISABLE);
+ }
+ else if (GPIOx == GPIOH)
+ {
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOH, ENABLE);
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOH, DISABLE);
+ }
+ else
+ {
+ if (GPIOx == GPIOI)
+ {
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOI, ENABLE);
+ RCC_AHB1PeriphResetCmd(RCC_AHB1Periph_GPIOI, DISABLE);
+ }
+ }
+}
+
+/**
+ * @brief Initializes the GPIOx peripheral according to the specified parameters in the GPIO_InitStruct.
+ * @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
+ * @param GPIO_InitStruct: pointer to a GPIO_InitTypeDef structure that contains
+ * the configuration information for the specified GPIO peripheral.
+ * @retval None
+ */
+void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct)
+{
+ uint32_t pinpos = 0x00, pos = 0x00 , currentpin = 0x00;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GPIO_PIN(GPIO_InitStruct->GPIO_Pin));
+ assert_param(IS_GPIO_MODE(GPIO_InitStruct->GPIO_Mode));
+ assert_param(IS_GPIO_PUPD(GPIO_InitStruct->GPIO_PuPd));
+
+ /* -------------------------Configure the port pins---------------- */
+ /*-- GPIO Mode Configuration --*/
+ for (pinpos = 0x00; pinpos < 0x10; pinpos++)
+ {
+ pos = ((uint32_t)0x01) << pinpos;
+ /* Get the port pins position */
+ currentpin = (GPIO_InitStruct->GPIO_Pin) & pos;
+
+ if (currentpin == pos)
+ {
+ GPIOx->MODER &= ~(GPIO_MODER_MODER0 << (pinpos * 2));
+ GPIOx->MODER |= (((uint32_t)GPIO_InitStruct->GPIO_Mode) << (pinpos * 2));
+
+ if ((GPIO_InitStruct->GPIO_Mode == GPIO_Mode_OUT) || (GPIO_InitStruct->GPIO_Mode == GPIO_Mode_AF))
+ {
+ /* Check Speed mode parameters */
+ assert_param(IS_GPIO_SPEED(GPIO_InitStruct->GPIO_Speed));
+
+ /* Speed mode configuration */
+ GPIOx->OSPEEDR &= ~(GPIO_OSPEEDER_OSPEEDR0 << (pinpos * 2));
+ GPIOx->OSPEEDR |= ((uint32_t)(GPIO_InitStruct->GPIO_Speed) << (pinpos * 2));
+
+ /* Check Output mode parameters */
+ assert_param(IS_GPIO_OTYPE(GPIO_InitStruct->GPIO_OType));
+
+ /* Output mode configuration*/
+ GPIOx->OTYPER &= ~((GPIO_OTYPER_OT_0) << ((uint16_t)pinpos)) ;
+ GPIOx->OTYPER |= (uint16_t)(((uint16_t)GPIO_InitStruct->GPIO_OType) << ((uint16_t)pinpos));
+ }
+
+ /* Pull-up Pull down resistor configuration*/
+ GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPDR0 << ((uint16_t)pinpos * 2));
+ GPIOx->PUPDR |= (((uint32_t)GPIO_InitStruct->GPIO_PuPd) << (pinpos * 2));
+ }
+ }
+}
+
+/**
+ * @brief Fills each GPIO_InitStruct member with its default value.
+ * @param GPIO_InitStruct : pointer to a GPIO_InitTypeDef structure which will be initialized.
+ * @retval None
+ */
+void GPIO_StructInit(GPIO_InitTypeDef* GPIO_InitStruct)
+{
+ /* Reset GPIO init structure parameters values */
+ GPIO_InitStruct->GPIO_Pin = GPIO_Pin_All;
+ GPIO_InitStruct->GPIO_Mode = GPIO_Mode_IN;
+ GPIO_InitStruct->GPIO_Speed = GPIO_Speed_2MHz;
+ GPIO_InitStruct->GPIO_OType = GPIO_OType_PP;
+ GPIO_InitStruct->GPIO_PuPd = GPIO_PuPd_NOPULL;
+}
+
+/**
+ * @brief Locks GPIO Pins configuration registers.
+ * @note The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR,
+ * GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.
+ * @note The configuration of the locked GPIO pins can no longer be modified
+ * until the next reset.
+ * @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
+ * @param GPIO_Pin: specifies the port bit to be locked.
+ * This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
+ * @retval None
+ */
+void GPIO_PinLockConfig(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
+{
+ __IO uint32_t tmp = 0x00010000;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GPIO_PIN(GPIO_Pin));
+
+ tmp |= GPIO_Pin;
+ /* Set LCKK bit */
+ GPIOx->LCKR = tmp;
+ /* Reset LCKK bit */
+ GPIOx->LCKR = GPIO_Pin;
+ /* Set LCKK bit */
+ GPIOx->LCKR = tmp;
+ /* Read LCKK bit*/
+ tmp = GPIOx->LCKR;
+ /* Read LCKK bit*/
+ tmp = GPIOx->LCKR;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup GPIO_Group2 GPIO Read and Write
+ * @brief GPIO Read and Write
+ *
+@verbatim
+ ===============================================================================
+ GPIO Read and Write
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Reads the specified input port pin.
+ * @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
+ * @param GPIO_Pin: specifies the port bit to read.
+ * This parameter can be GPIO_Pin_x where x can be (0..15).
+ * @retval The input port pin value.
+ */
+uint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
+{
+ uint8_t bitstatus = 0x00;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GET_GPIO_PIN(GPIO_Pin));
+
+ if ((GPIOx->IDR & GPIO_Pin) != (uint32_t)Bit_RESET)
+ {
+ bitstatus = (uint8_t)Bit_SET;
+ }
+ else
+ {
+ bitstatus = (uint8_t)Bit_RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Reads the specified GPIO input data port.
+ * @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
+ * @retval GPIO input data port value.
+ */
+uint16_t GPIO_ReadInputData(GPIO_TypeDef* GPIOx)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+
+ return ((uint16_t)GPIOx->IDR);
+}
+
+/**
+ * @brief Reads the specified output data port bit.
+ * @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
+ * @param GPIO_Pin: specifies the port bit to read.
+ * This parameter can be GPIO_Pin_x where x can be (0..15).
+ * @retval The output port pin value.
+ */
+uint8_t GPIO_ReadOutputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
+{
+ uint8_t bitstatus = 0x00;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GET_GPIO_PIN(GPIO_Pin));
+
+ if ((GPIOx->ODR & GPIO_Pin) != (uint32_t)Bit_RESET)
+ {
+ bitstatus = (uint8_t)Bit_SET;
+ }
+ else
+ {
+ bitstatus = (uint8_t)Bit_RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Reads the specified GPIO output data port.
+ * @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
+ * @retval GPIO output data port value.
+ */
+uint16_t GPIO_ReadOutputData(GPIO_TypeDef* GPIOx)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+
+ return ((uint16_t)GPIOx->ODR);
+}
+
+/**
+ * @brief Sets the selected data port bits.
+ * @note This functions uses GPIOx_BSRR register to allow atomic read/modify
+ * accesses. In this way, there is no risk of an IRQ occurring between
+ * the read and the modify access.
+ * @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
+ * @param GPIO_Pin: specifies the port bits to be written.
+ * This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
+ * @retval None
+ */
+void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GPIO_PIN(GPIO_Pin));
+
+ GPIOx->BSRRL = GPIO_Pin;
+}
+
+/**
+ * @brief Clears the selected data port bits.
+ * @note This functions uses GPIOx_BSRR register to allow atomic read/modify
+ * accesses. In this way, there is no risk of an IRQ occurring between
+ * the read and the modify access.
+ * @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
+ * @param GPIO_Pin: specifies the port bits to be written.
+ * This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
+ * @retval None
+ */
+void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GPIO_PIN(GPIO_Pin));
+
+ GPIOx->BSRRH = GPIO_Pin;
+}
+
+/**
+ * @brief Sets or clears the selected data port bit.
+ * @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
+ * @param GPIO_Pin: specifies the port bit to be written.
+ * This parameter can be one of GPIO_Pin_x where x can be (0..15).
+ * @param BitVal: specifies the value to be written to the selected bit.
+ * This parameter can be one of the BitAction enum values:
+ * @arg Bit_RESET: to clear the port pin
+ * @arg Bit_SET: to set the port pin
+ * @retval None
+ */
+void GPIO_WriteBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitAction BitVal)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GET_GPIO_PIN(GPIO_Pin));
+ assert_param(IS_GPIO_BIT_ACTION(BitVal));
+
+ if (BitVal != Bit_RESET)
+ {
+ GPIOx->BSRRL = GPIO_Pin;
+ }
+ else
+ {
+ GPIOx->BSRRH = GPIO_Pin ;
+ }
+}
+
+/**
+ * @brief Writes data to the specified GPIO data port.
+ * @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
+ * @param PortVal: specifies the value to be written to the port output data register.
+ * @retval None
+ */
+void GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+
+ GPIOx->ODR = PortVal;
+}
+
+/**
+ * @brief Toggles the specified GPIO pins..
+ * @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
+ * @param GPIO_Pin: Specifies the pins to be toggled.
+ * @retval None
+ */
+void GPIO_ToggleBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)
+{
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+
+ GPIOx->ODR ^= GPIO_Pin;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup GPIO_Group3 GPIO Alternate functions configuration function
+ * @brief GPIO Alternate functions configuration function
+ *
+@verbatim
+ ===============================================================================
+ GPIO Alternate functions configuration function
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Changes the mapping of the specified pin.
+ * @param GPIOx: where x can be (A..I) to select the GPIO peripheral.
+ * @param GPIO_PinSource: specifies the pin for the Alternate function.
+ * This parameter can be GPIO_PinSourcex where x can be (0..15).
+ * @param GPIO_AFSelection: selects the pin to used as Alternate function.
+ * This parameter can be one of the following values:
+ * @arg GPIO_AF_RTC_50Hz: Connect RTC_50Hz pin to AF0 (default after reset)
+ * @arg GPIO_AF_MCO: Connect MCO pin (MCO1 and MCO2) to AF0 (default after reset)
+ * @arg GPIO_AF_TAMPER: Connect TAMPER pins (TAMPER_1 and TAMPER_2) to AF0 (default after reset)
+ * @arg GPIO_AF_SWJ: Connect SWJ pins (SWD and JTAG)to AF0 (default after reset)
+ * @arg GPIO_AF_TRACE: Connect TRACE pins to AF0 (default after reset)
+ * @arg GPIO_AF_TIM1: Connect TIM1 pins to AF1
+ * @arg GPIO_AF_TIM2: Connect TIM2 pins to AF1
+ * @arg GPIO_AF_TIM3: Connect TIM3 pins to AF2
+ * @arg GPIO_AF_TIM4: Connect TIM4 pins to AF2
+ * @arg GPIO_AF_TIM5: Connect TIM5 pins to AF2
+ * @arg GPIO_AF_TIM8: Connect TIM8 pins to AF3
+ * @arg GPIO_AF_TIM9: Connect TIM9 pins to AF3
+ * @arg GPIO_AF_TIM10: Connect TIM10 pins to AF3
+ * @arg GPIO_AF_TIM11: Connect TIM11 pins to AF3
+ * @arg GPIO_AF_I2C1: Connect I2C1 pins to AF4
+ * @arg GPIO_AF_I2C2: Connect I2C2 pins to AF4
+ * @arg GPIO_AF_I2C3: Connect I2C3 pins to AF4
+ * @arg GPIO_AF_SPI1: Connect SPI1 pins to AF5
+ * @arg GPIO_AF_SPI2: Connect SPI2/I2S2 pins to AF5
+ * @arg GPIO_AF_SPI3: Connect SPI3/I2S3 pins to AF6
+ * @arg GPIO_AF_I2S3ext: Connect I2S3ext pins to AF7
+ * @arg GPIO_AF_USART1: Connect USART1 pins to AF7
+ * @arg GPIO_AF_USART2: Connect USART2 pins to AF7
+ * @arg GPIO_AF_USART3: Connect USART3 pins to AF7
+ * @arg GPIO_AF_UART4: Connect UART4 pins to AF8
+ * @arg GPIO_AF_UART5: Connect UART5 pins to AF8
+ * @arg GPIO_AF_USART6: Connect USART6 pins to AF8
+ * @arg GPIO_AF_CAN1: Connect CAN1 pins to AF9
+ * @arg GPIO_AF_CAN2: Connect CAN2 pins to AF9
+ * @arg GPIO_AF_TIM12: Connect TIM12 pins to AF9
+ * @arg GPIO_AF_TIM13: Connect TIM13 pins to AF9
+ * @arg GPIO_AF_TIM14: Connect TIM14 pins to AF9
+ * @arg GPIO_AF_OTG_FS: Connect OTG_FS pins to AF10
+ * @arg GPIO_AF_OTG_HS: Connect OTG_HS pins to AF10
+ * @arg GPIO_AF_ETH: Connect ETHERNET pins to AF11
+ * @arg GPIO_AF_FSMC: Connect FSMC pins to AF12
+ * @arg GPIO_AF_OTG_HS_FS: Connect OTG HS (configured in FS) pins to AF12
+ * @arg GPIO_AF_SDIO: Connect SDIO pins to AF12
+ * @arg GPIO_AF_DCMI: Connect DCMI pins to AF13
+ * @arg GPIO_AF_EVENTOUT: Connect EVENTOUT pins to AF15
+ * @retval None
+ */
+void GPIO_PinAFConfig(GPIO_TypeDef* GPIOx, uint16_t GPIO_PinSource, uint8_t GPIO_AF)
+{
+ uint32_t temp = 0x00;
+ uint32_t temp_2 = 0x00;
+
+ /* Check the parameters */
+ assert_param(IS_GPIO_ALL_PERIPH(GPIOx));
+ assert_param(IS_GPIO_PIN_SOURCE(GPIO_PinSource));
+ assert_param(IS_GPIO_AF(GPIO_AF));
+
+ temp = ((uint32_t)(GPIO_AF) << ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4)) ;
+ GPIOx->AFR[GPIO_PinSource >> 0x03] &= ~((uint32_t)0xF << ((uint32_t)((uint32_t)GPIO_PinSource & (uint32_t)0x07) * 4)) ;
+ temp_2 = GPIOx->AFR[GPIO_PinSource >> 0x03] | temp;
+ GPIOx->AFR[GPIO_PinSource >> 0x03] = temp_2;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_hash.c b/TimerCounter/SPL/src/stm32f4xx_hash.c
new file mode 100644
index 0000000..d4fe401
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_hash.c
@@ -0,0 +1,700 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_hash.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the HASH / HMAC Processor (HASH) peripheral:
+ * - Initialization and Configuration functions
+ * - Message Digest generation functions
+ * - context swapping functions
+ * - DMA interface function
+ * - Interrupts and flags management
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ * HASH operation :
+ * ----------------
+ * 1. Enable the HASH controller clock using
+ * RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_HASH, ENABLE) function.
+ *
+ * 2. Initialise the HASH using HASH_Init() function.
+ *
+ * 3 . Reset the HASH processor core, so that the HASH will be ready
+ * to compute he message digest of a new message by using
+ * HASH_Reset() function.
+ *
+ * 4. Enable the HASH controller using the HASH_Cmd() function.
+ *
+ * 5. if using DMA for Data input transfer, Activate the DMA Request
+ * using HASH_DMACmd() function
+ *
+ * 6. if DMA is not used for data transfer, use HASH_DataIn() function
+ * to enter data to IN FIFO.
+ *
+ *
+ * 7. Configure the Number of valid bits in last word of the message
+ * using HASH_SetLastWordValidBitsNbr() function.
+ *
+ * 8. if the message length is not an exact multiple of 512 bits,
+ * then the function HASH_StartDigest() must be called to
+ * launch the computation of the final digest.
+ *
+ * 9. Once computed, the digest can be read using HASH_GetDigest()
+ * function.
+ *
+ * 10. To control HASH events you can use one of the following
+ * two methods:
+ * a- Check on HASH flags using the HASH_GetFlagStatus() function.
+ * b- Use HASH interrupts through the function HASH_ITConfig() at
+ * initialization phase and HASH_GetITStatus() function into
+ * interrupt routines in hashing phase.
+ * After checking on a flag you should clear it using HASH_ClearFlag()
+ * function. And after checking on an interrupt event you should
+ * clear it using HASH_ClearITPendingBit() function.
+ *
+ * 11. Save and restore hash processor context using
+ * HASH_SaveContext() and HASH_RestoreContext() functions.
+ *
+ *
+ *
+ * HMAC operation :
+ * ----------------
+ * The HMAC algorithm is used for message authentication, by
+ * irreversibly binding the message being processed to a key chosen
+ * by the user.
+ * For HMAC specifications, refer to "HMAC: keyed-hashing for message
+ * authentication, H. Krawczyk, M. Bellare, R. Canetti, February 1997"
+ *
+ * Basically, the HMAC algorithm consists of two nested hash operations:
+ * HMAC(message) = Hash[((key | pad) XOR 0x5C) | Hash(((key | pad) XOR 0x36) | message)]
+ * where:
+ * - "pad" is a sequence of zeroes needed to extend the key to the
+ * length of the underlying hash function data block (that is
+ * 512 bits for both the SHA-1 and MD5 hash algorithms)
+ * - "|" represents the concatenation operator
+ *
+ *
+ * To compute the HMAC, four different phases are required:
+ *
+ * 1. Initialise the HASH using HASH_Init() function to do HMAC
+ * operation.
+ *
+ * 2. The key (to be used for the inner hash function) is then given
+ * to the core. This operation follows the same mechanism as the
+ * one used to send the message in the hash operation (that is,
+ * by HASH_DataIn() function and, finally,
+ * HASH_StartDigest() function.
+ *
+ * 3. Once the last word has been entered and computation has started,
+ * the hash processor elaborates the key. It is then ready to
+ * accept the message text using the same mechanism as the one
+ * used to send the message in the hash operation.
+ *
+ * 4. After the first hash round, the hash processor returns "ready"
+ * to indicate that it is ready to receive the key to be used for
+ * the outer hash function (normally, this key is the same as the
+ * one used for the inner hash function). When the last word of
+ * the key is entered and computation starts, the HMAC result is
+ * made available using HASH_GetDigest() function.
+ *
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_hash.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup HASH
+ * @brief HASH driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup HASH_Private_Functions
+ * @{
+ */
+
+/** @defgroup HASH_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Initialization and Configuration functions
+ ===============================================================================
+ This section provides functions allowing to
+ - Initialize the HASH peripheral
+ - Configure the HASH Processor
+ - MD5/SHA1,
+ - HASH/HMAC,
+ - datatype
+ - HMAC Key (if mode = HMAC)
+ - Reset the HASH Processor
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the HASH peripheral registers to their default reset values
+ * @param None
+ * @retval None
+ */
+void HASH_DeInit(void)
+{
+ /* Enable HASH reset state */
+ RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_HASH, ENABLE);
+ /* Release HASH from reset state */
+ RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_HASH, DISABLE);
+}
+
+/**
+ * @brief Initializes the HASH peripheral according to the specified parameters
+ * in the HASH_InitStruct structure.
+ * @note the hash processor is reset when calling this function so that the
+ * HASH will be ready to compute the message digest of a new message.
+ * There is no need to call HASH_Reset() function.
+ * @param HASH_InitStruct: pointer to a HASH_InitTypeDef structure that contains
+ * the configuration information for the HASH peripheral.
+ * @note The field HASH_HMACKeyType in HASH_InitTypeDef must be filled only
+ * if the algorithm mode is HMAC.
+ * @retval None
+ */
+void HASH_Init(HASH_InitTypeDef* HASH_InitStruct)
+{
+ /* Check the parameters */
+ assert_param(IS_HASH_ALGOSELECTION(HASH_InitStruct->HASH_AlgoSelection));
+ assert_param(IS_HASH_DATATYPE(HASH_InitStruct->HASH_DataType));
+ assert_param(IS_HASH_ALGOMODE(HASH_InitStruct->HASH_AlgoMode));
+
+ /* Configure the Algorithm used, algorithm mode and the datatype */
+ HASH->CR &= ~ (HASH_CR_ALGO | HASH_CR_DATATYPE | HASH_CR_MODE);
+ HASH->CR |= (HASH_InitStruct->HASH_AlgoSelection | \
+ HASH_InitStruct->HASH_DataType | \
+ HASH_InitStruct->HASH_AlgoMode);
+
+ /* if algorithm mode is HMAC, set the Key */
+ if(HASH_InitStruct->HASH_AlgoMode == HASH_AlgoMode_HMAC)
+ {
+ assert_param(IS_HASH_HMAC_KEYTYPE(HASH_InitStruct->HASH_HMACKeyType));
+ HASH->CR &= ~HASH_CR_LKEY;
+ HASH->CR |= HASH_InitStruct->HASH_HMACKeyType;
+ }
+
+ /* Reset the HASH processor core, so that the HASH will be ready to compute
+ the message digest of a new message */
+ HASH->CR |= HASH_CR_INIT;
+}
+
+/**
+ * @brief Fills each HASH_InitStruct member with its default value.
+ * @param HASH_InitStruct : pointer to a HASH_InitTypeDef structure which will
+ * be initialized.
+ * @note The default values set are : Processor mode is HASH, Algorithm selected is SHA1,
+ * Data type selected is 32b and HMAC Key Type is short key.
+ * @retval None
+ */
+void HASH_StructInit(HASH_InitTypeDef* HASH_InitStruct)
+{
+ /* Initialize the HASH_AlgoSelection member */
+ HASH_InitStruct->HASH_AlgoSelection = HASH_AlgoSelection_SHA1;
+
+ /* Initialize the HASH_AlgoMode member */
+ HASH_InitStruct->HASH_AlgoMode = HASH_AlgoMode_HASH;
+
+ /* Initialize the HASH_DataType member */
+ HASH_InitStruct->HASH_DataType = HASH_DataType_32b;
+
+ /* Initialize the HASH_HMACKeyType member */
+ HASH_InitStruct->HASH_HMACKeyType = HASH_HMACKeyType_ShortKey;
+}
+
+/**
+ * @brief Resets the HASH processor core, so that the HASH will be ready
+ * to compute the message digest of a new message.
+ * @note Calling this function will clear the HASH_SR_DCIS (Digest calculation
+ * completion interrupt status) bit corresponding to HASH_IT_DCI
+ * interrupt and HASH_FLAG_DCIS flag.
+ * @param None
+ * @retval None
+ */
+void HASH_Reset(void)
+{
+ /* Reset the HASH processor core */
+ HASH->CR |= HASH_CR_INIT;
+}
+/**
+ * @}
+ */
+
+/** @defgroup HASH_Group2 Message Digest generation functions
+ * @brief Message Digest generation functions
+ *
+@verbatim
+ ===============================================================================
+ Message Digest generation functions
+ ===============================================================================
+ This section provides functions allowing the generation of message digest:
+ - Push data in the IN FIFO : using HASH_DataIn()
+ - Get the number of words set in IN FIFO, use HASH_GetInFIFOWordsNbr()
+ - set the last word valid bits number using HASH_SetLastWordValidBitsNbr()
+ - start digest calculation : using HASH_StartDigest()
+ - Get the Digest message : using HASH_GetDigest()
+
+@endverbatim
+ * @{
+ */
+
+
+/**
+ * @brief Configure the Number of valid bits in last word of the message
+ * @param ValidNumber: Number of valid bits in last word of the message.
+ * This parameter must be a number between 0 and 0x1F.
+ * - 0x00: All 32 bits of the last data written are valid
+ * - 0x01: Only bit [0] of the last data written is valid
+ * - 0x02: Only bits[1:0] of the last data written are valid
+ * - 0x03: Only bits[2:0] of the last data written are valid
+ * - ...
+ * - 0x1F: Only bits[30:0] of the last data written are valid
+ * @note The Number of valid bits must be set before to start the message
+ * digest competition (in Hash and HMAC) and key treatment(in HMAC).
+ * @retval None
+ */
+void HASH_SetLastWordValidBitsNbr(uint16_t ValidNumber)
+{
+ /* Check the parameters */
+ assert_param(IS_HASH_VALIDBITSNUMBER(ValidNumber));
+
+ /* Configure the Number of valid bits in last word of the message */
+ HASH->STR &= ~(HASH_STR_NBW);
+ HASH->STR |= ValidNumber;
+}
+
+/**
+ * @brief Writes data in the Data Input FIFO
+ * @param Data: new data of the message to be processed.
+ * @retval None
+ */
+void HASH_DataIn(uint32_t Data)
+{
+ /* Write in the DIN register a new data */
+ HASH->DIN = Data;
+}
+
+/**
+ * @brief Returns the number of words already pushed into the IN FIFO.
+ * @param None
+ * @retval The value of words already pushed into the IN FIFO.
+ */
+uint8_t HASH_GetInFIFOWordsNbr(void)
+{
+ /* Return the value of NBW bits */
+ return ((HASH->CR & HASH_CR_NBW) >> 8);
+}
+
+/**
+ * @brief Provides the message digest result.
+ * @note In MD5 mode, Data[4] filed of HASH_MsgDigest structure is not used
+ * and is read as zero.
+ * @param HASH_MessageDigest: pointer to a HASH_MsgDigest structure which will
+ * hold the message digest result
+ * @retval None
+ */
+void HASH_GetDigest(HASH_MsgDigest* HASH_MessageDigest)
+{
+ /* Get the data field */
+ HASH_MessageDigest->Data[0] = HASH->HR[0];
+ HASH_MessageDigest->Data[1] = HASH->HR[1];
+ HASH_MessageDigest->Data[2] = HASH->HR[2];
+ HASH_MessageDigest->Data[3] = HASH->HR[3];
+ HASH_MessageDigest->Data[4] = HASH->HR[4];
+}
+
+/**
+ * @brief Starts the message padding and calculation of the final message
+ * @param None
+ * @retval None
+ */
+void HASH_StartDigest(void)
+{
+ /* Start the Digest calculation */
+ HASH->STR |= HASH_STR_DCAL;
+}
+/**
+ * @}
+ */
+
+/** @defgroup HASH_Group3 Context swapping functions
+ * @brief Context swapping functions
+ *
+@verbatim
+ ===============================================================================
+ Context swapping functions
+ ===============================================================================
+
+ This section provides functions allowing to save and store HASH Context
+
+ It is possible to interrupt a HASH/HMAC process to perform another processing
+ with a higher priority, and to complete the interrupted process later on, when
+ the higher priority task is complete. To do so, the context of the interrupted
+ task must be saved from the HASH registers to memory, and then be restored
+ from memory to the HASH registers.
+
+ 1. To save the current context, use HASH_SaveContext() function
+ 2. To restore the saved context, use HASH_RestoreContext() function
+
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Save the Hash peripheral Context.
+ * @note The context can be saved only when no block is currently being
+ * processed. So user must wait for DINIS = 1 (the last block has been
+ * processed and the input FIFO is empty) or NBW != 0 (the FIFO is not
+ * full and no processing is ongoing).
+ * @param HASH_ContextSave: pointer to a HASH_Context structure that contains
+ * the repository for current context.
+ * @retval None
+ */
+void HASH_SaveContext(HASH_Context* HASH_ContextSave)
+{
+ uint8_t i = 0;
+
+ /* save context registers */
+ HASH_ContextSave->HASH_IMR = HASH->IMR;
+ HASH_ContextSave->HASH_STR = HASH->STR;
+ HASH_ContextSave->HASH_CR = HASH->CR;
+ for(i=0; i<=50;i++)
+ {
+ HASH_ContextSave->HASH_CSR[i] = HASH->CSR[i];
+ }
+}
+
+/**
+ * @brief Restore the Hash peripheral Context.
+ * @note After calling this function, user can restart the processing from the
+ * point where it has been interrupted.
+ * @param HASH_ContextRestore: pointer to a HASH_Context structure that contains
+ * the repository for saved context.
+ * @retval None
+ */
+void HASH_RestoreContext(HASH_Context* HASH_ContextRestore)
+{
+ uint8_t i = 0;
+
+ /* restore context registers */
+ HASH->IMR = HASH_ContextRestore->HASH_IMR;
+ HASH->STR = HASH_ContextRestore->HASH_STR;
+ HASH->CR = HASH_ContextRestore->HASH_CR;
+
+ /* Initialize the hash processor */
+ HASH->CR |= HASH_CR_INIT;
+
+ /* continue restoring context registers */
+ for(i=0; i<=50;i++)
+ {
+ HASH->CSR[i] = HASH_ContextRestore->HASH_CSR[i];
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup HASH_Group4 HASH's DMA interface Configuration function
+ * @brief HASH's DMA interface Configuration function
+ *
+@verbatim
+ ===============================================================================
+ HASH's DMA interface Configuration function
+ ===============================================================================
+
+ This section provides functions allowing to configure the DMA interface for
+ HASH/ HMAC data input transfer.
+
+ When the DMA mode is enabled (using the HASH_DMACmd() function), data can be
+ sent to the IN FIFO using the DMA peripheral.
+
+
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the HASH DMA interface.
+ * @note The DMA is disabled by hardware after the end of transfer.
+ * @param NewState: new state of the selected HASH DMA transfer request.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void HASH_DMACmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the HASH DMA request */
+ HASH->CR |= HASH_CR_DMAE;
+ }
+ else
+ {
+ /* Disable the HASH DMA request */
+ HASH->CR &= ~HASH_CR_DMAE;
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup HASH_Group5 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts and flags management functions
+ ===============================================================================
+
+ This section provides functions allowing to configure the HASH Interrupts and
+ to get the status and clear flags and Interrupts pending bits.
+
+ The HASH provides 2 Interrupts sources and 5 Flags:
+
+ Flags :
+ ----------
+ 1. HASH_FLAG_DINIS : set when 16 locations are free in the Data IN FIFO
+ which means that a new block (512 bit) can be entered
+ into the input buffer.
+
+ 2. HASH_FLAG_DCIS : set when Digest calculation is complete
+
+ 3. HASH_FLAG_DMAS : set when HASH's DMA interface is enabled (DMAE=1) or
+ a transfer is ongoing.
+ This Flag is cleared only by hardware.
+
+ 4. HASH_FLAG_BUSY : set when The hash core is processing a block of data
+ This Flag is cleared only by hardware.
+
+ 5. HASH_FLAG_DINNE : set when Data IN FIFO is not empty which means that
+ the Data IN FIFO contains at least one word of data.
+ This Flag is cleared only by hardware.
+
+ Interrupts :
+ ------------
+
+ 1. HASH_IT_DINI : if enabled, this interrupt source is pending when 16
+ locations are free in the Data IN FIFO which means that
+ a new block (512 bit) can be entered into the input buffer.
+ This interrupt source is cleared using
+ HASH_ClearITPendingBit(HASH_IT_DINI) function.
+
+ 2. HASH_IT_DCI : if enabled, this interrupt source is pending when Digest
+ calculation is complete.
+ This interrupt source is cleared using
+ HASH_ClearITPendingBit(HASH_IT_DCI) function.
+
+ Managing the HASH controller events :
+ ------------------------------------
+ The user should identify which mode will be used in his application to manage
+ the HASH controller events: Polling mode or Interrupt mode.
+
+ 1. In the Polling Mode it is advised to use the following functions:
+ - HASH_GetFlagStatus() : to check if flags events occur.
+ - HASH_ClearFlag() : to clear the flags events.
+
+ 2. In the Interrupt Mode it is advised to use the following functions:
+ - HASH_ITConfig() : to enable or disable the interrupt source.
+ - HASH_GetITStatus() : to check if Interrupt occurs.
+ - HASH_ClearITPendingBit() : to clear the Interrupt pending Bit
+ (corresponding Flag).
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified HASH interrupts.
+ * @param HASH_IT: specifies the HASH interrupt source to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg HASH_IT_DINI: Data Input interrupt
+ * @arg HASH_IT_DCI: Digest Calculation Completion Interrupt
+ * @param NewState: new state of the specified HASH interrupt.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void HASH_ITConfig(uint8_t HASH_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_HASH_IT(HASH_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected HASH interrupt */
+ HASH->IMR |= HASH_IT;
+ }
+ else
+ {
+ /* Disable the selected HASH interrupt */
+ HASH->IMR &= (uint8_t) ~HASH_IT;
+ }
+}
+
+/**
+ * @brief Checks whether the specified HASH flag is set or not.
+ * @param HASH_FLAG: specifies the HASH flag to check.
+ * This parameter can be one of the following values:
+ * @arg HASH_FLAG_DINIS: Data input interrupt status flag
+ * @arg HASH_FLAG_DCIS: Digest calculation completion interrupt status flag
+ * @arg HASH_FLAG_BUSY: Busy flag
+ * @arg HASH_FLAG_DMAS: DMAS Status flag
+ * @arg HASH_FLAG_DINNE: Data Input register (DIN) not empty status flag
+ * @retval The new state of HASH_FLAG (SET or RESET)
+ */
+FlagStatus HASH_GetFlagStatus(uint16_t HASH_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ uint32_t tempreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_HASH_GET_FLAG(HASH_FLAG));
+
+ /* check if the FLAG is in CR register */
+ if ((HASH_FLAG & HASH_FLAG_DINNE) != (uint16_t)RESET )
+ {
+ tempreg = HASH->CR;
+ }
+ else /* The FLAG is in SR register */
+ {
+ tempreg = HASH->SR;
+ }
+
+ /* Check the status of the specified HASH flag */
+ if ((tempreg & HASH_FLAG) != (uint16_t)RESET)
+ {
+ /* HASH is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* HASH_FLAG is reset */
+ bitstatus = RESET;
+ }
+
+ /* Return the HASH_FLAG status */
+ return bitstatus;
+}
+/**
+ * @brief Clears the HASH flags.
+ * @param HASH_FLAG: specifies the flag to clear.
+ * This parameter can be any combination of the following values:
+ * @arg HASH_FLAG_DINIS: Data Input Flag
+ * @arg HASH_FLAG_DCIS: Digest Calculation Completion Flag
+ * @retval None
+ */
+void HASH_ClearFlag(uint16_t HASH_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_HASH_CLEAR_FLAG(HASH_FLAG));
+
+ /* Clear the selected HASH flags */
+ HASH->SR = ~(uint32_t)HASH_FLAG;
+}
+/**
+ * @brief Checks whether the specified HASH interrupt has occurred or not.
+ * @param HASH_IT: specifies the HASH interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg HASH_IT_DINI: Data Input interrupt
+ * @arg HASH_IT_DCI: Digest Calculation Completion Interrupt
+ * @retval The new state of HASH_IT (SET or RESET).
+ */
+ITStatus HASH_GetITStatus(uint8_t HASH_IT)
+{
+ ITStatus bitstatus = RESET;
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_HASH_GET_IT(HASH_IT));
+
+
+ /* Check the status of the specified HASH interrupt */
+ tmpreg = HASH->SR;
+
+ if (((HASH->IMR & tmpreg) & HASH_IT) != RESET)
+ {
+ /* HASH_IT is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* HASH_IT is reset */
+ bitstatus = RESET;
+ }
+ /* Return the HASH_IT status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the HASH interrupt pending bit(s).
+ * @param HASH_IT: specifies the HASH interrupt pending bit(s) to clear.
+ * This parameter can be any combination of the following values:
+ * @arg HASH_IT_DINI: Data Input interrupt
+ * @arg HASH_IT_DCI: Digest Calculation Completion Interrupt
+ * @retval None
+ */
+void HASH_ClearITPendingBit(uint8_t HASH_IT)
+{
+ /* Check the parameters */
+ assert_param(IS_HASH_IT(HASH_IT));
+
+ /* Clear the selected HASH interrupt pending bit */
+ HASH->SR = (uint8_t)~HASH_IT;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_hash_md5.c b/TimerCounter/SPL/src/stm32f4xx_hash_md5.c
new file mode 100644
index 0000000..56d495f
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_hash_md5.c
@@ -0,0 +1,314 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_hash_md5.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides high level functions to compute the HASH MD5 and
+ * HMAC MD5 Digest of an input message.
+ * It uses the stm32f4xx_hash.c/.h drivers to access the STM32F4xx HASH
+ * peripheral.
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ * 1. Enable The HASH controller clock using
+ * RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_HASH, ENABLE); function.
+ *
+ * 2. Calculate the HASH MD5 Digest using HASH_MD5() function.
+ *
+ * 3. Calculate the HMAC MD5 Digest using HMAC_MD5() function.
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_hash.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup HASH
+ * @brief HASH driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+#define SHA1BUSY_TIMEOUT ((uint32_t) 0x00010000)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup HASH_Private_Functions
+ * @{
+ */
+
+/** @defgroup HASH_Group6 High Level SHA1 functions
+ * @brief High Level SHA1 Hash and HMAC functions
+ *
+@verbatim
+ ===============================================================================
+ High Level SHA1 Hash and HMAC functions
+ ===============================================================================
+
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Compute the HASH SHA1 digest.
+ * @param Input: pointer to the Input buffer to be treated.
+ * @param Ilen: length of the Input buffer.
+ * @param Output: the returned digest
+ * @retval An ErrorStatus enumeration value:
+ * - SUCCESS: digest computation done
+ * - ERROR: digest computation failed
+ */
+ErrorStatus HASH_SHA1(uint8_t *Input, uint32_t Ilen, uint8_t Output[20])
+{
+ HASH_InitTypeDef SHA1_HASH_InitStructure;
+ HASH_MsgDigest SHA1_MessageDigest;
+ __IO uint16_t nbvalidbitsdata = 0;
+ uint32_t i = 0;
+ __IO uint32_t counter = 0;
+ uint32_t busystatus = 0;
+ ErrorStatus status = SUCCESS;
+ uint32_t inputaddr = (uint32_t)Input;
+ uint32_t outputaddr = (uint32_t)Output;
+
+ /* Number of valid bits in last word of the Input data */
+ nbvalidbitsdata = 8 * (Ilen % 4);
+
+ /* HASH peripheral initialization */
+ HASH_DeInit();
+
+ /* HASH Configuration */
+ SHA1_HASH_InitStructure.HASH_AlgoSelection = HASH_AlgoSelection_SHA1;
+ SHA1_HASH_InitStructure.HASH_AlgoMode = HASH_AlgoMode_HASH;
+ SHA1_HASH_InitStructure.HASH_DataType = HASH_DataType_8b;
+ HASH_Init(&SHA1_HASH_InitStructure);
+
+ /* Configure the number of valid bits in last word of the data */
+ HASH_SetLastWordValidBitsNbr(nbvalidbitsdata);
+
+ /* Write the Input block in the IN FIFO */
+ for(i=0; i 64)
+ {
+ /* HMAC long Key */
+ SHA1_HASH_InitStructure.HASH_HMACKeyType = HASH_HMACKeyType_LongKey;
+ }
+ else
+ {
+ /* HMAC short Key */
+ SHA1_HASH_InitStructure.HASH_HMACKeyType = HASH_HMACKeyType_ShortKey;
+ }
+ HASH_Init(&SHA1_HASH_InitStructure);
+
+ /* Configure the number of valid bits in last word of the Key */
+ HASH_SetLastWordValidBitsNbr(nbvalidbitskey);
+
+ /* Write the Key */
+ for(i=0; iGPIO_Mode = GPIO_Mode_AF
+ * - Select the type, pull-up/pull-down and output speed via
+ * GPIO_PuPd, GPIO_OType and GPIO_Speed members
+ * - Call GPIO_Init() function
+ * Recommended configuration is Push-Pull, Pull-up, Open-Drain.
+ * Add an external pull up if necessary (typically 4.7 KOhm).
+ *
+ * 4. Program the Mode, duty cycle , Own address, Ack, Speed and Acknowledged
+ * Address using the I2C_Init() function.
+ *
+ * 5. Optionally you can enable/configure the following parameters without
+ * re-initialization (i.e there is no need to call again I2C_Init() function):
+ * - Enable the acknowledge feature using I2C_AcknowledgeConfig() function
+ * - Enable the dual addressing mode using I2C_DualAddressCmd() function
+ * - Enable the general call using the I2C_GeneralCallCmd() function
+ * - Enable the clock stretching using I2C_StretchClockCmd() function
+ * - Enable the fast mode duty cycle using the I2C_FastModeDutyCycleConfig()
+ * function.
+ * - Configure the NACK position for Master Receiver mode in case of
+ * 2 bytes reception using the function I2C_NACKPositionConfig().
+ * - Enable the PEC Calculation using I2C_CalculatePEC() function
+ * - For SMBus Mode:
+ * - Enable the Address Resolution Protocol (ARP) using I2C_ARPCmd() function
+ * - Configure the SMBusAlert pin using I2C_SMBusAlertConfig() function
+ *
+ * 6. Enable the NVIC and the corresponding interrupt using the function
+ * I2C_ITConfig() if you need to use interrupt mode.
+ *
+ * 7. When using the DMA mode
+ * - Configure the DMA using DMA_Init() function
+ * - Active the needed channel Request using I2C_DMACmd() or
+ * I2C_DMALastTransferCmd() function.
+ * @note When using DMA mode, I2C interrupts may be used at the same time to
+ * control the communication flow (Start/Stop/Ack... events and errors).
+ *
+ * 8. Enable the I2C using the I2C_Cmd() function.
+ *
+ * 9. Enable the DMA using the DMA_Cmd() function when using DMA mode in the
+ * transfers.
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_i2c.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup I2C
+ * @brief I2C driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+#define CR1_CLEAR_MASK ((uint16_t)0xFBF5) /*I2C_ClockSpeed));
+ assert_param(IS_I2C_MODE(I2C_InitStruct->I2C_Mode));
+ assert_param(IS_I2C_DUTY_CYCLE(I2C_InitStruct->I2C_DutyCycle));
+ assert_param(IS_I2C_OWN_ADDRESS1(I2C_InitStruct->I2C_OwnAddress1));
+ assert_param(IS_I2C_ACK_STATE(I2C_InitStruct->I2C_Ack));
+ assert_param(IS_I2C_ACKNOWLEDGE_ADDRESS(I2C_InitStruct->I2C_AcknowledgedAddress));
+
+/*---------------------------- I2Cx CR2 Configuration ------------------------*/
+ /* Get the I2Cx CR2 value */
+ tmpreg = I2Cx->CR2;
+ /* Clear frequency FREQ[5:0] bits */
+ tmpreg &= (uint16_t)~((uint16_t)I2C_CR2_FREQ);
+ /* Get pclk1 frequency value */
+ RCC_GetClocksFreq(&rcc_clocks);
+ pclk1 = rcc_clocks.PCLK1_Frequency;
+ /* Set frequency bits depending on pclk1 value */
+ freqrange = (uint16_t)(pclk1 / 1000000);
+ tmpreg |= freqrange;
+ /* Write to I2Cx CR2 */
+ I2Cx->CR2 = tmpreg;
+
+/*---------------------------- I2Cx CCR Configuration ------------------------*/
+ /* Disable the selected I2C peripheral to configure TRISE */
+ I2Cx->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_PE);
+ /* Reset tmpreg value */
+ /* Clear F/S, DUTY and CCR[11:0] bits */
+ tmpreg = 0;
+
+ /* Configure speed in standard mode */
+ if (I2C_InitStruct->I2C_ClockSpeed <= 100000)
+ {
+ /* Standard mode speed calculate */
+ result = (uint16_t)(pclk1 / (I2C_InitStruct->I2C_ClockSpeed << 1));
+ /* Test if CCR value is under 0x4*/
+ if (result < 0x04)
+ {
+ /* Set minimum allowed value */
+ result = 0x04;
+ }
+ /* Set speed value for standard mode */
+ tmpreg |= result;
+ /* Set Maximum Rise Time for standard mode */
+ I2Cx->TRISE = freqrange + 1;
+ }
+ /* Configure speed in fast mode */
+ /* To use the I2C at 400 KHz (in fast mode), the PCLK1 frequency (I2C peripheral
+ input clock) must be a multiple of 10 MHz */
+ else /*(I2C_InitStruct->I2C_ClockSpeed <= 400000)*/
+ {
+ if (I2C_InitStruct->I2C_DutyCycle == I2C_DutyCycle_2)
+ {
+ /* Fast mode speed calculate: Tlow/Thigh = 2 */
+ result = (uint16_t)(pclk1 / (I2C_InitStruct->I2C_ClockSpeed * 3));
+ }
+ else /*I2C_InitStruct->I2C_DutyCycle == I2C_DutyCycle_16_9*/
+ {
+ /* Fast mode speed calculate: Tlow/Thigh = 16/9 */
+ result = (uint16_t)(pclk1 / (I2C_InitStruct->I2C_ClockSpeed * 25));
+ /* Set DUTY bit */
+ result |= I2C_DutyCycle_16_9;
+ }
+
+ /* Test if CCR value is under 0x1*/
+ if ((result & I2C_CCR_CCR) == 0)
+ {
+ /* Set minimum allowed value */
+ result |= (uint16_t)0x0001;
+ }
+ /* Set speed value and set F/S bit for fast mode */
+ tmpreg |= (uint16_t)(result | I2C_CCR_FS);
+ /* Set Maximum Rise Time for fast mode */
+ I2Cx->TRISE = (uint16_t)(((freqrange * (uint16_t)300) / (uint16_t)1000) + (uint16_t)1);
+ }
+
+ /* Write to I2Cx CCR */
+ I2Cx->CCR = tmpreg;
+ /* Enable the selected I2C peripheral */
+ I2Cx->CR1 |= I2C_CR1_PE;
+
+/*---------------------------- I2Cx CR1 Configuration ------------------------*/
+ /* Get the I2Cx CR1 value */
+ tmpreg = I2Cx->CR1;
+ /* Clear ACK, SMBTYPE and SMBUS bits */
+ tmpreg &= CR1_CLEAR_MASK;
+ /* Configure I2Cx: mode and acknowledgement */
+ /* Set SMBTYPE and SMBUS bits according to I2C_Mode value */
+ /* Set ACK bit according to I2C_Ack value */
+ tmpreg |= (uint16_t)((uint32_t)I2C_InitStruct->I2C_Mode | I2C_InitStruct->I2C_Ack);
+ /* Write to I2Cx CR1 */
+ I2Cx->CR1 = tmpreg;
+
+/*---------------------------- I2Cx OAR1 Configuration -----------------------*/
+ /* Set I2Cx Own Address1 and acknowledged address */
+ I2Cx->OAR1 = (I2C_InitStruct->I2C_AcknowledgedAddress | I2C_InitStruct->I2C_OwnAddress1);
+}
+
+/**
+ * @brief Fills each I2C_InitStruct member with its default value.
+ * @param I2C_InitStruct: pointer to an I2C_InitTypeDef structure which will be initialized.
+ * @retval None
+ */
+void I2C_StructInit(I2C_InitTypeDef* I2C_InitStruct)
+{
+/*---------------- Reset I2C init structure parameters values ----------------*/
+ /* initialize the I2C_ClockSpeed member */
+ I2C_InitStruct->I2C_ClockSpeed = 5000;
+ /* Initialize the I2C_Mode member */
+ I2C_InitStruct->I2C_Mode = I2C_Mode_I2C;
+ /* Initialize the I2C_DutyCycle member */
+ I2C_InitStruct->I2C_DutyCycle = I2C_DutyCycle_2;
+ /* Initialize the I2C_OwnAddress1 member */
+ I2C_InitStruct->I2C_OwnAddress1 = 0;
+ /* Initialize the I2C_Ack member */
+ I2C_InitStruct->I2C_Ack = I2C_Ack_Disable;
+ /* Initialize the I2C_AcknowledgedAddress member */
+ I2C_InitStruct->I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
+}
+
+/**
+ * @brief Enables or disables the specified I2C peripheral.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param NewState: new state of the I2Cx peripheral.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void I2C_Cmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected I2C peripheral */
+ I2Cx->CR1 |= I2C_CR1_PE;
+ }
+ else
+ {
+ /* Disable the selected I2C peripheral */
+ I2Cx->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_PE);
+ }
+}
+
+/**
+ * @brief Generates I2Cx communication START condition.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param NewState: new state of the I2C START condition generation.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None.
+ */
+void I2C_GenerateSTART(I2C_TypeDef* I2Cx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Generate a START condition */
+ I2Cx->CR1 |= I2C_CR1_START;
+ }
+ else
+ {
+ /* Disable the START condition generation */
+ I2Cx->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_START);
+ }
+}
+
+/**
+ * @brief Generates I2Cx communication STOP condition.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param NewState: new state of the I2C STOP condition generation.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None.
+ */
+void I2C_GenerateSTOP(I2C_TypeDef* I2Cx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Generate a STOP condition */
+ I2Cx->CR1 |= I2C_CR1_STOP;
+ }
+ else
+ {
+ /* Disable the STOP condition generation */
+ I2Cx->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_STOP);
+ }
+}
+
+/**
+ * @brief Transmits the address byte to select the slave device.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param Address: specifies the slave address which will be transmitted
+ * @param I2C_Direction: specifies whether the I2C device will be a Transmitter
+ * or a Receiver.
+ * This parameter can be one of the following values
+ * @arg I2C_Direction_Transmitter: Transmitter mode
+ * @arg I2C_Direction_Receiver: Receiver mode
+ * @retval None.
+ */
+void I2C_Send7bitAddress(I2C_TypeDef* I2Cx, uint8_t Address, uint8_t I2C_Direction)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_I2C_DIRECTION(I2C_Direction));
+ /* Test on the direction to set/reset the read/write bit */
+ if (I2C_Direction != I2C_Direction_Transmitter)
+ {
+ /* Set the address bit0 for read */
+ Address |= I2C_OAR1_ADD0;
+ }
+ else
+ {
+ /* Reset the address bit0 for write */
+ Address &= (uint8_t)~((uint8_t)I2C_OAR1_ADD0);
+ }
+ /* Send the address */
+ I2Cx->DR = Address;
+}
+
+/**
+ * @brief Enables or disables the specified I2C acknowledge feature.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param NewState: new state of the I2C Acknowledgement.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None.
+ */
+void I2C_AcknowledgeConfig(I2C_TypeDef* I2Cx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the acknowledgement */
+ I2Cx->CR1 |= I2C_CR1_ACK;
+ }
+ else
+ {
+ /* Disable the acknowledgement */
+ I2Cx->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_ACK);
+ }
+}
+
+/**
+ * @brief Configures the specified I2C own address2.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param Address: specifies the 7bit I2C own address2.
+ * @retval None.
+ */
+void I2C_OwnAddress2Config(I2C_TypeDef* I2Cx, uint8_t Address)
+{
+ uint16_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+
+ /* Get the old register value */
+ tmpreg = I2Cx->OAR2;
+
+ /* Reset I2Cx Own address2 bit [7:1] */
+ tmpreg &= (uint16_t)~((uint16_t)I2C_OAR2_ADD2);
+
+ /* Set I2Cx Own address2 */
+ tmpreg |= (uint16_t)((uint16_t)Address & (uint16_t)0x00FE);
+
+ /* Store the new register value */
+ I2Cx->OAR2 = tmpreg;
+}
+
+/**
+ * @brief Enables or disables the specified I2C dual addressing mode.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param NewState: new state of the I2C dual addressing mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void I2C_DualAddressCmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable dual addressing mode */
+ I2Cx->OAR2 |= I2C_OAR2_ENDUAL;
+ }
+ else
+ {
+ /* Disable dual addressing mode */
+ I2Cx->OAR2 &= (uint16_t)~((uint16_t)I2C_OAR2_ENDUAL);
+ }
+}
+
+/**
+ * @brief Enables or disables the specified I2C general call feature.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param NewState: new state of the I2C General call.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void I2C_GeneralCallCmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable generall call */
+ I2Cx->CR1 |= I2C_CR1_ENGC;
+ }
+ else
+ {
+ /* Disable generall call */
+ I2Cx->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_ENGC);
+ }
+}
+
+/**
+ * @brief Enables or disables the specified I2C software reset.
+ * @note When software reset is enabled, the I2C IOs are released (this can
+ * be useful to recover from bus errors).
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param NewState: new state of the I2C software reset.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void I2C_SoftwareResetCmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Peripheral under reset */
+ I2Cx->CR1 |= I2C_CR1_SWRST;
+ }
+ else
+ {
+ /* Peripheral not under reset */
+ I2Cx->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_SWRST);
+ }
+}
+
+/**
+ * @brief Enables or disables the specified I2C Clock stretching.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param NewState: new state of the I2Cx Clock stretching.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void I2C_StretchClockCmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState == DISABLE)
+ {
+ /* Enable the selected I2C Clock stretching */
+ I2Cx->CR1 |= I2C_CR1_NOSTRETCH;
+ }
+ else
+ {
+ /* Disable the selected I2C Clock stretching */
+ I2Cx->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_NOSTRETCH);
+ }
+}
+
+/**
+ * @brief Selects the specified I2C fast mode duty cycle.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param I2C_DutyCycle: specifies the fast mode duty cycle.
+ * This parameter can be one of the following values:
+ * @arg I2C_DutyCycle_2: I2C fast mode Tlow/Thigh = 2
+ * @arg I2C_DutyCycle_16_9: I2C fast mode Tlow/Thigh = 16/9
+ * @retval None
+ */
+void I2C_FastModeDutyCycleConfig(I2C_TypeDef* I2Cx, uint16_t I2C_DutyCycle)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_I2C_DUTY_CYCLE(I2C_DutyCycle));
+ if (I2C_DutyCycle != I2C_DutyCycle_16_9)
+ {
+ /* I2C fast mode Tlow/Thigh=2 */
+ I2Cx->CCR &= I2C_DutyCycle_2;
+ }
+ else
+ {
+ /* I2C fast mode Tlow/Thigh=16/9 */
+ I2Cx->CCR |= I2C_DutyCycle_16_9;
+ }
+}
+
+/**
+ * @brief Selects the specified I2C NACK position in master receiver mode.
+ * @note This function is useful in I2C Master Receiver mode when the number
+ * of data to be received is equal to 2. In this case, this function
+ * should be called (with parameter I2C_NACKPosition_Next) before data
+ * reception starts,as described in the 2-byte reception procedure
+ * recommended in Reference Manual in Section: Master receiver.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param I2C_NACKPosition: specifies the NACK position.
+ * This parameter can be one of the following values:
+ * @arg I2C_NACKPosition_Next: indicates that the next byte will be the last
+ * received byte.
+ * @arg I2C_NACKPosition_Current: indicates that current byte is the last
+ * received byte.
+ *
+ * @note This function configures the same bit (POS) as I2C_PECPositionConfig()
+ * but is intended to be used in I2C mode while I2C_PECPositionConfig()
+ * is intended to used in SMBUS mode.
+ *
+ * @retval None
+ */
+void I2C_NACKPositionConfig(I2C_TypeDef* I2Cx, uint16_t I2C_NACKPosition)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_I2C_NACK_POSITION(I2C_NACKPosition));
+
+ /* Check the input parameter */
+ if (I2C_NACKPosition == I2C_NACKPosition_Next)
+ {
+ /* Next byte in shift register is the last received byte */
+ I2Cx->CR1 |= I2C_NACKPosition_Next;
+ }
+ else
+ {
+ /* Current byte in shift register is the last received byte */
+ I2Cx->CR1 &= I2C_NACKPosition_Current;
+ }
+}
+
+/**
+ * @brief Drives the SMBusAlert pin high or low for the specified I2C.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param I2C_SMBusAlert: specifies SMBAlert pin level.
+ * This parameter can be one of the following values:
+ * @arg I2C_SMBusAlert_Low: SMBAlert pin driven low
+ * @arg I2C_SMBusAlert_High: SMBAlert pin driven high
+ * @retval None
+ */
+void I2C_SMBusAlertConfig(I2C_TypeDef* I2Cx, uint16_t I2C_SMBusAlert)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_I2C_SMBUS_ALERT(I2C_SMBusAlert));
+ if (I2C_SMBusAlert == I2C_SMBusAlert_Low)
+ {
+ /* Drive the SMBusAlert pin Low */
+ I2Cx->CR1 |= I2C_SMBusAlert_Low;
+ }
+ else
+ {
+ /* Drive the SMBusAlert pin High */
+ I2Cx->CR1 &= I2C_SMBusAlert_High;
+ }
+}
+
+/**
+ * @brief Enables or disables the specified I2C ARP.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param NewState: new state of the I2Cx ARP.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void I2C_ARPCmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected I2C ARP */
+ I2Cx->CR1 |= I2C_CR1_ENARP;
+ }
+ else
+ {
+ /* Disable the selected I2C ARP */
+ I2Cx->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_ENARP);
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup I2C_Group2 Data transfers functions
+ * @brief Data transfers functions
+ *
+@verbatim
+ ===============================================================================
+ Data transfers functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Sends a data byte through the I2Cx peripheral.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param Data: Byte to be transmitted..
+ * @retval None
+ */
+void I2C_SendData(I2C_TypeDef* I2Cx, uint8_t Data)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ /* Write in the DR register the data to be sent */
+ I2Cx->DR = Data;
+}
+
+/**
+ * @brief Returns the most recent received data by the I2Cx peripheral.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @retval The value of the received data.
+ */
+uint8_t I2C_ReceiveData(I2C_TypeDef* I2Cx)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ /* Return the data in the DR register */
+ return (uint8_t)I2Cx->DR;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup I2C_Group3 PEC management functions
+ * @brief PEC management functions
+ *
+@verbatim
+ ===============================================================================
+ PEC management functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified I2C PEC transfer.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param NewState: new state of the I2C PEC transmission.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void I2C_TransmitPEC(I2C_TypeDef* I2Cx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected I2C PEC transmission */
+ I2Cx->CR1 |= I2C_CR1_PEC;
+ }
+ else
+ {
+ /* Disable the selected I2C PEC transmission */
+ I2Cx->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_PEC);
+ }
+}
+
+/**
+ * @brief Selects the specified I2C PEC position.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param I2C_PECPosition: specifies the PEC position.
+ * This parameter can be one of the following values:
+ * @arg I2C_PECPosition_Next: indicates that the next byte is PEC
+ * @arg I2C_PECPosition_Current: indicates that current byte is PEC
+ *
+ * @note This function configures the same bit (POS) as I2C_NACKPositionConfig()
+ * but is intended to be used in SMBUS mode while I2C_NACKPositionConfig()
+ * is intended to used in I2C mode.
+ *
+ * @retval None
+ */
+void I2C_PECPositionConfig(I2C_TypeDef* I2Cx, uint16_t I2C_PECPosition)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_I2C_PEC_POSITION(I2C_PECPosition));
+ if (I2C_PECPosition == I2C_PECPosition_Next)
+ {
+ /* Next byte in shift register is PEC */
+ I2Cx->CR1 |= I2C_PECPosition_Next;
+ }
+ else
+ {
+ /* Current byte in shift register is PEC */
+ I2Cx->CR1 &= I2C_PECPosition_Current;
+ }
+}
+
+/**
+ * @brief Enables or disables the PEC value calculation of the transferred bytes.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param NewState: new state of the I2Cx PEC value calculation.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void I2C_CalculatePEC(I2C_TypeDef* I2Cx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected I2C PEC calculation */
+ I2Cx->CR1 |= I2C_CR1_ENPEC;
+ }
+ else
+ {
+ /* Disable the selected I2C PEC calculation */
+ I2Cx->CR1 &= (uint16_t)~((uint16_t)I2C_CR1_ENPEC);
+ }
+}
+
+/**
+ * @brief Returns the PEC value for the specified I2C.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @retval The PEC value.
+ */
+uint8_t I2C_GetPEC(I2C_TypeDef* I2Cx)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ /* Return the selected I2C PEC value */
+ return ((I2Cx->SR2) >> 8);
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup I2C_Group4 DMA transfers management functions
+ * @brief DMA transfers management functions
+ *
+@verbatim
+ ===============================================================================
+ DMA transfers management functions
+ ===============================================================================
+ This section provides functions allowing to configure the I2C DMA channels
+ requests.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified I2C DMA requests.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param NewState: new state of the I2C DMA transfer.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void I2C_DMACmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected I2C DMA requests */
+ I2Cx->CR2 |= I2C_CR2_DMAEN;
+ }
+ else
+ {
+ /* Disable the selected I2C DMA requests */
+ I2Cx->CR2 &= (uint16_t)~((uint16_t)I2C_CR2_DMAEN);
+ }
+}
+
+/**
+ * @brief Specifies that the next DMA transfer is the last one.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param NewState: new state of the I2C DMA last transfer.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void I2C_DMALastTransferCmd(I2C_TypeDef* I2Cx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Next DMA transfer is the last transfer */
+ I2Cx->CR2 |= I2C_CR2_LAST;
+ }
+ else
+ {
+ /* Next DMA transfer is not the last transfer */
+ I2Cx->CR2 &= (uint16_t)~((uint16_t)I2C_CR2_LAST);
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup I2C_Group5 Interrupts events and flags management functions
+ * @brief Interrupts, events and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts, events and flags management functions
+ ===============================================================================
+ This section provides functions allowing to configure the I2C Interrupts
+ sources and check or clear the flags or pending bits status.
+ The user should identify which mode will be used in his application to manage
+ the communication: Polling mode, Interrupt mode or DMA mode.
+
+ ===============================================================================
+ I2C State Monitoring Functions
+ ===============================================================================
+ This I2C driver provides three different ways for I2C state monitoring
+ depending on the application requirements and constraints:
+
+
+ 1. Basic state monitoring (Using I2C_CheckEvent() function)
+ -----------------------------------------------------------
+ It compares the status registers (SR1 and SR2) content to a given event
+ (can be the combination of one or more flags).
+ It returns SUCCESS if the current status includes the given flags
+ and returns ERROR if one or more flags are missing in the current status.
+
+ - When to use
+ - This function is suitable for most applications as well as for startup
+ activity since the events are fully described in the product reference
+ manual (RM0090).
+ - It is also suitable for users who need to define their own events.
+
+ - Limitations
+ - If an error occurs (ie. error flags are set besides to the monitored
+ flags), the I2C_CheckEvent() function may return SUCCESS despite
+ the communication hold or corrupted real state.
+ In this case, it is advised to use error interrupts to monitor
+ the error events and handle them in the interrupt IRQ handler.
+
+ @note
+ For error management, it is advised to use the following functions:
+ - I2C_ITConfig() to configure and enable the error interrupts (I2C_IT_ERR).
+ - I2Cx_ER_IRQHandler() which is called when the error interrupt occurs.
+ Where x is the peripheral instance (I2C1, I2C2 ...)
+ - I2C_GetFlagStatus() or I2C_GetITStatus() to be called into the
+ I2Cx_ER_IRQHandler() function in order to determine which error occurred.
+ - I2C_ClearFlag() or I2C_ClearITPendingBit() and/or I2C_SoftwareResetCmd()
+ and/or I2C_GenerateStop() in order to clear the error flag and source
+ and return to correct communication status.
+
+
+ 2. Advanced state monitoring (Using the function I2C_GetLastEvent())
+ --------------------------------------------------------------------
+ Using the function I2C_GetLastEvent() which returns the image of both status
+ registers in a single word (uint32_t) (Status Register 2 value is shifted left
+ by 16 bits and concatenated to Status Register 1).
+
+ - When to use
+ - This function is suitable for the same applications above but it
+ allows to overcome the mentioned limitation of I2C_GetFlagStatus()
+ function.
+ - The returned value could be compared to events already defined in
+ the library (stm32f4xx_i2c.h) or to custom values defined by user.
+ This function is suitable when multiple flags are monitored at the
+ same time.
+ - At the opposite of I2C_CheckEvent() function, this function allows
+ user to choose when an event is accepted (when all events flags are
+ set and no other flags are set or just when the needed flags are set
+ like I2C_CheckEvent() function.
+
+ - Limitations
+ - User may need to define his own events.
+ - Same remark concerning the error management is applicable for this
+ function if user decides to check only regular communication flags
+ (and ignores error flags).
+
+
+ 3. Flag-based state monitoring (Using the function I2C_GetFlagStatus())
+ -----------------------------------------------------------------------
+
+ Using the function I2C_GetFlagStatus() which simply returns the status of
+ one single flag (ie. I2C_FLAG_RXNE ...).
+
+ - When to use
+ - This function could be used for specific applications or in debug
+ phase.
+ - It is suitable when only one flag checking is needed (most I2C
+ events are monitored through multiple flags).
+ - Limitations:
+ - When calling this function, the Status register is accessed.
+ Some flags are cleared when the status register is accessed.
+ So checking the status of one Flag, may clear other ones.
+ - Function may need to be called twice or more in order to monitor
+ one single event.
+
+ For detailed description of Events, please refer to section I2C_Events in
+ stm32f4xx_i2c.h file.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Reads the specified I2C register and returns its value.
+ * @param I2C_Register: specifies the register to read.
+ * This parameter can be one of the following values:
+ * @arg I2C_Register_CR1: CR1 register.
+ * @arg I2C_Register_CR2: CR2 register.
+ * @arg I2C_Register_OAR1: OAR1 register.
+ * @arg I2C_Register_OAR2: OAR2 register.
+ * @arg I2C_Register_DR: DR register.
+ * @arg I2C_Register_SR1: SR1 register.
+ * @arg I2C_Register_SR2: SR2 register.
+ * @arg I2C_Register_CCR: CCR register.
+ * @arg I2C_Register_TRISE: TRISE register.
+ * @retval The value of the read register.
+ */
+uint16_t I2C_ReadRegister(I2C_TypeDef* I2Cx, uint8_t I2C_Register)
+{
+ __IO uint32_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_I2C_REGISTER(I2C_Register));
+
+ tmp = (uint32_t) I2Cx;
+ tmp += I2C_Register;
+
+ /* Return the selected register value */
+ return (*(__IO uint16_t *) tmp);
+}
+
+/**
+ * @brief Enables or disables the specified I2C interrupts.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param I2C_IT: specifies the I2C interrupts sources to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg I2C_IT_BUF: Buffer interrupt mask
+ * @arg I2C_IT_EVT: Event interrupt mask
+ * @arg I2C_IT_ERR: Error interrupt mask
+ * @param NewState: new state of the specified I2C interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void I2C_ITConfig(I2C_TypeDef* I2Cx, uint16_t I2C_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ assert_param(IS_I2C_CONFIG_IT(I2C_IT));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected I2C interrupts */
+ I2Cx->CR2 |= I2C_IT;
+ }
+ else
+ {
+ /* Disable the selected I2C interrupts */
+ I2Cx->CR2 &= (uint16_t)~I2C_IT;
+ }
+}
+
+/*
+ ===============================================================================
+ 1. Basic state monitoring
+ ===============================================================================
+ */
+
+/**
+ * @brief Checks whether the last I2Cx Event is equal to the one passed
+ * as parameter.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param I2C_EVENT: specifies the event to be checked.
+ * This parameter can be one of the following values:
+ * @arg I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED: EV1
+ * @arg I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED: EV1
+ * @arg I2C_EVENT_SLAVE_TRANSMITTER_SECONDADDRESS_MATCHED: EV1
+ * @arg I2C_EVENT_SLAVE_RECEIVER_SECONDADDRESS_MATCHED: EV1
+ * @arg I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED: EV1
+ * @arg I2C_EVENT_SLAVE_BYTE_RECEIVED: EV2
+ * @arg (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_DUALF): EV2
+ * @arg (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_GENCALL): EV2
+ * @arg I2C_EVENT_SLAVE_BYTE_TRANSMITTED: EV3
+ * @arg (I2C_EVENT_SLAVE_BYTE_TRANSMITTED | I2C_FLAG_DUALF): EV3
+ * @arg (I2C_EVENT_SLAVE_BYTE_TRANSMITTED | I2C_FLAG_GENCALL): EV3
+ * @arg I2C_EVENT_SLAVE_ACK_FAILURE: EV3_2
+ * @arg I2C_EVENT_SLAVE_STOP_DETECTED: EV4
+ * @arg I2C_EVENT_MASTER_MODE_SELECT: EV5
+ * @arg I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED: EV6
+ * @arg I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED: EV6
+ * @arg I2C_EVENT_MASTER_BYTE_RECEIVED: EV7
+ * @arg I2C_EVENT_MASTER_BYTE_TRANSMITTING: EV8
+ * @arg I2C_EVENT_MASTER_BYTE_TRANSMITTED: EV8_2
+ * @arg I2C_EVENT_MASTER_MODE_ADDRESS10: EV9
+ *
+ * @note For detailed description of Events, please refer to section I2C_Events
+ * in stm32f4xx_i2c.h file.
+ *
+ * @retval An ErrorStatus enumeration value:
+ * - SUCCESS: Last event is equal to the I2C_EVENT
+ * - ERROR: Last event is different from the I2C_EVENT
+ */
+ErrorStatus I2C_CheckEvent(I2C_TypeDef* I2Cx, uint32_t I2C_EVENT)
+{
+ uint32_t lastevent = 0;
+ uint32_t flag1 = 0, flag2 = 0;
+ ErrorStatus status = ERROR;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_I2C_EVENT(I2C_EVENT));
+
+ /* Read the I2Cx status register */
+ flag1 = I2Cx->SR1;
+ flag2 = I2Cx->SR2;
+ flag2 = flag2 << 16;
+
+ /* Get the last event value from I2C status register */
+ lastevent = (flag1 | flag2) & FLAG_MASK;
+
+ /* Check whether the last event contains the I2C_EVENT */
+ if ((lastevent & I2C_EVENT) == I2C_EVENT)
+ {
+ /* SUCCESS: last event is equal to I2C_EVENT */
+ status = SUCCESS;
+ }
+ else
+ {
+ /* ERROR: last event is different from I2C_EVENT */
+ status = ERROR;
+ }
+ /* Return status */
+ return status;
+}
+
+/*
+ ===============================================================================
+ 2. Advanced state monitoring
+ ===============================================================================
+ */
+
+/**
+ * @brief Returns the last I2Cx Event.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ *
+ * @note For detailed description of Events, please refer to section I2C_Events
+ * in stm32f4xx_i2c.h file.
+ *
+ * @retval The last event
+ */
+uint32_t I2C_GetLastEvent(I2C_TypeDef* I2Cx)
+{
+ uint32_t lastevent = 0;
+ uint32_t flag1 = 0, flag2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+
+ /* Read the I2Cx status register */
+ flag1 = I2Cx->SR1;
+ flag2 = I2Cx->SR2;
+ flag2 = flag2 << 16;
+
+ /* Get the last event value from I2C status register */
+ lastevent = (flag1 | flag2) & FLAG_MASK;
+
+ /* Return status */
+ return lastevent;
+}
+
+/*
+ ===============================================================================
+ 3. Flag-based state monitoring
+ ===============================================================================
+ */
+
+/**
+ * @brief Checks whether the specified I2C flag is set or not.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param I2C_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg I2C_FLAG_DUALF: Dual flag (Slave mode)
+ * @arg I2C_FLAG_SMBHOST: SMBus host header (Slave mode)
+ * @arg I2C_FLAG_SMBDEFAULT: SMBus default header (Slave mode)
+ * @arg I2C_FLAG_GENCALL: General call header flag (Slave mode)
+ * @arg I2C_FLAG_TRA: Transmitter/Receiver flag
+ * @arg I2C_FLAG_BUSY: Bus busy flag
+ * @arg I2C_FLAG_MSL: Master/Slave flag
+ * @arg I2C_FLAG_SMBALERT: SMBus Alert flag
+ * @arg I2C_FLAG_TIMEOUT: Timeout or Tlow error flag
+ * @arg I2C_FLAG_PECERR: PEC error in reception flag
+ * @arg I2C_FLAG_OVR: Overrun/Underrun flag (Slave mode)
+ * @arg I2C_FLAG_AF: Acknowledge failure flag
+ * @arg I2C_FLAG_ARLO: Arbitration lost flag (Master mode)
+ * @arg I2C_FLAG_BERR: Bus error flag
+ * @arg I2C_FLAG_TXE: Data register empty flag (Transmitter)
+ * @arg I2C_FLAG_RXNE: Data register not empty (Receiver) flag
+ * @arg I2C_FLAG_STOPF: Stop detection flag (Slave mode)
+ * @arg I2C_FLAG_ADD10: 10-bit header sent flag (Master mode)
+ * @arg I2C_FLAG_BTF: Byte transfer finished flag
+ * @arg I2C_FLAG_ADDR: Address sent flag (Master mode) "ADSL"
+ * Address matched flag (Slave mode)"ENDAD"
+ * @arg I2C_FLAG_SB: Start bit flag (Master mode)
+ * @retval The new state of I2C_FLAG (SET or RESET).
+ */
+FlagStatus I2C_GetFlagStatus(I2C_TypeDef* I2Cx, uint32_t I2C_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ __IO uint32_t i2creg = 0, i2cxbase = 0;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_I2C_GET_FLAG(I2C_FLAG));
+
+ /* Get the I2Cx peripheral base address */
+ i2cxbase = (uint32_t)I2Cx;
+
+ /* Read flag register index */
+ i2creg = I2C_FLAG >> 28;
+
+ /* Get bit[23:0] of the flag */
+ I2C_FLAG &= FLAG_MASK;
+
+ if(i2creg != 0)
+ {
+ /* Get the I2Cx SR1 register address */
+ i2cxbase += 0x14;
+ }
+ else
+ {
+ /* Flag in I2Cx SR2 Register */
+ I2C_FLAG = (uint32_t)(I2C_FLAG >> 16);
+ /* Get the I2Cx SR2 register address */
+ i2cxbase += 0x18;
+ }
+
+ if(((*(__IO uint32_t *)i2cxbase) & I2C_FLAG) != (uint32_t)RESET)
+ {
+ /* I2C_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* I2C_FLAG is reset */
+ bitstatus = RESET;
+ }
+
+ /* Return the I2C_FLAG status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the I2Cx's pending flags.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param I2C_FLAG: specifies the flag to clear.
+ * This parameter can be any combination of the following values:
+ * @arg I2C_FLAG_SMBALERT: SMBus Alert flag
+ * @arg I2C_FLAG_TIMEOUT: Timeout or Tlow error flag
+ * @arg I2C_FLAG_PECERR: PEC error in reception flag
+ * @arg I2C_FLAG_OVR: Overrun/Underrun flag (Slave mode)
+ * @arg I2C_FLAG_AF: Acknowledge failure flag
+ * @arg I2C_FLAG_ARLO: Arbitration lost flag (Master mode)
+ * @arg I2C_FLAG_BERR: Bus error flag
+ *
+ * @note STOPF (STOP detection) is cleared by software sequence: a read operation
+ * to I2C_SR1 register (I2C_GetFlagStatus()) followed by a write operation
+ * to I2C_CR1 register (I2C_Cmd() to re-enable the I2C peripheral).
+ * @note ADD10 (10-bit header sent) is cleared by software sequence: a read
+ * operation to I2C_SR1 (I2C_GetFlagStatus()) followed by writing the
+ * second byte of the address in DR register.
+ * @note BTF (Byte Transfer Finished) is cleared by software sequence: a read
+ * operation to I2C_SR1 register (I2C_GetFlagStatus()) followed by a
+ * read/write to I2C_DR register (I2C_SendData()).
+ * @note ADDR (Address sent) is cleared by software sequence: a read operation to
+ * I2C_SR1 register (I2C_GetFlagStatus()) followed by a read operation to
+ * I2C_SR2 register ((void)(I2Cx->SR2)).
+ * @note SB (Start Bit) is cleared software sequence: a read operation to I2C_SR1
+ * register (I2C_GetFlagStatus()) followed by a write operation to I2C_DR
+ * register (I2C_SendData()).
+ *
+ * @retval None
+ */
+void I2C_ClearFlag(I2C_TypeDef* I2Cx, uint32_t I2C_FLAG)
+{
+ uint32_t flagpos = 0;
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_I2C_CLEAR_FLAG(I2C_FLAG));
+ /* Get the I2C flag position */
+ flagpos = I2C_FLAG & FLAG_MASK;
+ /* Clear the selected I2C flag */
+ I2Cx->SR1 = (uint16_t)~flagpos;
+}
+
+/**
+ * @brief Checks whether the specified I2C interrupt has occurred or not.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param I2C_IT: specifies the interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg I2C_IT_SMBALERT: SMBus Alert flag
+ * @arg I2C_IT_TIMEOUT: Timeout or Tlow error flag
+ * @arg I2C_IT_PECERR: PEC error in reception flag
+ * @arg I2C_IT_OVR: Overrun/Underrun flag (Slave mode)
+ * @arg I2C_IT_AF: Acknowledge failure flag
+ * @arg I2C_IT_ARLO: Arbitration lost flag (Master mode)
+ * @arg I2C_IT_BERR: Bus error flag
+ * @arg I2C_IT_TXE: Data register empty flag (Transmitter)
+ * @arg I2C_IT_RXNE: Data register not empty (Receiver) flag
+ * @arg I2C_IT_STOPF: Stop detection flag (Slave mode)
+ * @arg I2C_IT_ADD10: 10-bit header sent flag (Master mode)
+ * @arg I2C_IT_BTF: Byte transfer finished flag
+ * @arg I2C_IT_ADDR: Address sent flag (Master mode) "ADSL"
+ * Address matched flag (Slave mode)"ENDAD"
+ * @arg I2C_IT_SB: Start bit flag (Master mode)
+ * @retval The new state of I2C_IT (SET or RESET).
+ */
+ITStatus I2C_GetITStatus(I2C_TypeDef* I2Cx, uint32_t I2C_IT)
+{
+ ITStatus bitstatus = RESET;
+ uint32_t enablestatus = 0;
+
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_I2C_GET_IT(I2C_IT));
+
+ /* Check if the interrupt source is enabled or not */
+ enablestatus = (uint32_t)(((I2C_IT & ITEN_MASK) >> 16) & (I2Cx->CR2)) ;
+
+ /* Get bit[23:0] of the flag */
+ I2C_IT &= FLAG_MASK;
+
+ /* Check the status of the specified I2C flag */
+ if (((I2Cx->SR1 & I2C_IT) != (uint32_t)RESET) && enablestatus)
+ {
+ /* I2C_IT is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* I2C_IT is reset */
+ bitstatus = RESET;
+ }
+ /* Return the I2C_IT status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the I2Cx's interrupt pending bits.
+ * @param I2Cx: where x can be 1, 2 or 3 to select the I2C peripheral.
+ * @param I2C_IT: specifies the interrupt pending bit to clear.
+ * This parameter can be any combination of the following values:
+ * @arg I2C_IT_SMBALERT: SMBus Alert interrupt
+ * @arg I2C_IT_TIMEOUT: Timeout or Tlow error interrupt
+ * @arg I2C_IT_PECERR: PEC error in reception interrupt
+ * @arg I2C_IT_OVR: Overrun/Underrun interrupt (Slave mode)
+ * @arg I2C_IT_AF: Acknowledge failure interrupt
+ * @arg I2C_IT_ARLO: Arbitration lost interrupt (Master mode)
+ * @arg I2C_IT_BERR: Bus error interrupt
+ *
+ * @note STOPF (STOP detection) is cleared by software sequence: a read operation
+ * to I2C_SR1 register (I2C_GetITStatus()) followed by a write operation to
+ * I2C_CR1 register (I2C_Cmd() to re-enable the I2C peripheral).
+ * @note ADD10 (10-bit header sent) is cleared by software sequence: a read
+ * operation to I2C_SR1 (I2C_GetITStatus()) followed by writing the second
+ * byte of the address in I2C_DR register.
+ * @note BTF (Byte Transfer Finished) is cleared by software sequence: a read
+ * operation to I2C_SR1 register (I2C_GetITStatus()) followed by a
+ * read/write to I2C_DR register (I2C_SendData()).
+ * @note ADDR (Address sent) is cleared by software sequence: a read operation to
+ * I2C_SR1 register (I2C_GetITStatus()) followed by a read operation to
+ * I2C_SR2 register ((void)(I2Cx->SR2)).
+ * @note SB (Start Bit) is cleared by software sequence: a read operation to
+ * I2C_SR1 register (I2C_GetITStatus()) followed by a write operation to
+ * I2C_DR register (I2C_SendData()).
+ * @retval None
+ */
+void I2C_ClearITPendingBit(I2C_TypeDef* I2Cx, uint32_t I2C_IT)
+{
+ uint32_t flagpos = 0;
+ /* Check the parameters */
+ assert_param(IS_I2C_ALL_PERIPH(I2Cx));
+ assert_param(IS_I2C_CLEAR_IT(I2C_IT));
+
+ /* Get the I2C flag position */
+ flagpos = I2C_IT & FLAG_MASK;
+
+ /* Clear the selected I2C flag */
+ I2Cx->SR1 = (uint16_t)~flagpos;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_iwdg.c b/TimerCounter/SPL/src/stm32f4xx_iwdg.c
new file mode 100644
index 0000000..a4fddec
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_iwdg.c
@@ -0,0 +1,263 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_iwdg.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Independent watchdog (IWDG) peripheral:
+ * - Prescaler and Counter configuration
+ * - IWDG activation
+ * - Flag management
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * IWDG features
+ * ===================================================================
+ *
+ * The IWDG can be started by either software or hardware (configurable
+ * through option byte).
+ *
+ * The IWDG is clocked by its own dedicated low-speed clock (LSI) and
+ * thus stays active even if the main clock fails.
+ * Once the IWDG is started, the LSI is forced ON and cannot be disabled
+ * (LSI cannot be disabled too), and the counter starts counting down from
+ * the reset value of 0xFFF. When it reaches the end of count value (0x000)
+ * a system reset is generated.
+ * The IWDG counter should be reloaded at regular intervals to prevent
+ * an MCU reset.
+ *
+ * The IWDG is implemented in the VDD voltage domain that is still functional
+ * in STOP and STANDBY mode (IWDG reset can wake-up from STANDBY).
+ *
+ * IWDGRST flag in RCC_CSR register can be used to inform when a IWDG
+ * reset occurs.
+ *
+ * Min-max timeout value @32KHz (LSI): ~125us / ~32.7s
+ * The IWDG timeout may vary due to LSI frequency dispersion. STM32F4xx
+ * devices provide the capability to measure the LSI frequency (LSI clock
+ * connected internally to TIM5 CH4 input capture). The measured value
+ * can be used to have an IWDG timeout with an acceptable accuracy.
+ * For more information, please refer to the STM32F4xx Reference manual
+ *
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ * 1. Enable write access to IWDG_PR and IWDG_RLR registers using
+ * IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable) function
+ *
+ * 2. Configure the IWDG prescaler using IWDG_SetPrescaler() function
+ *
+ * 3. Configure the IWDG counter value using IWDG_SetReload() function.
+ * This value will be loaded in the IWDG counter each time the counter
+ * is reloaded, then the IWDG will start counting down from this value.
+ *
+ * 4. Start the IWDG using IWDG_Enable() function, when the IWDG is used
+ * in software mode (no need to enable the LSI, it will be enabled
+ * by hardware)
+ *
+ * 5. Then the application program must reload the IWDG counter at regular
+ * intervals during normal operation to prevent an MCU reset, using
+ * IWDG_ReloadCounter() function.
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_pwr.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup PWR
+ * @brief PWR driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* --------- PWR registers bit address in the alias region ---------- */
+#define PWR_OFFSET (PWR_BASE - PERIPH_BASE)
+
+/* --- CR Register ---*/
+
+/* Alias word address of DBP bit */
+#define CR_OFFSET (PWR_OFFSET + 0x00)
+#define DBP_BitNumber 0x08
+#define CR_DBP_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (DBP_BitNumber * 4))
+
+/* Alias word address of PVDE bit */
+#define PVDE_BitNumber 0x04
+#define CR_PVDE_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PVDE_BitNumber * 4))
+
+/* Alias word address of FPDS bit */
+#define FPDS_BitNumber 0x09
+#define CR_FPDS_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (FPDS_BitNumber * 4))
+
+/* Alias word address of PMODE bit */
+#define PMODE_BitNumber 0x0E
+#define CR_PMODE_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PMODE_BitNumber * 4))
+
+
+/* --- CSR Register ---*/
+
+/* Alias word address of EWUP bit */
+#define CSR_OFFSET (PWR_OFFSET + 0x04)
+#define EWUP_BitNumber 0x08
+#define CSR_EWUP_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (EWUP_BitNumber * 4))
+
+/* Alias word address of BRE bit */
+#define BRE_BitNumber 0x09
+#define CSR_BRE_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (BRE_BitNumber * 4))
+
+/* ------------------ PWR registers bit mask ------------------------ */
+
+/* CR register bit mask */
+#define CR_DS_MASK ((uint32_t)0xFFFFFFFC)
+#define CR_PLS_MASK ((uint32_t)0xFFFFFF1F)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup PWR_Private_Functions
+ * @{
+ */
+
+/** @defgroup PWR_Group1 Backup Domain Access function
+ * @brief Backup Domain Access function
+ *
+@verbatim
+ ===============================================================================
+ Backup Domain Access function
+ ===============================================================================
+
+ After reset, the backup domain (RTC registers, RTC backup data
+ registers and backup SRAM) is protected against possible unwanted
+ write accesses.
+ To enable access to the RTC Domain and RTC registers, proceed as follows:
+ - Enable the Power Controller (PWR) APB1 interface clock using the
+ RCC_APB1PeriphClockCmd() function.
+ - Enable access to RTC domain using the PWR_BackupAccessCmd() function.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the PWR peripheral registers to their default reset values.
+ * @param None
+ * @retval None
+ */
+void PWR_DeInit(void)
+{
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_PWR, DISABLE);
+}
+
+/**
+ * @brief Enables or disables access to the backup domain (RTC registers, RTC
+ * backup data registers and backup SRAM).
+ * @note If the HSE divided by 2, 3, ..31 is used as the RTC clock, the
+ * Backup Domain Access should be kept enabled.
+ * @param NewState: new state of the access to the backup domain.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void PWR_BackupAccessCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CR_DBP_BB = (uint32_t)NewState;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_Group2 PVD configuration functions
+ * @brief PVD configuration functions
+ *
+@verbatim
+ ===============================================================================
+ PVD configuration functions
+ ===============================================================================
+
+ - The PVD is used to monitor the VDD power supply by comparing it to a threshold
+ selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
+ - A PVDO flag is available to indicate if VDD/VDDA is higher or lower than the
+ PVD threshold. This event is internally connected to the EXTI line16
+ and can generate an interrupt if enabled through the EXTI registers.
+ - The PVD is stopped in Standby mode.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
+ * @param PWR_PVDLevel: specifies the PVD detection level
+ * This parameter can be one of the following values:
+ * @arg PWR_PVDLevel_0: PVD detection level set to 2.0V
+ * @arg PWR_PVDLevel_1: PVD detection level set to 2.2V
+ * @arg PWR_PVDLevel_2: PVD detection level set to 2.3V
+ * @arg PWR_PVDLevel_3: PVD detection level set to 2.5V
+ * @arg PWR_PVDLevel_4: PVD detection level set to 2.7V
+ * @arg PWR_PVDLevel_5: PVD detection level set to 2.8V
+ * @arg PWR_PVDLevel_6: PVD detection level set to 2.9V
+ * @arg PWR_PVDLevel_7: PVD detection level set to 3.0V
+ * @note Refer to the electrical characteristics of you device datasheet for more details.
+ * @retval None
+ */
+void PWR_PVDLevelConfig(uint32_t PWR_PVDLevel)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_PWR_PVD_LEVEL(PWR_PVDLevel));
+
+ tmpreg = PWR->CR;
+
+ /* Clear PLS[7:5] bits */
+ tmpreg &= CR_PLS_MASK;
+
+ /* Set PLS[7:5] bits according to PWR_PVDLevel value */
+ tmpreg |= PWR_PVDLevel;
+
+ /* Store the new value */
+ PWR->CR = tmpreg;
+}
+
+/**
+ * @brief Enables or disables the Power Voltage Detector(PVD).
+ * @param NewState: new state of the PVD.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void PWR_PVDCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CR_PVDE_BB = (uint32_t)NewState;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_Group3 WakeUp pin configuration functions
+ * @brief WakeUp pin configuration functions
+ *
+@verbatim
+ ===============================================================================
+ WakeUp pin configuration functions
+ ===============================================================================
+
+ - WakeUp pin is used to wakeup the system from Standby mode. This pin is
+ forced in input pull down configuration and is active on rising edges.
+ - There is only one WakeUp pin: WakeUp Pin 1 on PA.00.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the WakeUp Pin functionality.
+ * @param NewState: new state of the WakeUp Pin functionality.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void PWR_WakeUpPinCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CSR_EWUP_BB = (uint32_t)NewState;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_Group4 Main and Backup Regulators configuration functions
+ * @brief Main and Backup Regulators configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Main and Backup Regulators configuration functions
+ ===============================================================================
+
+ - The backup domain includes 4 Kbytes of backup SRAM accessible only from the
+ CPU, and address in 32-bit, 16-bit or 8-bit mode. Its content is retained
+ even in Standby or VBAT mode when the low power backup regulator is enabled.
+ It can be considered as an internal EEPROM when VBAT is always present.
+ You can use the PWR_BackupRegulatorCmd() function to enable the low power
+ backup regulator and use the PWR_GetFlagStatus(PWR_FLAG_BRR) to check if it is
+ ready or not.
+
+ - When the backup domain is supplied by VDD (analog switch connected to VDD)
+ the backup SRAM is powered from VDD which replaces the VBAT power supply to
+ save battery life.
+
+ - The backup SRAM is not mass erased by an tamper event. It is read protected
+ to prevent confidential data, such as cryptographic private key, from being
+ accessed. The backup SRAM can be erased only through the Flash interface when
+ a protection level change from level 1 to level 0 is requested.
+ Refer to the description of Read protection (RDP) in the Flash programming manual.
+
+ - The main internal regulator can be configured to have a tradeoff between performance
+ and power consumption when the device does not operate at the maximum frequency.
+ This is done through PWR_MainRegulatorModeConfig() function which configure VOS bit
+ in PWR_CR register:
+ - When this bit is set (Regulator voltage output Scale 1 mode selected) the System
+ frequency can go up to 168 MHz.
+ - When this bit is reset (Regulator voltage output Scale 2 mode selected) the System
+ frequency can go up to 144 MHz.
+ Refer to the datasheets for more details.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the Backup Regulator.
+ * @param NewState: new state of the Backup Regulator.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void PWR_BackupRegulatorCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CSR_BRE_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Configures the main internal regulator output voltage.
+ * @param PWR_Regulator_Voltage: specifies the regulator output voltage to achieve
+ * a tradeoff between performance and power consumption when the device does
+ * not operate at the maximum frequency (refer to the datasheets for more details).
+ * This parameter can be one of the following values:
+ * @arg PWR_Regulator_Voltage_Scale1: Regulator voltage output Scale 1 mode,
+ * System frequency up to 168 MHz.
+ * @arg PWR_Regulator_Voltage_Scale2: Regulator voltage output Scale 2 mode,
+ * System frequency up to 144 MHz.
+ * @retval None
+ */
+void PWR_MainRegulatorModeConfig(uint32_t PWR_Regulator_Voltage)
+{
+ /* Check the parameters */
+ assert_param(IS_PWR_REGULATOR_VOLTAGE(PWR_Regulator_Voltage));
+
+ if (PWR_Regulator_Voltage == PWR_Regulator_Voltage_Scale2)
+ {
+ PWR->CR &= ~PWR_Regulator_Voltage_Scale1;
+ }
+ else
+ {
+ PWR->CR |= PWR_Regulator_Voltage_Scale1;
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_Group5 FLASH Power Down configuration functions
+ * @brief FLASH Power Down configuration functions
+ *
+@verbatim
+ ===============================================================================
+ FLASH Power Down configuration functions
+ ===============================================================================
+
+ - By setting the FPDS bit in the PWR_CR register by using the PWR_FlashPowerDownCmd()
+ function, the Flash memory also enters power down mode when the device enters
+ Stop mode. When the Flash memory is in power down mode, an additional startup
+ delay is incurred when waking up from Stop mode.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the Flash Power Down in STOP mode.
+ * @param NewState: new state of the Flash power mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void PWR_FlashPowerDownCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CR_FPDS_BB = (uint32_t)NewState;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_Group6 Low Power modes configuration functions
+ * @brief Low Power modes configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Low Power modes configuration functions
+ ===============================================================================
+
+ The devices feature 3 low-power modes:
+ - Sleep mode: Cortex-M4 core stopped, peripherals kept running.
+ - Stop mode: all clocks are stopped, regulator running, regulator in low power mode
+ - Standby mode: 1.2V domain powered off.
+
+ Sleep mode
+ ===========
+ - Entry:
+ - The Sleep mode is entered by using the __WFI() or __WFE() functions.
+ - Exit:
+ - Any peripheral interrupt acknowledged by the nested vectored interrupt
+ controller (NVIC) can wake up the device from Sleep mode.
+
+ Stop mode
+ ==========
+ In Stop mode, all clocks in the 1.2V domain are stopped, the PLL, the HSI,
+ and the HSE RC oscillators are disabled. Internal SRAM and register contents
+ are preserved.
+ The voltage regulator can be configured either in normal or low-power mode.
+ To minimize the consumption In Stop mode, FLASH can be powered off before
+ entering the Stop mode. It can be switched on again by software after exiting
+ the Stop mode using the PWR_FlashPowerDownCmd() function.
+
+ - Entry:
+ - The Stop mode is entered using the PWR_EnterSTOPMode(PWR_Regulator_LowPower,)
+ function with regulator in LowPower or with Regulator ON.
+ - Exit:
+ - Any EXTI Line (Internal or External) configured in Interrupt/Event mode.
+
+ Standby mode
+ ============
+ The Standby mode allows to achieve the lowest power consumption. It is based
+ on the Cortex-M4 deepsleep mode, with the voltage regulator disabled.
+ The 1.2V domain is consequently powered off. The PLL, the HSI oscillator and
+ the HSE oscillator are also switched off. SRAM and register contents are lost
+ except for the RTC registers, RTC backup registers, backup SRAM and Standby
+ circuitry.
+
+ The voltage regulator is OFF.
+
+ - Entry:
+ - The Standby mode is entered using the PWR_EnterSTANDBYMode() function.
+ - Exit:
+ - WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup,
+ tamper event, time-stamp event, external reset in NRST pin, IWDG reset.
+
+ Auto-wakeup (AWU) from low-power mode
+ =====================================
+ The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
+ Wakeup event, a tamper event, a time-stamp event, or a comparator event,
+ without depending on an external interrupt (Auto-wakeup mode).
+
+ - RTC auto-wakeup (AWU) from the Stop mode
+ ----------------------------------------
+
+ - To wake up from the Stop mode with an RTC alarm event, it is necessary to:
+ - Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt
+ or Event modes) using the EXTI_Init() function.
+ - Enable the RTC Alarm Interrupt using the RTC_ITConfig() function
+ - Configure the RTC to generate the RTC alarm using the RTC_SetAlarm()
+ and RTC_AlarmCmd() functions.
+ - To wake up from the Stop mode with an RTC Tamper or time stamp event, it
+ is necessary to:
+ - Configure the EXTI Line 21 to be sensitive to rising edges (Interrupt
+ or Event modes) using the EXTI_Init() function.
+ - Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig()
+ function
+ - Configure the RTC to detect the tamper or time stamp event using the
+ RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
+ functions.
+ - To wake up from the Stop mode with an RTC WakeUp event, it is necessary to:
+ - Configure the EXTI Line 22 to be sensitive to rising edges (Interrupt
+ or Event modes) using the EXTI_Init() function.
+ - Enable the RTC WakeUp Interrupt using the RTC_ITConfig() function
+ - Configure the RTC to generate the RTC WakeUp event using the RTC_WakeUpClockConfig(),
+ RTC_SetWakeUpCounter() and RTC_WakeUpCmd() functions.
+
+ - RTC auto-wakeup (AWU) from the Standby mode
+ -------------------------------------------
+ - To wake up from the Standby mode with an RTC alarm event, it is necessary to:
+ - Enable the RTC Alarm Interrupt using the RTC_ITConfig() function
+ - Configure the RTC to generate the RTC alarm using the RTC_SetAlarm()
+ and RTC_AlarmCmd() functions.
+ - To wake up from the Standby mode with an RTC Tamper or time stamp event, it
+ is necessary to:
+ - Enable the RTC Tamper or time stamp Interrupt using the RTC_ITConfig()
+ function
+ - Configure the RTC to detect the tamper or time stamp event using the
+ RTC_TimeStampConfig(), RTC_TamperTriggerConfig() and RTC_TamperCmd()
+ functions.
+ - To wake up from the Standby mode with an RTC WakeUp event, it is necessary to:
+ - Enable the RTC WakeUp Interrupt using the RTC_ITConfig() function
+ - Configure the RTC to generate the RTC WakeUp event using the RTC_WakeUpClockConfig(),
+ RTC_SetWakeUpCounter() and RTC_WakeUpCmd() functions.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enters STOP mode.
+ *
+ * @note In Stop mode, all I/O pins keep the same state as in Run mode.
+ * @note When exiting Stop mode by issuing an interrupt or a wakeup event,
+ * the HSI RC oscillator is selected as system clock.
+ * @note When the voltage regulator operates in low power mode, an additional
+ * startup delay is incurred when waking up from Stop mode.
+ * By keeping the internal regulator ON during Stop mode, the consumption
+ * is higher although the startup time is reduced.
+ *
+ * @param PWR_Regulator: specifies the regulator state in STOP mode.
+ * This parameter can be one of the following values:
+ * @arg PWR_Regulator_ON: STOP mode with regulator ON
+ * @arg PWR_Regulator_LowPower: STOP mode with regulator in low power mode
+ * @param PWR_STOPEntry: specifies if STOP mode in entered with WFI or WFE instruction.
+ * This parameter can be one of the following values:
+ * @arg PWR_STOPEntry_WFI: enter STOP mode with WFI instruction
+ * @arg PWR_STOPEntry_WFE: enter STOP mode with WFE instruction
+ * @retval None
+ */
+void PWR_EnterSTOPMode(uint32_t PWR_Regulator, uint8_t PWR_STOPEntry)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_PWR_REGULATOR(PWR_Regulator));
+ assert_param(IS_PWR_STOP_ENTRY(PWR_STOPEntry));
+
+ /* Select the regulator state in STOP mode ---------------------------------*/
+ tmpreg = PWR->CR;
+ /* Clear PDDS and LPDSR bits */
+ tmpreg &= CR_DS_MASK;
+
+ /* Set LPDSR bit according to PWR_Regulator value */
+ tmpreg |= PWR_Regulator;
+
+ /* Store the new value */
+ PWR->CR = tmpreg;
+
+ /* Set SLEEPDEEP bit of Cortex System Control Register */
+ SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
+
+ /* Select STOP mode entry --------------------------------------------------*/
+ if(PWR_STOPEntry == PWR_STOPEntry_WFI)
+ {
+ /* Request Wait For Interrupt */
+ __WFI();
+ }
+ else
+ {
+ /* Request Wait For Event */
+ __WFE();
+ }
+ /* Reset SLEEPDEEP bit of Cortex System Control Register */
+ SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
+}
+
+/**
+ * @brief Enters STANDBY mode.
+ * @note In Standby mode, all I/O pins are high impedance except for:
+ * - Reset pad (still available)
+ * - RTC_AF1 pin (PC13) if configured for tamper, time-stamp, RTC
+ * Alarm out, or RTC clock calibration out.
+ * - RTC_AF2 pin (PI8) if configured for tamper or time-stamp.
+ * - WKUP pin 1 (PA0) if enabled.
+ * @param None
+ * @retval None
+ */
+void PWR_EnterSTANDBYMode(void)
+{
+ /* Clear Wakeup flag */
+ PWR->CR |= PWR_CR_CWUF;
+
+ /* Select STANDBY mode */
+ PWR->CR |= PWR_CR_PDDS;
+
+ /* Set SLEEPDEEP bit of Cortex System Control Register */
+ SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
+
+/* This option is used to ensure that store operations are completed */
+#if defined ( __CC_ARM )
+ __force_stores();
+#endif
+ /* Request Wait For Interrupt */
+ __WFI();
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup PWR_Group7 Flags management functions
+ * @brief Flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Flags management functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Checks whether the specified PWR flag is set or not.
+ * @param PWR_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg PWR_FLAG_WU: Wake Up flag. This flag indicates that a wakeup event
+ * was received from the WKUP pin or from the RTC alarm (Alarm A
+ * or Alarm B), RTC Tamper event, RTC TimeStamp event or RTC Wakeup.
+ * An additional wakeup event is detected if the WKUP pin is enabled
+ * (by setting the EWUP bit) when the WKUP pin level is already high.
+ * @arg PWR_FLAG_SB: StandBy flag. This flag indicates that the system was
+ * resumed from StandBy mode.
+ * @arg PWR_FLAG_PVDO: PVD Output. This flag is valid only if PVD is enabled
+ * by the PWR_PVDCmd() function. The PVD is stopped by Standby mode
+ * For this reason, this bit is equal to 0 after Standby or reset
+ * until the PVDE bit is set.
+ * @arg PWR_FLAG_BRR: Backup regulator ready flag. This bit is not reset
+ * when the device wakes up from Standby mode or by a system reset
+ * or power reset.
+ * @arg PWR_FLAG_VOSRDY: This flag indicates that the Regulator voltage
+ * scaling output selection is ready.
+ * @retval The new state of PWR_FLAG (SET or RESET).
+ */
+FlagStatus PWR_GetFlagStatus(uint32_t PWR_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_PWR_GET_FLAG(PWR_FLAG));
+
+ if ((PWR->CSR & PWR_FLAG) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ /* Return the flag status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the PWR's pending flags.
+ * @param PWR_FLAG: specifies the flag to clear.
+ * This parameter can be one of the following values:
+ * @arg PWR_FLAG_WU: Wake Up flag
+ * @arg PWR_FLAG_SB: StandBy flag
+ * @retval None
+ */
+void PWR_ClearFlag(uint32_t PWR_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_PWR_CLEAR_FLAG(PWR_FLAG));
+
+ PWR->CR |= PWR_FLAG << 2;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_rcc.c b/TimerCounter/SPL/src/stm32f4xx_rcc.c
new file mode 100644
index 0000000..8776374
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_rcc.c
@@ -0,0 +1,1808 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_rcc.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Reset and clock control (RCC) peripheral:
+ * - Internal/external clocks, PLL, CSS and MCO configuration
+ * - System, AHB and APB busses clocks configuration
+ * - Peripheral clocks configuration
+ * - Interrupts and flags management
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * RCC specific features
+ * ===================================================================
+ *
+ * After reset the device is running from Internal High Speed oscillator
+ * (HSI 16MHz) with Flash 0 wait state, Flash prefetch buffer, D-Cache
+ * and I-Cache are disabled, and all peripherals are off except internal
+ * SRAM, Flash and JTAG.
+ * - There is no prescaler on High speed (AHB) and Low speed (APB) busses;
+ * all peripherals mapped on these busses are running at HSI speed.
+ * - The clock for all peripherals is switched off, except the SRAM and FLASH.
+ * - All GPIOs are in input floating state, except the JTAG pins which
+ * are assigned to be used for debug purpose.
+ *
+ * Once the device started from reset, the user application has to:
+ * - Configure the clock source to be used to drive the System clock
+ * (if the application needs higher frequency/performance)
+ * - Configure the System clock frequency and Flash settings
+ * - Configure the AHB and APB busses prescalers
+ * - Enable the clock for the peripheral(s) to be used
+ * - Configure the clock source(s) for peripherals which clocks are not
+ * derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG)
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup RCC
+ * @brief RCC driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* ------------ RCC registers bit address in the alias region ----------- */
+#define RCC_OFFSET (RCC_BASE - PERIPH_BASE)
+/* --- CR Register ---*/
+/* Alias word address of HSION bit */
+#define CR_OFFSET (RCC_OFFSET + 0x00)
+#define HSION_BitNumber 0x00
+#define CR_HSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4))
+/* Alias word address of CSSON bit */
+#define CSSON_BitNumber 0x13
+#define CR_CSSON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4))
+/* Alias word address of PLLON bit */
+#define PLLON_BitNumber 0x18
+#define CR_PLLON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4))
+/* Alias word address of PLLI2SON bit */
+#define PLLI2SON_BitNumber 0x1A
+#define CR_PLLI2SON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLI2SON_BitNumber * 4))
+
+/* --- CFGR Register ---*/
+/* Alias word address of I2SSRC bit */
+#define CFGR_OFFSET (RCC_OFFSET + 0x08)
+#define I2SSRC_BitNumber 0x17
+#define CFGR_I2SSRC_BB (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (I2SSRC_BitNumber * 4))
+
+/* --- BDCR Register ---*/
+/* Alias word address of RTCEN bit */
+#define BDCR_OFFSET (RCC_OFFSET + 0x70)
+#define RTCEN_BitNumber 0x0F
+#define BDCR_RTCEN_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (RTCEN_BitNumber * 4))
+/* Alias word address of BDRST bit */
+#define BDRST_BitNumber 0x10
+#define BDCR_BDRST_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (BDRST_BitNumber * 4))
+/* --- CSR Register ---*/
+/* Alias word address of LSION bit */
+#define CSR_OFFSET (RCC_OFFSET + 0x74)
+#define LSION_BitNumber 0x00
+#define CSR_LSION_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4))
+/* ---------------------- RCC registers bit mask ------------------------ */
+/* CFGR register bit mask */
+#define CFGR_MCO2_RESET_MASK ((uint32_t)0x07FFFFFF)
+#define CFGR_MCO1_RESET_MASK ((uint32_t)0xF89FFFFF)
+
+/* RCC Flag Mask */
+#define FLAG_MASK ((uint8_t)0x1F)
+
+/* CR register byte 3 (Bits[23:16]) base address */
+#define CR_BYTE3_ADDRESS ((uint32_t)0x40023802)
+
+/* CIR register byte 2 (Bits[15:8]) base address */
+#define CIR_BYTE2_ADDRESS ((uint32_t)(RCC_BASE + 0x0C + 0x01))
+
+/* CIR register byte 3 (Bits[23:16]) base address */
+#define CIR_BYTE3_ADDRESS ((uint32_t)(RCC_BASE + 0x0C + 0x02))
+
+/* BDCR register base address */
+#define BDCR_ADDRESS (PERIPH_BASE + BDCR_OFFSET)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
+
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup RCC_Private_Functions
+ * @{
+ */
+
+/** @defgroup RCC_Group1 Internal and external clocks, PLL, CSS and MCO configuration functions
+ * @brief Internal and external clocks, PLL, CSS and MCO configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Internal/external clocks, PLL, CSS and MCO configuration functions
+ ===============================================================================
+
+ This section provide functions allowing to configure the internal/external clocks,
+ PLLs, CSS and MCO pins.
+
+ 1. HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through
+ the PLL as System clock source.
+
+ 2. LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC
+ clock source.
+
+ 3. HSE (high-speed external), 4 to 26 MHz crystal oscillator used directly or
+ through the PLL as System clock source. Can be used also as RTC clock source.
+
+ 4. LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
+
+ 5. PLL (clocked by HSI or HSE), featuring two different output clocks:
+ - The first output is used to generate the high speed system clock (up to 168 MHz)
+ - The second output is used to generate the clock for the USB OTG FS (48 MHz),
+ the random analog generator (<=48 MHz) and the SDIO (<= 48 MHz).
+
+ 6. PLLI2S (clocked by HSI or HSE), used to generate an accurate clock to achieve
+ high-quality audio performance on the I2S interface.
+
+ 7. CSS (Clock security system), once enable and if a HSE clock failure occurs
+ (HSE used directly or through PLL as System clock source), the System clock
+ is automatically switched to HSI and an interrupt is generated if enabled.
+ The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt)
+ exception vector.
+
+ 8. MCO1 (microcontroller clock output), used to output HSI, LSE, HSE or PLL
+ clock (through a configurable prescaler) on PA8 pin.
+
+ 9. MCO2 (microcontroller clock output), used to output HSE, PLL, SYSCLK or PLLI2S
+ clock (through a configurable prescaler) on PC9 pin.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Resets the RCC clock configuration to the default reset state.
+ * @note The default reset state of the clock configuration is given below:
+ * - HSI ON and used as system clock source
+ * - HSE, PLL and PLLI2S OFF
+ * - AHB, APB1 and APB2 prescaler set to 1.
+ * - CSS, MCO1 and MCO2 OFF
+ * - All interrupts disabled
+ * @note This function doesn't modify the configuration of the
+ * - Peripheral clocks
+ * - LSI, LSE and RTC clocks
+ * @param None
+ * @retval None
+ */
+void RCC_DeInit(void)
+{
+ /* Set HSION bit */
+ RCC->CR |= (uint32_t)0x00000001;
+
+ /* Reset CFGR register */
+ RCC->CFGR = 0x00000000;
+
+ /* Reset HSEON, CSSON and PLLON bits */
+ RCC->CR &= (uint32_t)0xFEF6FFFF;
+
+ /* Reset PLLCFGR register */
+ RCC->PLLCFGR = 0x24003010;
+
+ /* Reset HSEBYP bit */
+ RCC->CR &= (uint32_t)0xFFFBFFFF;
+
+ /* Disable all interrupts */
+ RCC->CIR = 0x00000000;
+}
+
+/**
+ * @brief Configures the External High Speed oscillator (HSE).
+ * @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
+ * software should wait on HSERDY flag to be set indicating that HSE clock
+ * is stable and can be used to clock the PLL and/or system clock.
+ * @note HSE state can not be changed if it is used directly or through the
+ * PLL as system clock. In this case, you have to select another source
+ * of the system clock then change the HSE state (ex. disable it).
+ * @note The HSE is stopped by hardware when entering STOP and STANDBY modes.
+ * @note This function reset the CSSON bit, so if the Clock security system(CSS)
+ * was previously enabled you have to enable it again after calling this
+ * function.
+ * @param RCC_HSE: specifies the new state of the HSE.
+ * This parameter can be one of the following values:
+ * @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after
+ * 6 HSE oscillator clock cycles.
+ * @arg RCC_HSE_ON: turn ON the HSE oscillator
+ * @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock
+ * @retval None
+ */
+void RCC_HSEConfig(uint8_t RCC_HSE)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_HSE(RCC_HSE));
+
+ /* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
+ *(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE_OFF;
+
+ /* Set the new HSE configuration -------------------------------------------*/
+ *(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE;
+}
+
+/**
+ * @brief Waits for HSE start-up.
+ * @note This functions waits on HSERDY flag to be set and return SUCCESS if
+ * this flag is set, otherwise returns ERROR if the timeout is reached
+ * and this flag is not set. The timeout value is defined by the constant
+ * HSE_STARTUP_TIMEOUT in stm32f4xx.h file. You can tailor it depending
+ * on the HSE crystal used in your application.
+ * @param None
+ * @retval An ErrorStatus enumeration value:
+ * - SUCCESS: HSE oscillator is stable and ready to use
+ * - ERROR: HSE oscillator not yet ready
+ */
+ErrorStatus RCC_WaitForHSEStartUp(void)
+{
+ __IO uint32_t startupcounter = 0;
+ ErrorStatus status = ERROR;
+ FlagStatus hsestatus = RESET;
+ /* Wait till HSE is ready and if Time out is reached exit */
+ do
+ {
+ hsestatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
+ startupcounter++;
+ } while((startupcounter != HSE_STARTUP_TIMEOUT) && (hsestatus == RESET));
+
+ if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
+ {
+ status = SUCCESS;
+ }
+ else
+ {
+ status = ERROR;
+ }
+ return (status);
+}
+
+/**
+ * @brief Adjusts the Internal High Speed oscillator (HSI) calibration value.
+ * @note The calibration is used to compensate for the variations in voltage
+ * and temperature that influence the frequency of the internal HSI RC.
+ * @param HSICalibrationValue: specifies the calibration trimming value.
+ * This parameter must be a number between 0 and 0x1F.
+ * @retval None
+ */
+void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
+{
+ uint32_t tmpreg = 0;
+ /* Check the parameters */
+ assert_param(IS_RCC_CALIBRATION_VALUE(HSICalibrationValue));
+
+ tmpreg = RCC->CR;
+
+ /* Clear HSITRIM[4:0] bits */
+ tmpreg &= ~RCC_CR_HSITRIM;
+
+ /* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
+ tmpreg |= (uint32_t)HSICalibrationValue << 3;
+
+ /* Store the new value */
+ RCC->CR = tmpreg;
+}
+
+/**
+ * @brief Enables or disables the Internal High Speed oscillator (HSI).
+ * @note The HSI is stopped by hardware when entering STOP and STANDBY modes.
+ * It is used (enabled by hardware) as system clock source after startup
+ * from Reset, wakeup from STOP and STANDBY mode, or in case of failure
+ * of the HSE used directly or indirectly as system clock (if the Clock
+ * Security System CSS is enabled).
+ * @note HSI can not be stopped if it is used as system clock source. In this case,
+ * you have to select another source of the system clock then stop the HSI.
+ * @note After enabling the HSI, the application software should wait on HSIRDY
+ * flag to be set indicating that HSI clock is stable and can be used as
+ * system clock source.
+ * @param NewState: new state of the HSI.
+ * This parameter can be: ENABLE or DISABLE.
+ * @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
+ * clock cycles.
+ * @retval None
+ */
+void RCC_HSICmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Configures the External Low Speed oscillator (LSE).
+ * @note As the LSE is in the Backup domain and write access is denied to
+ * this domain after reset, you have to enable write access using
+ * PWR_BackupAccessCmd(ENABLE) function before to configure the LSE
+ * (to be done once after reset).
+ * @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_Bypass), the application
+ * software should wait on LSERDY flag to be set indicating that LSE clock
+ * is stable and can be used to clock the RTC.
+ * @param RCC_LSE: specifies the new state of the LSE.
+ * This parameter can be one of the following values:
+ * @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after
+ * 6 LSE oscillator clock cycles.
+ * @arg RCC_LSE_ON: turn ON the LSE oscillator
+ * @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock
+ * @retval None
+ */
+void RCC_LSEConfig(uint8_t RCC_LSE)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_LSE(RCC_LSE));
+
+ /* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
+ /* Reset LSEON bit */
+ *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF;
+
+ /* Reset LSEBYP bit */
+ *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_OFF;
+
+ /* Configure LSE (RCC_LSE_OFF is already covered by the code section above) */
+ switch (RCC_LSE)
+ {
+ case RCC_LSE_ON:
+ /* Set LSEON bit */
+ *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_ON;
+ break;
+ case RCC_LSE_Bypass:
+ /* Set LSEBYP and LSEON bits */
+ *(__IO uint8_t *) BDCR_ADDRESS = RCC_LSE_Bypass | RCC_LSE_ON;
+ break;
+ default:
+ break;
+ }
+}
+
+/**
+ * @brief Enables or disables the Internal Low Speed oscillator (LSI).
+ * @note After enabling the LSI, the application software should wait on
+ * LSIRDY flag to be set indicating that LSI clock is stable and can
+ * be used to clock the IWDG and/or the RTC.
+ * @note LSI can not be disabled if the IWDG is running.
+ * @param NewState: new state of the LSI.
+ * This parameter can be: ENABLE or DISABLE.
+ * @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
+ * clock cycles.
+ * @retval None
+ */
+void RCC_LSICmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Configures the main PLL clock source, multiplication and division factors.
+ * @note This function must be used only when the main PLL is disabled.
+ *
+ * @param RCC_PLLSource: specifies the PLL entry clock source.
+ * This parameter can be one of the following values:
+ * @arg RCC_PLLSource_HSI: HSI oscillator clock selected as PLL clock entry
+ * @arg RCC_PLLSource_HSE: HSE oscillator clock selected as PLL clock entry
+ * @note This clock source (RCC_PLLSource) is common for the main PLL and PLLI2S.
+ *
+ * @param PLLM: specifies the division factor for PLL VCO input clock
+ * This parameter must be a number between 0 and 63.
+ * @note You have to set the PLLM parameter correctly to ensure that the VCO input
+ * frequency ranges from 1 to 2 MHz. It is recommended to select a frequency
+ * of 2 MHz to limit PLL jitter.
+ *
+ * @param PLLN: specifies the multiplication factor for PLL VCO output clock
+ * This parameter must be a number between 192 and 432.
+ * @note You have to set the PLLN parameter correctly to ensure that the VCO
+ * output frequency is between 192 and 432 MHz.
+ *
+ * @param PLLP: specifies the division factor for main system clock (SYSCLK)
+ * This parameter must be a number in the range {2, 4, 6, or 8}.
+ * @note You have to set the PLLP parameter correctly to not exceed 168 MHz on
+ * the System clock frequency.
+ *
+ * @param PLLQ: specifies the division factor for OTG FS, SDIO and RNG clocks
+ * This parameter must be a number between 4 and 15.
+ * @note If the USB OTG FS is used in your application, you have to set the
+ * PLLQ parameter correctly to have 48 MHz clock for the USB. However,
+ * the SDIO and RNG need a frequency lower than or equal to 48 MHz to work
+ * correctly.
+ *
+ * @retval None
+ */
+void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t PLLM, uint32_t PLLN, uint32_t PLLP, uint32_t PLLQ)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
+ assert_param(IS_RCC_PLLM_VALUE(PLLM));
+ assert_param(IS_RCC_PLLN_VALUE(PLLN));
+ assert_param(IS_RCC_PLLP_VALUE(PLLP));
+ assert_param(IS_RCC_PLLQ_VALUE(PLLQ));
+
+ RCC->PLLCFGR = PLLM | (PLLN << 6) | (((PLLP >> 1) -1) << 16) | (RCC_PLLSource) |
+ (PLLQ << 24);
+}
+
+/**
+ * @brief Enables or disables the main PLL.
+ * @note After enabling the main PLL, the application software should wait on
+ * PLLRDY flag to be set indicating that PLL clock is stable and can
+ * be used as system clock source.
+ * @note The main PLL can not be disabled if it is used as system clock source
+ * @note The main PLL is disabled by hardware when entering STOP and STANDBY modes.
+ * @param NewState: new state of the main PLL. This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_PLLCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ *(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Configures the PLLI2S clock multiplication and division factors.
+ *
+ * @note This function must be used only when the PLLI2S is disabled.
+ * @note PLLI2S clock source is common with the main PLL (configured in
+ * RCC_PLLConfig function )
+ *
+ * @param PLLI2SN: specifies the multiplication factor for PLLI2S VCO output clock
+ * This parameter must be a number between 192 and 432.
+ * @note You have to set the PLLI2SN parameter correctly to ensure that the VCO
+ * output frequency is between 192 and 432 MHz.
+ *
+ * @param PLLI2SR: specifies the division factor for I2S clock
+ * This parameter must be a number between 2 and 7.
+ * @note You have to set the PLLI2SR parameter correctly to not exceed 192 MHz
+ * on the I2S clock frequency.
+ *
+ * @retval None
+ */
+void RCC_PLLI2SConfig(uint32_t PLLI2SN, uint32_t PLLI2SR)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_PLLI2SN_VALUE(PLLI2SN));
+ assert_param(IS_RCC_PLLI2SR_VALUE(PLLI2SR));
+
+ RCC->PLLI2SCFGR = (PLLI2SN << 6) | (PLLI2SR << 28);
+}
+
+/**
+ * @brief Enables or disables the PLLI2S.
+ * @note The PLLI2S is disabled by hardware when entering STOP and STANDBY modes.
+ * @param NewState: new state of the PLLI2S. This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_PLLI2SCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ *(__IO uint32_t *) CR_PLLI2SON_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Enables or disables the Clock Security System.
+ * @note If a failure is detected on the HSE oscillator clock, this oscillator
+ * is automatically disabled and an interrupt is generated to inform the
+ * software about the failure (Clock Security System Interrupt, CSSI),
+ * allowing the MCU to perform rescue operations. The CSSI is linked to
+ * the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector.
+ * @param NewState: new state of the Clock Security System.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ *(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Selects the clock source to output on MCO1 pin(PA8).
+ * @note PA8 should be configured in alternate function mode.
+ * @param RCC_MCO1Source: specifies the clock source to output.
+ * This parameter can be one of the following values:
+ * @arg RCC_MCO1Source_HSI: HSI clock selected as MCO1 source
+ * @arg RCC_MCO1Source_LSE: LSE clock selected as MCO1 source
+ * @arg RCC_MCO1Source_HSE: HSE clock selected as MCO1 source
+ * @arg RCC_MCO1Source_PLLCLK: main PLL clock selected as MCO1 source
+ * @param RCC_MCO1Div: specifies the MCO1 prescaler.
+ * This parameter can be one of the following values:
+ * @arg RCC_MCO1Div_1: no division applied to MCO1 clock
+ * @arg RCC_MCO1Div_2: division by 2 applied to MCO1 clock
+ * @arg RCC_MCO1Div_3: division by 3 applied to MCO1 clock
+ * @arg RCC_MCO1Div_4: division by 4 applied to MCO1 clock
+ * @arg RCC_MCO1Div_5: division by 5 applied to MCO1 clock
+ * @retval None
+ */
+void RCC_MCO1Config(uint32_t RCC_MCO1Source, uint32_t RCC_MCO1Div)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_MCO1SOURCE(RCC_MCO1Source));
+ assert_param(IS_RCC_MCO1DIV(RCC_MCO1Div));
+
+ tmpreg = RCC->CFGR;
+
+ /* Clear MCO1[1:0] and MCO1PRE[2:0] bits */
+ tmpreg &= CFGR_MCO1_RESET_MASK;
+
+ /* Select MCO1 clock source and prescaler */
+ tmpreg |= RCC_MCO1Source | RCC_MCO1Div;
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+/**
+ * @brief Selects the clock source to output on MCO2 pin(PC9).
+ * @note PC9 should be configured in alternate function mode.
+ * @param RCC_MCO2Source: specifies the clock source to output.
+ * This parameter can be one of the following values:
+ * @arg RCC_MCO2Source_SYSCLK: System clock (SYSCLK) selected as MCO2 source
+ * @arg RCC_MCO2Source_PLLI2SCLK: PLLI2S clock selected as MCO2 source
+ * @arg RCC_MCO2Source_HSE: HSE clock selected as MCO2 source
+ * @arg RCC_MCO2Source_PLLCLK: main PLL clock selected as MCO2 source
+ * @param RCC_MCO2Div: specifies the MCO2 prescaler.
+ * This parameter can be one of the following values:
+ * @arg RCC_MCO2Div_1: no division applied to MCO2 clock
+ * @arg RCC_MCO2Div_2: division by 2 applied to MCO2 clock
+ * @arg RCC_MCO2Div_3: division by 3 applied to MCO2 clock
+ * @arg RCC_MCO2Div_4: division by 4 applied to MCO2 clock
+ * @arg RCC_MCO2Div_5: division by 5 applied to MCO2 clock
+ * @retval None
+ */
+void RCC_MCO2Config(uint32_t RCC_MCO2Source, uint32_t RCC_MCO2Div)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_MCO2SOURCE(RCC_MCO2Source));
+ assert_param(IS_RCC_MCO2DIV(RCC_MCO2Div));
+
+ tmpreg = RCC->CFGR;
+
+ /* Clear MCO2 and MCO2PRE[2:0] bits */
+ tmpreg &= CFGR_MCO2_RESET_MASK;
+
+ /* Select MCO2 clock source and prescaler */
+ tmpreg |= RCC_MCO2Source | RCC_MCO2Div;
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Group2 System AHB and APB busses clocks configuration functions
+ * @brief System, AHB and APB busses clocks configuration functions
+ *
+@verbatim
+ ===============================================================================
+ System, AHB and APB busses clocks configuration functions
+ ===============================================================================
+
+ This section provide functions allowing to configure the System, AHB, APB1 and
+ APB2 busses clocks.
+
+ 1. Several clock sources can be used to drive the System clock (SYSCLK): HSI,
+ HSE and PLL.
+ The AHB clock (HCLK) is derived from System clock through configurable prescaler
+ and used to clock the CPU, memory and peripherals mapped on AHB bus (DMA, GPIO...).
+ APB1 (PCLK1) and APB2 (PCLK2) clocks are derived from AHB clock through
+ configurable prescalers and used to clock the peripherals mapped on these busses.
+ You can use "RCC_GetClocksFreq()" function to retrieve the frequencies of these clocks.
+
+@note All the peripheral clocks are derived from the System clock (SYSCLK) except:
+ - I2S: the I2S clock can be derived either from a specific PLL (PLLI2S) or
+ from an external clock mapped on the I2S_CKIN pin.
+ You have to use RCC_I2SCLKConfig() function to configure this clock.
+ - RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
+ divided by 2 to 31. You have to use RCC_RTCCLKConfig() and RCC_RTCCLKCmd()
+ functions to configure this clock.
+ - USB OTG FS, SDIO and RTC: USB OTG FS require a frequency equal to 48 MHz
+ to work correctly, while the SDIO require a frequency equal or lower than
+ to 48. This clock is derived of the main PLL through PLLQ divider.
+ - IWDG clock which is always the LSI clock.
+
+ 2. The maximum frequency of the SYSCLK and HCLK is 168 MHz, PCLK2 82 MHz and PCLK1 42 MHz.
+ Depending on the device voltage range, the maximum frequency should be
+ adapted accordingly:
+ +-------------------------------------------------------------------------------------+
+ | Latency | HCLK clock frequency (MHz) |
+ | |---------------------------------------------------------------------|
+ | | voltage range | voltage range | voltage range | voltage range |
+ | | 2.7 V - 3.6 V | 2.4 V - 2.7 V | 2.1 V - 2.4 V | 1.8 V - 2.1 V |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |0WS(1CPU cycle)|0 < HCLK <= 30 |0 < HCLK <= 24 |0 < HCLK <= 18 |0 < HCLK <= 16 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |1WS(2CPU cycle)|30 < HCLK <= 60 |24 < HCLK <= 48 |18 < HCLK <= 36 |16 < HCLK <= 32 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |2WS(3CPU cycle)|60 < HCLK <= 90 |48 < HCLK <= 72 |36 < HCLK <= 54 |32 < HCLK <= 48 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |3WS(4CPU cycle)|90 < HCLK <= 120|72 < HCLK <= 96 |54 < HCLK <= 72 |48 < HCLK <= 64 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |4WS(5CPU cycle)|120< HCLK <= 150|96 < HCLK <= 120|72 < HCLK <= 90 |64 < HCLK <= 80 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |5WS(6CPU cycle)|120< HCLK <= 168|120< HCLK <= 144|90 < HCLK <= 108 |80 < HCLK <= 96 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |6WS(7CPU cycle)| NA |144< HCLK <= 168|108 < HCLK <= 120|96 < HCLK <= 112 |
+ |---------------|----------------|----------------|-----------------|-----------------|
+ |7WS(8CPU cycle)| NA | NA |120 < HCLK <= 138|112 < HCLK <= 120|
+ +-------------------------------------------------------------------------------------+
+ @note When VOS bit (in PWR_CR register) is reset to '0’, the maximum value of HCLK is 144 MHz.
+ You can use PWR_MainRegulatorModeConfig() function to set or reset this bit.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the system clock (SYSCLK).
+ * @note The HSI is used (enabled by hardware) as system clock source after
+ * startup from Reset, wake-up from STOP and STANDBY mode, or in case
+ * of failure of the HSE used directly or indirectly as system clock
+ * (if the Clock Security System CSS is enabled).
+ * @note A switch from one clock source to another occurs only if the target
+ * clock source is ready (clock stable after startup delay or PLL locked).
+ * If a clock source which is not yet ready is selected, the switch will
+ * occur when the clock source will be ready.
+ * You can use RCC_GetSYSCLKSource() function to know which clock is
+ * currently used as system clock source.
+ * @param RCC_SYSCLKSource: specifies the clock source used as system clock.
+ * This parameter can be one of the following values:
+ * @arg RCC_SYSCLKSource_HSI: HSI selected as system clock source
+ * @arg RCC_SYSCLKSource_HSE: HSE selected as system clock source
+ * @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock source
+ * @retval None
+ */
+void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));
+
+ tmpreg = RCC->CFGR;
+
+ /* Clear SW[1:0] bits */
+ tmpreg &= ~RCC_CFGR_SW;
+
+ /* Set SW[1:0] bits according to RCC_SYSCLKSource value */
+ tmpreg |= RCC_SYSCLKSource;
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+/**
+ * @brief Returns the clock source used as system clock.
+ * @param None
+ * @retval The clock source used as system clock. The returned value can be one
+ * of the following:
+ * - 0x00: HSI used as system clock
+ * - 0x04: HSE used as system clock
+ * - 0x08: PLL used as system clock
+ */
+uint8_t RCC_GetSYSCLKSource(void)
+{
+ return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS));
+}
+
+/**
+ * @brief Configures the AHB clock (HCLK).
+ * @note Depending on the device voltage range, the software has to set correctly
+ * these bits to ensure that HCLK not exceed the maximum allowed frequency
+ * (for more details refer to section above
+ * "CPU, AHB and APB busses clocks configuration functions")
+ * @param RCC_SYSCLK: defines the AHB clock divider. This clock is derived from
+ * the system clock (SYSCLK).
+ * This parameter can be one of the following values:
+ * @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK
+ * @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2
+ * @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4
+ * @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8
+ * @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16
+ * @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64
+ * @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
+ * @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
+ * @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
+ * @retval None
+ */
+void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_HCLK(RCC_SYSCLK));
+
+ tmpreg = RCC->CFGR;
+
+ /* Clear HPRE[3:0] bits */
+ tmpreg &= ~RCC_CFGR_HPRE;
+
+ /* Set HPRE[3:0] bits according to RCC_SYSCLK value */
+ tmpreg |= RCC_SYSCLK;
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+
+/**
+ * @brief Configures the Low Speed APB clock (PCLK1).
+ * @param RCC_HCLK: defines the APB1 clock divider. This clock is derived from
+ * the AHB clock (HCLK).
+ * This parameter can be one of the following values:
+ * @arg RCC_HCLK_Div1: APB1 clock = HCLK
+ * @arg RCC_HCLK_Div2: APB1 clock = HCLK/2
+ * @arg RCC_HCLK_Div4: APB1 clock = HCLK/4
+ * @arg RCC_HCLK_Div8: APB1 clock = HCLK/8
+ * @arg RCC_HCLK_Div16: APB1 clock = HCLK/16
+ * @retval None
+ */
+void RCC_PCLK1Config(uint32_t RCC_HCLK)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_PCLK(RCC_HCLK));
+
+ tmpreg = RCC->CFGR;
+
+ /* Clear PPRE1[2:0] bits */
+ tmpreg &= ~RCC_CFGR_PPRE1;
+
+ /* Set PPRE1[2:0] bits according to RCC_HCLK value */
+ tmpreg |= RCC_HCLK;
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+/**
+ * @brief Configures the High Speed APB clock (PCLK2).
+ * @param RCC_HCLK: defines the APB2 clock divider. This clock is derived from
+ * the AHB clock (HCLK).
+ * This parameter can be one of the following values:
+ * @arg RCC_HCLK_Div1: APB2 clock = HCLK
+ * @arg RCC_HCLK_Div2: APB2 clock = HCLK/2
+ * @arg RCC_HCLK_Div4: APB2 clock = HCLK/4
+ * @arg RCC_HCLK_Div8: APB2 clock = HCLK/8
+ * @arg RCC_HCLK_Div16: APB2 clock = HCLK/16
+ * @retval None
+ */
+void RCC_PCLK2Config(uint32_t RCC_HCLK)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_PCLK(RCC_HCLK));
+
+ tmpreg = RCC->CFGR;
+
+ /* Clear PPRE2[2:0] bits */
+ tmpreg &= ~RCC_CFGR_PPRE2;
+
+ /* Set PPRE2[2:0] bits according to RCC_HCLK value */
+ tmpreg |= RCC_HCLK << 3;
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+}
+
+/**
+ * @brief Returns the frequencies of different on chip clocks; SYSCLK, HCLK,
+ * PCLK1 and PCLK2.
+ *
+ * @note The system frequency computed by this function is not the real
+ * frequency in the chip. It is calculated based on the predefined
+ * constant and the selected clock source:
+ * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
+ * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
+ * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**)
+ * or HSI_VALUE(*) multiplied/divided by the PLL factors.
+ * @note (*) HSI_VALUE is a constant defined in stm32f4xx.h file (default value
+ * 16 MHz) but the real value may vary depending on the variations
+ * in voltage and temperature.
+ * @note (**) HSE_VALUE is a constant defined in stm32f4xx.h file (default value
+ * 25 MHz), user has to ensure that HSE_VALUE is same as the real
+ * frequency of the crystal used. Otherwise, this function may
+ * have wrong result.
+ *
+ * @note The result of this function could be not correct when using fractional
+ * value for HSE crystal.
+ *
+ * @param RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold
+ * the clocks frequencies.
+ *
+ * @note This function can be used by the user application to compute the
+ * baudrate for the communication peripherals or configure other parameters.
+ * @note Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function
+ * must be called to update the structure's field. Otherwise, any
+ * configuration based on this function will be incorrect.
+ *
+ * @retval None
+ */
+void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
+{
+ uint32_t tmp = 0, presc = 0, pllvco = 0, pllp = 2, pllsource = 0, pllm = 2;
+
+ /* Get SYSCLK source -------------------------------------------------------*/
+ tmp = RCC->CFGR & RCC_CFGR_SWS;
+
+ switch (tmp)
+ {
+ case 0x00: /* HSI used as system clock source */
+ RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
+ break;
+ case 0x04: /* HSE used as system clock source */
+ RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
+ break;
+ case 0x08: /* PLL used as system clock source */
+
+ /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
+ SYSCLK = PLL_VCO / PLLP
+ */
+ pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) >> 22;
+ pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
+
+ if (pllsource != 0)
+ {
+ /* HSE used as PLL clock source */
+ pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);
+ }
+ else
+ {
+ /* HSI used as PLL clock source */
+ pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6);
+ }
+
+ pllp = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >>16) + 1 ) *2;
+ RCC_Clocks->SYSCLK_Frequency = pllvco/pllp;
+ break;
+ default:
+ RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
+ break;
+ }
+ /* Compute HCLK, PCLK1 and PCLK2 clocks frequencies ------------------------*/
+
+ /* Get HCLK prescaler */
+ tmp = RCC->CFGR & RCC_CFGR_HPRE;
+ tmp = tmp >> 4;
+ presc = APBAHBPrescTable[tmp];
+ /* HCLK clock frequency */
+ RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc;
+
+ /* Get PCLK1 prescaler */
+ tmp = RCC->CFGR & RCC_CFGR_PPRE1;
+ tmp = tmp >> 10;
+ presc = APBAHBPrescTable[tmp];
+ /* PCLK1 clock frequency */
+ RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
+
+ /* Get PCLK2 prescaler */
+ tmp = RCC->CFGR & RCC_CFGR_PPRE2;
+ tmp = tmp >> 13;
+ presc = APBAHBPrescTable[tmp];
+ /* PCLK2 clock frequency */
+ RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Group3 Peripheral clocks configuration functions
+ * @brief Peripheral clocks configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Peripheral clocks configuration functions
+ ===============================================================================
+
+ This section provide functions allowing to configure the Peripheral clocks.
+
+ 1. The RTC clock which is derived from the LSI, LSE or HSE clock divided by 2 to 31.
+
+ 2. After restart from Reset or wakeup from STANDBY, all peripherals are off
+ except internal SRAM, Flash and JTAG. Before to start using a peripheral you
+ have to enable its interface clock. You can do this using RCC_AHBPeriphClockCmd()
+ , RCC_APB2PeriphClockCmd() and RCC_APB1PeriphClockCmd() functions.
+
+ 3. To reset the peripherals configuration (to the default state after device reset)
+ you can use RCC_AHBPeriphResetCmd(), RCC_APB2PeriphResetCmd() and
+ RCC_APB1PeriphResetCmd() functions.
+
+ 4. To further reduce power consumption in SLEEP mode the peripheral clocks can
+ be disabled prior to executing the WFI or WFE instructions. You can do this
+ using RCC_AHBPeriphClockLPModeCmd(), RCC_APB2PeriphClockLPModeCmd() and
+ RCC_APB1PeriphClockLPModeCmd() functions.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the RTC clock (RTCCLK).
+ * @note As the RTC clock configuration bits are in the Backup domain and write
+ * access is denied to this domain after reset, you have to enable write
+ * access using PWR_BackupAccessCmd(ENABLE) function before to configure
+ * the RTC clock source (to be done once after reset).
+ * @note Once the RTC clock is configured it can't be changed unless the
+ * Backup domain is reset using RCC_BackupResetCmd() function, or by
+ * a Power On Reset (POR).
+ *
+ * @param RCC_RTCCLKSource: specifies the RTC clock source.
+ * This parameter can be one of the following values:
+ * @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
+ * @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
+ * @arg RCC_RTCCLKSource_HSE_Divx: HSE clock divided by x selected
+ * as RTC clock, where x:[2,31]
+ *
+ * @note If the LSE or LSI is used as RTC clock source, the RTC continues to
+ * work in STOP and STANDBY modes, and can be used as wakeup source.
+ * However, when the HSE clock is used as RTC clock source, the RTC
+ * cannot be used in STOP and STANDBY modes.
+ * @note The maximum input clock frequency for RTC is 1MHz (when using HSE as
+ * RTC clock source).
+ *
+ * @retval None
+ */
+void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));
+
+ if ((RCC_RTCCLKSource & 0x00000300) == 0x00000300)
+ { /* If HSE is selected as RTC clock source, configure HSE division factor for RTC clock */
+ tmpreg = RCC->CFGR;
+
+ /* Clear RTCPRE[4:0] bits */
+ tmpreg &= ~RCC_CFGR_RTCPRE;
+
+ /* Configure HSE division factor for RTC clock */
+ tmpreg |= (RCC_RTCCLKSource & 0xFFFFCFF);
+
+ /* Store the new value */
+ RCC->CFGR = tmpreg;
+ }
+
+ /* Select the RTC clock source */
+ RCC->BDCR |= (RCC_RTCCLKSource & 0x00000FFF);
+}
+
+/**
+ * @brief Enables or disables the RTC clock.
+ * @note This function must be used only after the RTC clock source was selected
+ * using the RCC_RTCCLKConfig function.
+ * @param NewState: new state of the RTC clock. This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_RTCCLKCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) BDCR_RTCEN_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Forces or releases the Backup domain reset.
+ * @note This function resets the RTC peripheral (including the backup registers)
+ * and the RTC clock source selection in RCC_CSR register.
+ * @note The BKPSRAM is not affected by this reset.
+ * @param NewState: new state of the Backup domain reset.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_BackupResetCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ *(__IO uint32_t *) BDCR_BDRST_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Configures the I2S clock source (I2SCLK).
+ * @note This function must be called before enabling the I2S APB clock.
+ * @param RCC_I2SCLKSource: specifies the I2S clock source.
+ * This parameter can be one of the following values:
+ * @arg RCC_I2S2CLKSource_PLLI2S: PLLI2S clock used as I2S clock source
+ * @arg RCC_I2S2CLKSource_Ext: External clock mapped on the I2S_CKIN pin
+ * used as I2S clock source
+ * @retval None
+ */
+void RCC_I2SCLKConfig(uint32_t RCC_I2SCLKSource)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_I2SCLK_SOURCE(RCC_I2SCLKSource));
+
+ *(__IO uint32_t *) CFGR_I2SSRC_BB = RCC_I2SCLKSource;
+}
+
+/**
+ * @brief Enables or disables the AHB1 peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @param RCC_AHBPeriph: specifies the AHB1 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_AHB1Periph_GPIOA: GPIOA clock
+ * @arg RCC_AHB1Periph_GPIOB: GPIOB clock
+ * @arg RCC_AHB1Periph_GPIOC: GPIOC clock
+ * @arg RCC_AHB1Periph_GPIOD: GPIOD clock
+ * @arg RCC_AHB1Periph_GPIOE: GPIOE clock
+ * @arg RCC_AHB1Periph_GPIOF: GPIOF clock
+ * @arg RCC_AHB1Periph_GPIOG: GPIOG clock
+ * @arg RCC_AHB1Periph_GPIOG: GPIOG clock
+ * @arg RCC_AHB1Periph_GPIOI: GPIOI clock
+ * @arg RCC_AHB1Periph_CRC: CRC clock
+ * @arg RCC_AHB1Periph_BKPSRAM: BKPSRAM interface clock
+ * @arg RCC_AHB1Periph_CCMDATARAMEN CCM data RAM interface clock
+ * @arg RCC_AHB1Periph_DMA1: DMA1 clock
+ * @arg RCC_AHB1Periph_DMA2: DMA2 clock
+ * @arg RCC_AHB1Periph_ETH_MAC: Ethernet MAC clock
+ * @arg RCC_AHB1Periph_ETH_MAC_Tx: Ethernet Transmission clock
+ * @arg RCC_AHB1Periph_ETH_MAC_Rx: Ethernet Reception clock
+ * @arg RCC_AHB1Periph_ETH_MAC_PTP: Ethernet PTP clock
+ * @arg RCC_AHB1Periph_OTG_HS: USB OTG HS clock
+ * @arg RCC_AHB1Periph_OTG_HS_ULPI: USB OTG HS ULPI clock
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHB1PeriphClockCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB1_CLOCK_PERIPH(RCC_AHB1Periph));
+
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ RCC->AHB1ENR |= RCC_AHB1Periph;
+ }
+ else
+ {
+ RCC->AHB1ENR &= ~RCC_AHB1Periph;
+ }
+}
+
+/**
+ * @brief Enables or disables the AHB2 peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @param RCC_AHBPeriph: specifies the AHB2 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_AHB2Periph_DCMI: DCMI clock
+ * @arg RCC_AHB2Periph_CRYP: CRYP clock
+ * @arg RCC_AHB2Periph_HASH: HASH clock
+ * @arg RCC_AHB2Periph_RNG: RNG clock
+ * @arg RCC_AHB2Periph_OTG_FS: USB OTG FS clock
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHB2PeriphClockCmd(uint32_t RCC_AHB2Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB2_PERIPH(RCC_AHB2Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->AHB2ENR |= RCC_AHB2Periph;
+ }
+ else
+ {
+ RCC->AHB2ENR &= ~RCC_AHB2Periph;
+ }
+}
+
+/**
+ * @brief Enables or disables the AHB3 peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @param RCC_AHBPeriph: specifies the AHB3 peripheral to gates its clock.
+ * This parameter must be: RCC_AHB3Periph_FSMC
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHB3PeriphClockCmd(uint32_t RCC_AHB3Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB3_PERIPH(RCC_AHB3Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->AHB3ENR |= RCC_AHB3Periph;
+ }
+ else
+ {
+ RCC->AHB3ENR &= ~RCC_AHB3Periph;
+ }
+}
+
+/**
+ * @brief Enables or disables the Low Speed APB (APB1) peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB1Periph_TIM2: TIM2 clock
+ * @arg RCC_APB1Periph_TIM3: TIM3 clock
+ * @arg RCC_APB1Periph_TIM4: TIM4 clock
+ * @arg RCC_APB1Periph_TIM5: TIM5 clock
+ * @arg RCC_APB1Periph_TIM6: TIM6 clock
+ * @arg RCC_APB1Periph_TIM7: TIM7 clock
+ * @arg RCC_APB1Periph_TIM12: TIM12 clock
+ * @arg RCC_APB1Periph_TIM13: TIM13 clock
+ * @arg RCC_APB1Periph_TIM14: TIM14 clock
+ * @arg RCC_APB1Periph_WWDG: WWDG clock
+ * @arg RCC_APB1Periph_SPI2: SPI2 clock
+ * @arg RCC_APB1Periph_SPI3: SPI3 clock
+ * @arg RCC_APB1Periph_USART2: USART2 clock
+ * @arg RCC_APB1Periph_USART3: USART3 clock
+ * @arg RCC_APB1Periph_UART4: UART4 clock
+ * @arg RCC_APB1Periph_UART5: UART5 clock
+ * @arg RCC_APB1Periph_I2C1: I2C1 clock
+ * @arg RCC_APB1Periph_I2C2: I2C2 clock
+ * @arg RCC_APB1Periph_I2C3: I2C3 clock
+ * @arg RCC_APB1Periph_CAN1: CAN1 clock
+ * @arg RCC_APB1Periph_CAN2: CAN2 clock
+ * @arg RCC_APB1Periph_PWR: PWR clock
+ * @arg RCC_APB1Periph_DAC: DAC clock
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->APB1ENR |= RCC_APB1Periph;
+ }
+ else
+ {
+ RCC->APB1ENR &= ~RCC_APB1Periph;
+ }
+}
+
+/**
+ * @brief Enables or disables the High Speed APB (APB2) peripheral clock.
+ * @note After reset, the peripheral clock (used for registers read/write access)
+ * is disabled and the application software has to enable this clock before
+ * using it.
+ * @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB2Periph_TIM1: TIM1 clock
+ * @arg RCC_APB2Periph_TIM8: TIM8 clock
+ * @arg RCC_APB2Periph_USART1: USART1 clock
+ * @arg RCC_APB2Periph_USART6: USART6 clock
+ * @arg RCC_APB2Periph_ADC1: ADC1 clock
+ * @arg RCC_APB2Periph_ADC2: ADC2 clock
+ * @arg RCC_APB2Periph_ADC3: ADC3 clock
+ * @arg RCC_APB2Periph_SDIO: SDIO clock
+ * @arg RCC_APB2Periph_SPI1: SPI1 clock
+ * @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
+ * @arg RCC_APB2Periph_TIM9: TIM9 clock
+ * @arg RCC_APB2Periph_TIM10: TIM10 clock
+ * @arg RCC_APB2Periph_TIM11: TIM11 clock
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->APB2ENR |= RCC_APB2Periph;
+ }
+ else
+ {
+ RCC->APB2ENR &= ~RCC_APB2Periph;
+ }
+}
+
+/**
+ * @brief Forces or releases AHB1 peripheral reset.
+ * @param RCC_AHB1Periph: specifies the AHB1 peripheral to reset.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_AHB1Periph_GPIOA: GPIOA clock
+ * @arg RCC_AHB1Periph_GPIOB: GPIOB clock
+ * @arg RCC_AHB1Periph_GPIOC: GPIOC clock
+ * @arg RCC_AHB1Periph_GPIOD: GPIOD clock
+ * @arg RCC_AHB1Periph_GPIOE: GPIOE clock
+ * @arg RCC_AHB1Periph_GPIOF: GPIOF clock
+ * @arg RCC_AHB1Periph_GPIOG: GPIOG clock
+ * @arg RCC_AHB1Periph_GPIOG: GPIOG clock
+ * @arg RCC_AHB1Periph_GPIOI: GPIOI clock
+ * @arg RCC_AHB1Periph_CRC: CRC clock
+ * @arg RCC_AHB1Periph_DMA1: DMA1 clock
+ * @arg RCC_AHB1Periph_DMA2: DMA2 clock
+ * @arg RCC_AHB1Periph_ETH_MAC: Ethernet MAC clock
+ * @arg RCC_AHB1Periph_OTG_HS: USB OTG HS clock
+ *
+ * @param NewState: new state of the specified peripheral reset.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHB1PeriphResetCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB1_RESET_PERIPH(RCC_AHB1Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->AHB1RSTR |= RCC_AHB1Periph;
+ }
+ else
+ {
+ RCC->AHB1RSTR &= ~RCC_AHB1Periph;
+ }
+}
+
+/**
+ * @brief Forces or releases AHB2 peripheral reset.
+ * @param RCC_AHB2Periph: specifies the AHB2 peripheral to reset.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_AHB2Periph_DCMI: DCMI clock
+ * @arg RCC_AHB2Periph_CRYP: CRYP clock
+ * @arg RCC_AHB2Periph_HASH: HASH clock
+ * @arg RCC_AHB2Periph_RNG: RNG clock
+ * @arg RCC_AHB2Periph_OTG_FS: USB OTG FS clock
+ * @param NewState: new state of the specified peripheral reset.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHB2PeriphResetCmd(uint32_t RCC_AHB2Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB2_PERIPH(RCC_AHB2Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->AHB2RSTR |= RCC_AHB2Periph;
+ }
+ else
+ {
+ RCC->AHB2RSTR &= ~RCC_AHB2Periph;
+ }
+}
+
+/**
+ * @brief Forces or releases AHB3 peripheral reset.
+ * @param RCC_AHB3Periph: specifies the AHB3 peripheral to reset.
+ * This parameter must be: RCC_AHB3Periph_FSMC
+ * @param NewState: new state of the specified peripheral reset.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHB3PeriphResetCmd(uint32_t RCC_AHB3Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB3_PERIPH(RCC_AHB3Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ RCC->AHB3RSTR |= RCC_AHB3Periph;
+ }
+ else
+ {
+ RCC->AHB3RSTR &= ~RCC_AHB3Periph;
+ }
+}
+
+/**
+ * @brief Forces or releases Low Speed APB (APB1) peripheral reset.
+ * @param RCC_APB1Periph: specifies the APB1 peripheral to reset.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB1Periph_TIM2: TIM2 clock
+ * @arg RCC_APB1Periph_TIM3: TIM3 clock
+ * @arg RCC_APB1Periph_TIM4: TIM4 clock
+ * @arg RCC_APB1Periph_TIM5: TIM5 clock
+ * @arg RCC_APB1Periph_TIM6: TIM6 clock
+ * @arg RCC_APB1Periph_TIM7: TIM7 clock
+ * @arg RCC_APB1Periph_TIM12: TIM12 clock
+ * @arg RCC_APB1Periph_TIM13: TIM13 clock
+ * @arg RCC_APB1Periph_TIM14: TIM14 clock
+ * @arg RCC_APB1Periph_WWDG: WWDG clock
+ * @arg RCC_APB1Periph_SPI2: SPI2 clock
+ * @arg RCC_APB1Periph_SPI3: SPI3 clock
+ * @arg RCC_APB1Periph_USART2: USART2 clock
+ * @arg RCC_APB1Periph_USART3: USART3 clock
+ * @arg RCC_APB1Periph_UART4: UART4 clock
+ * @arg RCC_APB1Periph_UART5: UART5 clock
+ * @arg RCC_APB1Periph_I2C1: I2C1 clock
+ * @arg RCC_APB1Periph_I2C2: I2C2 clock
+ * @arg RCC_APB1Periph_I2C3: I2C3 clock
+ * @arg RCC_APB1Periph_CAN1: CAN1 clock
+ * @arg RCC_APB1Periph_CAN2: CAN2 clock
+ * @arg RCC_APB1Periph_PWR: PWR clock
+ * @arg RCC_APB1Periph_DAC: DAC clock
+ * @param NewState: new state of the specified peripheral reset.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ RCC->APB1RSTR |= RCC_APB1Periph;
+ }
+ else
+ {
+ RCC->APB1RSTR &= ~RCC_APB1Periph;
+ }
+}
+
+/**
+ * @brief Forces or releases High Speed APB (APB2) peripheral reset.
+ * @param RCC_APB2Periph: specifies the APB2 peripheral to reset.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB2Periph_TIM1: TIM1 clock
+ * @arg RCC_APB2Periph_TIM8: TIM8 clock
+ * @arg RCC_APB2Periph_USART1: USART1 clock
+ * @arg RCC_APB2Periph_USART6: USART6 clock
+ * @arg RCC_APB2Periph_ADC1: ADC1 clock
+ * @arg RCC_APB2Periph_ADC2: ADC2 clock
+ * @arg RCC_APB2Periph_ADC3: ADC3 clock
+ * @arg RCC_APB2Periph_SDIO: SDIO clock
+ * @arg RCC_APB2Periph_SPI1: SPI1 clock
+ * @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
+ * @arg RCC_APB2Periph_TIM9: TIM9 clock
+ * @arg RCC_APB2Periph_TIM10: TIM10 clock
+ * @arg RCC_APB2Periph_TIM11: TIM11 clock
+ * @param NewState: new state of the specified peripheral reset.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB2_RESET_PERIPH(RCC_APB2Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ RCC->APB2RSTR |= RCC_APB2Periph;
+ }
+ else
+ {
+ RCC->APB2RSTR &= ~RCC_APB2Periph;
+ }
+}
+
+/**
+ * @brief Enables or disables the AHB1 peripheral clock during Low Power (Sleep) mode.
+ * @note Peripheral clock gating in SLEEP mode can be used to further reduce
+ * power consumption.
+ * @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
+ * @note By default, all peripheral clocks are enabled during SLEEP mode.
+ * @param RCC_AHBPeriph: specifies the AHB1 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_AHB1Periph_GPIOA: GPIOA clock
+ * @arg RCC_AHB1Periph_GPIOB: GPIOB clock
+ * @arg RCC_AHB1Periph_GPIOC: GPIOC clock
+ * @arg RCC_AHB1Periph_GPIOD: GPIOD clock
+ * @arg RCC_AHB1Periph_GPIOE: GPIOE clock
+ * @arg RCC_AHB1Periph_GPIOF: GPIOF clock
+ * @arg RCC_AHB1Periph_GPIOG: GPIOG clock
+ * @arg RCC_AHB1Periph_GPIOG: GPIOG clock
+ * @arg RCC_AHB1Periph_GPIOI: GPIOI clock
+ * @arg RCC_AHB1Periph_CRC: CRC clock
+ * @arg RCC_AHB1Periph_BKPSRAM: BKPSRAM interface clock
+ * @arg RCC_AHB1Periph_DMA1: DMA1 clock
+ * @arg RCC_AHB1Periph_DMA2: DMA2 clock
+ * @arg RCC_AHB1Periph_ETH_MAC: Ethernet MAC clock
+ * @arg RCC_AHB1Periph_ETH_MAC_Tx: Ethernet Transmission clock
+ * @arg RCC_AHB1Periph_ETH_MAC_Rx: Ethernet Reception clock
+ * @arg RCC_AHB1Periph_ETH_MAC_PTP: Ethernet PTP clock
+ * @arg RCC_AHB1Periph_OTG_HS: USB OTG HS clock
+ * @arg RCC_AHB1Periph_OTG_HS_ULPI: USB OTG HS ULPI clock
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHB1PeriphClockLPModeCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB1_LPMODE_PERIPH(RCC_AHB1Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ RCC->AHB1LPENR |= RCC_AHB1Periph;
+ }
+ else
+ {
+ RCC->AHB1LPENR &= ~RCC_AHB1Periph;
+ }
+}
+
+/**
+ * @brief Enables or disables the AHB2 peripheral clock during Low Power (Sleep) mode.
+ * @note Peripheral clock gating in SLEEP mode can be used to further reduce
+ * power consumption.
+ * @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
+ * @note By default, all peripheral clocks are enabled during SLEEP mode.
+ * @param RCC_AHBPeriph: specifies the AHB2 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_AHB2Periph_DCMI: DCMI clock
+ * @arg RCC_AHB2Periph_CRYP: CRYP clock
+ * @arg RCC_AHB2Periph_HASH: HASH clock
+ * @arg RCC_AHB2Periph_RNG: RNG clock
+ * @arg RCC_AHB2Periph_OTG_FS: USB OTG FS clock
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHB2PeriphClockLPModeCmd(uint32_t RCC_AHB2Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB2_PERIPH(RCC_AHB2Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ RCC->AHB2LPENR |= RCC_AHB2Periph;
+ }
+ else
+ {
+ RCC->AHB2LPENR &= ~RCC_AHB2Periph;
+ }
+}
+
+/**
+ * @brief Enables or disables the AHB3 peripheral clock during Low Power (Sleep) mode.
+ * @note Peripheral clock gating in SLEEP mode can be used to further reduce
+ * power consumption.
+ * @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
+ * @note By default, all peripheral clocks are enabled during SLEEP mode.
+ * @param RCC_AHBPeriph: specifies the AHB3 peripheral to gates its clock.
+ * This parameter must be: RCC_AHB3Periph_FSMC
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_AHB3PeriphClockLPModeCmd(uint32_t RCC_AHB3Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_AHB3_PERIPH(RCC_AHB3Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ RCC->AHB3LPENR |= RCC_AHB3Periph;
+ }
+ else
+ {
+ RCC->AHB3LPENR &= ~RCC_AHB3Periph;
+ }
+}
+
+/**
+ * @brief Enables or disables the APB1 peripheral clock during Low Power (Sleep) mode.
+ * @note Peripheral clock gating in SLEEP mode can be used to further reduce
+ * power consumption.
+ * @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
+ * @note By default, all peripheral clocks are enabled during SLEEP mode.
+ * @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB1Periph_TIM2: TIM2 clock
+ * @arg RCC_APB1Periph_TIM3: TIM3 clock
+ * @arg RCC_APB1Periph_TIM4: TIM4 clock
+ * @arg RCC_APB1Periph_TIM5: TIM5 clock
+ * @arg RCC_APB1Periph_TIM6: TIM6 clock
+ * @arg RCC_APB1Periph_TIM7: TIM7 clock
+ * @arg RCC_APB1Periph_TIM12: TIM12 clock
+ * @arg RCC_APB1Periph_TIM13: TIM13 clock
+ * @arg RCC_APB1Periph_TIM14: TIM14 clock
+ * @arg RCC_APB1Periph_WWDG: WWDG clock
+ * @arg RCC_APB1Periph_SPI2: SPI2 clock
+ * @arg RCC_APB1Periph_SPI3: SPI3 clock
+ * @arg RCC_APB1Periph_USART2: USART2 clock
+ * @arg RCC_APB1Periph_USART3: USART3 clock
+ * @arg RCC_APB1Periph_UART4: UART4 clock
+ * @arg RCC_APB1Periph_UART5: UART5 clock
+ * @arg RCC_APB1Periph_I2C1: I2C1 clock
+ * @arg RCC_APB1Periph_I2C2: I2C2 clock
+ * @arg RCC_APB1Periph_I2C3: I2C3 clock
+ * @arg RCC_APB1Periph_CAN1: CAN1 clock
+ * @arg RCC_APB1Periph_CAN2: CAN2 clock
+ * @arg RCC_APB1Periph_PWR: PWR clock
+ * @arg RCC_APB1Periph_DAC: DAC clock
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB1PeriphClockLPModeCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ RCC->APB1LPENR |= RCC_APB1Periph;
+ }
+ else
+ {
+ RCC->APB1LPENR &= ~RCC_APB1Periph;
+ }
+}
+
+/**
+ * @brief Enables or disables the APB2 peripheral clock during Low Power (Sleep) mode.
+ * @note Peripheral clock gating in SLEEP mode can be used to further reduce
+ * power consumption.
+ * @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
+ * @note By default, all peripheral clocks are enabled during SLEEP mode.
+ * @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_APB2Periph_TIM1: TIM1 clock
+ * @arg RCC_APB2Periph_TIM8: TIM8 clock
+ * @arg RCC_APB2Periph_USART1: USART1 clock
+ * @arg RCC_APB2Periph_USART6: USART6 clock
+ * @arg RCC_APB2Periph_ADC1: ADC1 clock
+ * @arg RCC_APB2Periph_ADC2: ADC2 clock
+ * @arg RCC_APB2Periph_ADC3: ADC3 clock
+ * @arg RCC_APB2Periph_SDIO: SDIO clock
+ * @arg RCC_APB2Periph_SPI1: SPI1 clock
+ * @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
+ * @arg RCC_APB2Periph_TIM9: TIM9 clock
+ * @arg RCC_APB2Periph_TIM10: TIM10 clock
+ * @arg RCC_APB2Periph_TIM11: TIM11 clock
+ * @param NewState: new state of the specified peripheral clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_APB2PeriphClockLPModeCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ RCC->APB2LPENR |= RCC_APB2Periph;
+ }
+ else
+ {
+ RCC->APB2LPENR &= ~RCC_APB2Periph;
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup RCC_Group4 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts and flags management functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified RCC interrupts.
+ * @param RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_IT_LSIRDY: LSI ready interrupt
+ * @arg RCC_IT_LSERDY: LSE ready interrupt
+ * @arg RCC_IT_HSIRDY: HSI ready interrupt
+ * @arg RCC_IT_HSERDY: HSE ready interrupt
+ * @arg RCC_IT_PLLRDY: main PLL ready interrupt
+ * @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt
+ * @param NewState: new state of the specified RCC interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_IT(RCC_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Perform Byte access to RCC_CIR[14:8] bits to enable the selected interrupts */
+ *(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT;
+ }
+ else
+ {
+ /* Perform Byte access to RCC_CIR[14:8] bits to disable the selected interrupts */
+ *(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT;
+ }
+}
+
+/**
+ * @brief Checks whether the specified RCC flag is set or not.
+ * @param RCC_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
+ * @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
+ * @arg RCC_FLAG_PLLRDY: main PLL clock ready
+ * @arg RCC_FLAG_PLLI2SRDY: PLLI2S clock ready
+ * @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
+ * @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
+ * @arg RCC_FLAG_BORRST: POR/PDR or BOR reset
+ * @arg RCC_FLAG_PINRST: Pin reset
+ * @arg RCC_FLAG_PORRST: POR/PDR reset
+ * @arg RCC_FLAG_SFTRST: Software reset
+ * @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
+ * @arg RCC_FLAG_WWDGRST: Window Watchdog reset
+ * @arg RCC_FLAG_LPWRRST: Low Power reset
+ * @retval The new state of RCC_FLAG (SET or RESET).
+ */
+FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
+{
+ uint32_t tmp = 0;
+ uint32_t statusreg = 0;
+ FlagStatus bitstatus = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_FLAG(RCC_FLAG));
+
+ /* Get the RCC register index */
+ tmp = RCC_FLAG >> 5;
+ if (tmp == 1) /* The flag to check is in CR register */
+ {
+ statusreg = RCC->CR;
+ }
+ else if (tmp == 2) /* The flag to check is in BDCR register */
+ {
+ statusreg = RCC->BDCR;
+ }
+ else /* The flag to check is in CSR register */
+ {
+ statusreg = RCC->CSR;
+ }
+
+ /* Get the flag position */
+ tmp = RCC_FLAG & FLAG_MASK;
+ if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ /* Return the flag status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the RCC reset flags.
+ * The reset flags are: RCC_FLAG_PINRST, RCC_FLAG_PORRST, RCC_FLAG_SFTRST,
+ * RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST
+ * @param None
+ * @retval None
+ */
+void RCC_ClearFlag(void)
+{
+ /* Set RMVF bit to clear the reset flags */
+ RCC->CSR |= RCC_CSR_RMVF;
+}
+
+/**
+ * @brief Checks whether the specified RCC interrupt has occurred or not.
+ * @param RCC_IT: specifies the RCC interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg RCC_IT_LSIRDY: LSI ready interrupt
+ * @arg RCC_IT_LSERDY: LSE ready interrupt
+ * @arg RCC_IT_HSIRDY: HSI ready interrupt
+ * @arg RCC_IT_HSERDY: HSE ready interrupt
+ * @arg RCC_IT_PLLRDY: main PLL ready interrupt
+ * @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt
+ * @arg RCC_IT_CSS: Clock Security System interrupt
+ * @retval The new state of RCC_IT (SET or RESET).
+ */
+ITStatus RCC_GetITStatus(uint8_t RCC_IT)
+{
+ ITStatus bitstatus = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_RCC_GET_IT(RCC_IT));
+
+ /* Check the status of the specified RCC interrupt */
+ if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ /* Return the RCC_IT status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the RCC's interrupt pending bits.
+ * @param RCC_IT: specifies the interrupt pending bit to clear.
+ * This parameter can be any combination of the following values:
+ * @arg RCC_IT_LSIRDY: LSI ready interrupt
+ * @arg RCC_IT_LSERDY: LSE ready interrupt
+ * @arg RCC_IT_HSIRDY: HSI ready interrupt
+ * @arg RCC_IT_HSERDY: HSE ready interrupt
+ * @arg RCC_IT_PLLRDY: main PLL ready interrupt
+ * @arg RCC_IT_PLLI2SRDY: PLLI2S ready interrupt
+ * @arg RCC_IT_CSS: Clock Security System interrupt
+ * @retval None
+ */
+void RCC_ClearITPendingBit(uint8_t RCC_IT)
+{
+ /* Check the parameters */
+ assert_param(IS_RCC_CLEAR_IT(RCC_IT));
+
+ /* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
+ pending bits */
+ *(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_rng.c b/TimerCounter/SPL/src/stm32f4xx_rng.c
new file mode 100644
index 0000000..9f0ba05
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_rng.c
@@ -0,0 +1,399 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_rng.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Random Number Generator (RNG) peripheral:
+ * - Initialization and Configuration
+ * - Get 32 bit Random number
+ * - Interrupts and flags management
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ * 1. Enable The RNG controller clock using
+ * RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE) function.
+ *
+ * 2. Activate the RNG peripheral using RNG_Cmd() function.
+ *
+ * 3. Wait until the 32 bit Random number Generator contains a valid
+ * random data (using polling/interrupt mode). For more details,
+ * refer to "Interrupts and flags management functions" module
+ * description.
+ *
+ * 4. Get the 32 bit Random number using RNG_GetRandomNumber() function
+ *
+ * 5. To get another 32 bit Random number, go to step 3.
+ *
+ *
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_rng.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup RNG
+ * @brief RNG driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup RNG_Private_Functions
+ * @{
+ */
+
+/** @defgroup RNG_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Initialization and Configuration functions
+ ===============================================================================
+ This section provides functions allowing to
+ - Initialize the RNG peripheral
+ - Enable or disable the RNG peripheral
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the RNG peripheral registers to their default reset values.
+ * @param None
+ * @retval None
+ */
+void RNG_DeInit(void)
+{
+ /* Enable RNG reset state */
+ RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_RNG, ENABLE);
+
+ /* Release RNG from reset state */
+ RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_RNG, DISABLE);
+}
+
+/**
+ * @brief Enables or disables the RNG peripheral.
+ * @param NewState: new state of the RNG peripheral.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RNG_Cmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the RNG */
+ RNG->CR |= RNG_CR_RNGEN;
+ }
+ else
+ {
+ /* Disable the RNG */
+ RNG->CR &= ~RNG_CR_RNGEN;
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup RNG_Group2 Get 32 bit Random number function
+ * @brief Get 32 bit Random number function
+ *
+
+@verbatim
+ ===============================================================================
+ Get 32 bit Random number function
+ ===============================================================================
+ This section provides a function allowing to get the 32 bit Random number
+
+ @note Before to call this function you have to wait till DRDY flag is set,
+ using RNG_GetFlagStatus(RNG_FLAG_DRDY) function.
+
+@endverbatim
+ * @{
+ */
+
+
+/**
+ * @brief Returns a 32-bit random number.
+ *
+ * @note Before to call this function you have to wait till DRDY (data ready)
+ * flag is set, using RNG_GetFlagStatus(RNG_FLAG_DRDY) function.
+ * @note Each time the the Random number data is read (using RNG_GetRandomNumber()
+ * function), the RNG_FLAG_DRDY flag is automatically cleared.
+ * @note In the case of a seed error, the generation of random numbers is
+ * interrupted for as long as the SECS bit is '1'. If a number is
+ * available in the RNG_DR register, it must not be used because it may
+ * not have enough entropy. In this case, it is recommended to clear the
+ * SEIS bit(using RNG_ClearFlag(RNG_FLAG_SECS) function), then disable
+ * and enable the RNG peripheral (using RNG_Cmd() function) to
+ * reinitialize and restart the RNG.
+ * @note In the case of a clock error, the RNG is no more able to generate
+ * random numbers because the PLL48CLK clock is not correct. User have
+ * to check that the clock controller is correctly configured to provide
+ * the RNG clock and clear the CEIS bit (using RNG_ClearFlag(RNG_FLAG_CECS)
+ * function) . The clock error has no impact on the previously generated
+ * random numbers, and the RNG_DR register contents can be used.
+ *
+ * @param None
+ * @retval 32-bit random number.
+ */
+uint32_t RNG_GetRandomNumber(void)
+{
+ /* Return the 32 bit random number from the DR register */
+ return RNG->DR;
+}
+
+
+/**
+ * @}
+ */
+
+/** @defgroup RNG_Group3 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts and flags management functions
+ ===============================================================================
+
+ This section provides functions allowing to configure the RNG Interrupts and
+ to get the status and clear flags and Interrupts pending bits.
+
+ The RNG provides 3 Interrupts sources and 3 Flags:
+
+ Flags :
+ ----------
+ 1. RNG_FLAG_DRDY : In the case of the RNG_DR register contains valid
+ random data. it is cleared by reading the valid data
+ (using RNG_GetRandomNumber() function).
+
+ 2. RNG_FLAG_CECS : In the case of a seed error detection.
+
+ 3. RNG_FLAG_SECS : In the case of a clock error detection.
+
+
+ Interrupts :
+ ------------
+ if enabled, an RNG interrupt is pending :
+
+ 1. In the case of the RNG_DR register contains valid random data.
+ This interrupt source is cleared once the RNG_DR register has been read
+ (using RNG_GetRandomNumber() function) until a new valid value is
+ computed.
+
+ or
+ 2. In the case of a seed error : One of the following faulty sequences has
+ been detected:
+ - More than 64 consecutive bits at the same value (0 or 1)
+ - More than 32 consecutive alternance of 0 and 1 (0101010101...01)
+ This interrupt source is cleared using RNG_ClearITPendingBit(RNG_IT_SEI)
+ function.
+
+ or
+ 3. In the case of a clock error : the PLL48CLK (RNG peripheral clock source)
+ was not correctly detected (fPLL48CLK< fHCLK/16).
+ This interrupt source is cleared using RNG_ClearITPendingBit(RNG_IT_CEI)
+ function.
+ @note In this case, User have to check that the clock controller is
+ correctly configured to provide the RNG clock.
+
+ Managing the RNG controller events :
+ ------------------------------------
+ The user should identify which mode will be used in his application to manage
+ the RNG controller events: Polling mode or Interrupt mode.
+
+ 1. In the Polling Mode it is advised to use the following functions:
+ - RNG_GetFlagStatus() : to check if flags events occur.
+ - RNG_ClearFlag() : to clear the flags events.
+
+ @note RNG_FLAG_DRDY can not be cleared by RNG_ClearFlag(). it is cleared only
+ by reading the Random number data.
+
+ 2. In the Interrupt Mode it is advised to use the following functions:
+ - RNG_ITConfig() : to enable or disable the interrupt source.
+ - RNG_GetITStatus() : to check if Interrupt occurs.
+ - RNG_ClearITPendingBit() : to clear the Interrupt pending Bit
+ (corresponding Flag).
+
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the RNG interrupt.
+ * @note The RNG provides 3 interrupt sources,
+ * - Computed data is ready event (DRDY), and
+ * - Seed error Interrupt (SEI) and
+ * - Clock error Interrupt (CEI),
+ * all these interrupts sources are enabled by setting the IE bit in
+ * CR register. However, each interrupt have its specific status bit
+ * (see RNG_GetITStatus() function) and clear bit except the DRDY event
+ * (see RNG_ClearITPendingBit() function).
+ * @param NewState: new state of the RNG interrupt.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void RNG_ITConfig(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the RNG interrupt */
+ RNG->CR |= RNG_CR_IE;
+ }
+ else
+ {
+ /* Disable the RNG interrupt */
+ RNG->CR &= ~RNG_CR_IE;
+ }
+}
+
+/**
+ * @brief Checks whether the specified RNG flag is set or not.
+ * @param RNG_FLAG: specifies the RNG flag to check.
+ * This parameter can be one of the following values:
+ * @arg RNG_FLAG_DRDY: Data Ready flag.
+ * @arg RNG_FLAG_CECS: Clock Error Current flag.
+ * @arg RNG_FLAG_SECS: Seed Error Current flag.
+ * @retval The new state of RNG_FLAG (SET or RESET).
+ */
+FlagStatus RNG_GetFlagStatus(uint8_t RNG_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_RNG_GET_FLAG(RNG_FLAG));
+
+ /* Check the status of the specified RNG flag */
+ if ((RNG->SR & RNG_FLAG) != (uint8_t)RESET)
+ {
+ /* RNG_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* RNG_FLAG is reset */
+ bitstatus = RESET;
+ }
+ /* Return the RNG_FLAG status */
+ return bitstatus;
+}
+
+
+/**
+ * @brief Clears the RNG flags.
+ * @param RNG_FLAG: specifies the flag to clear.
+ * This parameter can be any combination of the following values:
+ * @arg RNG_FLAG_CECS: Clock Error Current flag.
+ * @arg RNG_FLAG_SECS: Seed Error Current flag.
+ * @note RNG_FLAG_DRDY can not be cleared by RNG_ClearFlag() function.
+ * This flag is cleared only by reading the Random number data (using
+ * RNG_GetRandomNumber() function).
+ * @retval None
+ */
+void RNG_ClearFlag(uint8_t RNG_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_RNG_CLEAR_FLAG(RNG_FLAG));
+ /* Clear the selected RNG flags */
+ RNG->SR = ~(uint32_t)(((uint32_t)RNG_FLAG) << 4);
+}
+
+/**
+ * @brief Checks whether the specified RNG interrupt has occurred or not.
+ * @param RNG_IT: specifies the RNG interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg RNG_IT_CEI: Clock Error Interrupt.
+ * @arg RNG_IT_SEI: Seed Error Interrupt.
+ * @retval The new state of RNG_IT (SET or RESET).
+ */
+ITStatus RNG_GetITStatus(uint8_t RNG_IT)
+{
+ ITStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_RNG_GET_IT(RNG_IT));
+
+ /* Check the status of the specified RNG interrupt */
+ if ((RNG->SR & RNG_IT) != (uint8_t)RESET)
+ {
+ /* RNG_IT is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* RNG_IT is reset */
+ bitstatus = RESET;
+ }
+ /* Return the RNG_IT status */
+ return bitstatus;
+}
+
+
+/**
+ * @brief Clears the RNG interrupt pending bit(s).
+ * @param RNG_IT: specifies the RNG interrupt pending bit(s) to clear.
+ * This parameter can be any combination of the following values:
+ * @arg RNG_IT_CEI: Clock Error Interrupt.
+ * @arg RNG_IT_SEI: Seed Error Interrupt.
+ * @retval None
+ */
+void RNG_ClearITPendingBit(uint8_t RNG_IT)
+{
+ /* Check the parameters */
+ assert_param(IS_RNG_IT(RNG_IT));
+
+ /* Clear the selected RNG interrupt pending bit */
+ RNG->SR = (uint8_t)~RNG_IT;
+}
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+
+/**
+ * @}
+ */
+
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_rtc.c b/TimerCounter/SPL/src/stm32f4xx_rtc.c
new file mode 100644
index 0000000..159f0f3
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_rtc.c
@@ -0,0 +1,2732 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_rtc.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Real-Time Clock (RTC) peripheral:
+ * - Initialization
+ * - Calendar (Time and Date) configuration
+ * - Alarms (Alarm A and Alarm B) configuration
+ * - WakeUp Timer configuration
+ * - Daylight Saving configuration
+ * - Output pin Configuration
+ * - Coarse digital Calibration configuration
+ * - Smooth digital Calibration configuration
+ * - TimeStamp configuration
+ * - Tampers configuration
+ * - Backup Data Registers configuration
+ * - Shift control synchronisation
+ * - RTC Tamper and TimeStamp Pins Selection and Output Type Config configuration
+ * - Interrupts and flags management
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * Backup Domain Operating Condition
+ * ===================================================================
+ * The real-time clock (RTC), the RTC backup registers, and the backup
+ * SRAM (BKP SRAM) can be powered from the VBAT voltage when the main
+ * VDD supply is powered off.
+ * To retain the content of the RTC backup registers, backup SRAM,
+ * and supply the RTC when VDD is turned off, VBAT pin can be connected
+ * to an optional standby voltage supplied by a battery or by another
+ * source.
+ *
+ * To allow the RTC to operate even when the main digital supply (VDD)
+ * is turned off, the VBAT pin powers the following blocks:
+ * 1 - The RTC
+ * 2 - The LSE oscillator
+ * 3 - The backup SRAM when the low power backup regulator is enabled
+ * 4 - PC13 to PC15 I/Os, plus PI8 I/O (when available)
+ *
+ * When the backup domain is supplied by VDD (analog switch connected
+ * to VDD), the following functions are available:
+ * 1 - PC14 and PC15 can be used as either GPIO or LSE pins
+ * 2 - PC13 can be used as a GPIO or as the RTC_AF1 pin
+ * 3 - PI8 can be used as a GPIO or as the RTC_AF2 pin
+ *
+ * When the backup domain is supplied by VBAT (analog switch connected
+ * to VBAT because VDD is not present), the following functions are available:
+ * 1 - PC14 and PC15 can be used as LSE pins only
+ * 2 - PC13 can be used as the RTC_AF1 pin
+ * 3 - PI8 can be used as the RTC_AF2 pin
+ *
+ * ===================================================================
+ * Backup Domain Reset
+ * ===================================================================
+ * The backup domain reset sets all RTC registers and the RCC_BDCR
+ * register to their reset values. The BKPSRAM is not affected by this
+ * reset. The only way of resetting the BKPSRAM is through the Flash
+ * interface by requesting a protection level change from 1 to 0.
+ * A backup domain reset is generated when one of the following events
+ * occurs:
+ * 1 - Software reset, triggered by setting the BDRST bit in the
+ * RCC Backup domain control register (RCC_BDCR). You can use the
+ * RCC_BackupResetCmd().
+ * 2 - VDD or VBAT power on, if both supplies have previously been
+ * powered off.
+ *
+ * ===================================================================
+ * Backup Domain Access
+ * ===================================================================
+ * After reset, the backup domain (RTC registers, RTC backup data
+ * registers and backup SRAM) is protected against possible unwanted
+ * write accesses.
+ * To enable access to the RTC Domain and RTC registers, proceed as follows:
+ * - Enable the Power Controller (PWR) APB1 interface clock using the
+ * RCC_APB1PeriphClockCmd() function.
+ * - Enable access to RTC domain using the PWR_BackupAccessCmd() function.
+ * - Select the RTC clock source using the RCC_RTCCLKConfig() function.
+ * - Enable RTC Clock using the RCC_RTCCLKCmd() function.
+ *
+ * ===================================================================
+ * RTC Driver: how to use it
+ * ===================================================================
+ * - Enable the RTC domain access (see description in the section above)
+ * - Configure the RTC Prescaler (Asynchronous and Synchronous) and
+ * RTC hour format using the RTC_Init() function.
+ *
+ * Time and Date configuration
+ * ===========================
+ * - To configure the RTC Calendar (Time and Date) use the RTC_SetTime()
+ * and RTC_SetDate() functions.
+ * - To read the RTC Calendar, use the RTC_GetTime() and RTC_GetDate()
+ * functions.
+ * - Use the RTC_DayLightSavingConfig() function to add or sub one
+ * hour to the RTC Calendar.
+ *
+ * Alarm configuration
+ * ===================
+ * - To configure the RTC Alarm use the RTC_SetAlarm() function.
+ * - Enable the selected RTC Alarm using the RTC_AlarmCmd() function
+ * - To read the RTC Alarm, use the RTC_GetAlarm() function.
+ * - To read the RTC alarm SubSecond, use the RTC_GetAlarmSubSecond() function.
+ *
+ * RTC Wakeup configuration
+ * ========================
+ * - Configure the RTC Wakeup Clock source use the RTC_WakeUpClockConfig()
+ * function.
+ * - Configure the RTC WakeUp Counter using the RTC_SetWakeUpCounter()
+ * function
+ * - Enable the RTC WakeUp using the RTC_WakeUpCmd() function
+ * - To read the RTC WakeUp Counter register, use the RTC_GetWakeUpCounter()
+ * function.
+ *
+ * Outputs configuration
+ * =====================
+ * The RTC has 2 different outputs:
+ * - AFO_ALARM: this output is used to manage the RTC Alarm A, Alarm B
+ * and WaKeUp signals.
+ * To output the selected RTC signal on RTC_AF1 pin, use the
+ * RTC_OutputConfig() function.
+ * - AFO_CALIB: this output is 512Hz signal or 1Hz .
+ * To output the RTC Clock on RTC_AF1 pin, use the RTC_CalibOutputCmd()
+ * function.
+ *
+ * Smooth digital Calibration configuration
+ * =================================
+ * - Configure the RTC Original Digital Calibration Value and the corresponding
+ * calibration cycle period (32s,16s and 8s) using the RTC_SmoothCalibConfig()
+ * function.
+ *
+ * Coarse digital Calibration configuration
+ * =================================
+ * - Configure the RTC Coarse Calibration Value and the corresponding
+ * sign using the RTC_CoarseCalibConfig() function.
+ * - Enable the RTC Coarse Calibration using the RTC_CoarseCalibCmd()
+ * function
+ *
+ * TimeStamp configuration
+ * =======================
+ * - Configure the RTC_AF1 trigger and enables the RTC TimeStamp
+ * using the RTC_TimeStampCmd() function.
+ * - To read the RTC TimeStamp Time and Date register, use the
+ * RTC_GetTimeStamp() function.
+ * - To read the RTC TimeStamp SubSecond register, use the
+ * RTC_GetTimeStampSubSecond() function.
+ * - The TAMPER1 alternate function can be mapped either to RTC_AF1(PC13)
+ * or RTC_AF2 (PI8) depending on the value of TAMP1INSEL bit in
+ * RTC_TAFCR register. You can use the RTC_TamperPinSelection()
+ * function to select the corresponding pin.
+ *
+ * Tamper configuration
+ * ====================
+ * - Enable the RTC Tamper using the RTC_TamperCmd() function.
+ * - Configure the Tamper filter count using RTC_TamperFilterConfig()
+ * function.
+ * - Configure the RTC Tamper trigger Edge or Level according to the Tamper
+ * filter (if equal to 0 Edge else Level) value using the RTC_TamperConfig() function.
+ * - Configure the Tamper sampling frequency using RTC_TamperSamplingFreqConfig()
+ * function.
+ * - Configure the Tamper precharge or discharge duration using
+ * RTC_TamperPinsPrechargeDuration() function.
+ * - Enable the Tamper Pull-UP using RTC_TamperPullUpDisableCmd() function.
+ * - Enable the Time stamp on Tamper detection event using
+ * RTC_TSOnTamperDetecCmd() function.
+ * - The TIMESTAMP alternate function can be mapped to either RTC_AF1
+ * or RTC_AF2 depending on the value of the TSINSEL bit in the
+ * RTC_TAFCR register. You can use the RTC_TimeStampPinSelection()
+ * function to select the corresponding pin.
+ *
+ * Backup Data Registers configuration
+ * ===================================
+ * - To write to the RTC Backup Data registers, use the RTC_WriteBackupRegister()
+ * function.
+ * - To read the RTC Backup Data registers, use the RTC_ReadBackupRegister()
+ * function.
+ *
+ * ===================================================================
+ * RTC and low power modes
+ * ===================================================================
+ * The MCU can be woken up from a low power mode by an RTC alternate
+ * function.
+ * The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
+ * RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
+ * These RTC alternate functions can wake up the system from the Stop
+ * and Standby lowpower modes.
+ * The system can also wake up from low power modes without depending
+ * on an external interrupt (Auto-wakeup mode), by using the RTC alarm
+ * or the RTC wakeup events.
+ * The RTC provides a programmable time base for waking up from the
+ * Stop or Standby mode at regular intervals.
+ * Wakeup from STOP and Standby modes is possible only when the RTC
+ * clock source is LSE or LSI.
+ *
+ * ===================================================================
+ * Selection of RTC_AF1 alternate functions
+ * ===================================================================
+ * The RTC_AF1 pin (PC13) can be used for the following purposes:
+ * - AFO_ALARM output
+ * - AFO_CALIB output
+ * - AFI_TAMPER
+ * - AFI_TIMESTAMP
+ *
+ * +-------------------------------------------------------------------------------------------------------------+
+ * | Pin |AFO_ALARM |AFO_CALIB |AFI_TAMPER |AFI_TIMESTAMP | TAMP1INSEL | TSINSEL |ALARMOUTTYPE |
+ * | configuration | ENABLED | ENABLED | ENABLED | ENABLED |TAMPER1 pin |TIMESTAMP pin | AFO_ALARM |
+ * | and function | | | | | selection | selection |Configuration |
+ * |-----------------|----------|----------|-----------|--------------|------------|--------------|--------------|
+ * | Alarm out | | | | | Don't | Don't | |
+ * | output OD | 1 |Don't care|Don't care | Don't care | care | care | 0 |
+ * |-----------------|----------|----------|-----------|--------------|------------|--------------|--------------|
+ * | Alarm out | | | | | Don't | Don't | |
+ * | output PP | 1 |Don't care|Don't care | Don't care | care | care | 1 |
+ * |-----------------|----------|----------|-----------|--------------|------------|--------------|--------------|
+ * | Calibration out | | | | | Don't | Don't | |
+ * | output PP | 0 | 1 |Don't care | Don't care | care | care | Don't care |
+ * |-----------------|----------|----------|-----------|--------------|------------|--------------|--------------|
+ * | TAMPER input | | | | | | Don't | |
+ * | floating | 0 | 0 | 1 | 0 | 0 | care | Don't care |
+ * |-----------------|----------|----------|-----------|--------------|------------|--------------|--------------|
+ * | TIMESTAMP and | | | | | | | |
+ * | TAMPER input | 0 | 0 | 1 | 1 | 0 | 0 | Don't care |
+ * | floating | | | | | | | |
+ * |-----------------|----------|----------|-----------|--------------|------------|--------------|--------------|
+ * | TIMESTAMP input | | | | | Don't | | |
+ * | floating | 0 | 0 | 0 | 1 | care | 0 | Don't care |
+ * |-----------------|----------|----------|-----------|--------------|------------|--------------|--------------|
+ * | Standard GPIO | 0 | 0 | 0 | 0 | Don't care | Don't care | Don't care |
+ * +-------------------------------------------------------------------------------------------------------------+
+ *
+ *
+ * ===================================================================
+ * Selection of RTC_AF2 alternate functions
+ * ===================================================================
+ * The RTC_AF2 pin (PI8) can be used for the following purposes:
+ * - AFI_TAMPER
+ * - AFI_TIMESTAMP
+ *
+ * +---------------------------------------------------------------------------------------+
+ * | Pin |AFI_TAMPER |AFI_TIMESTAMP | TAMP1INSEL | TSINSEL |ALARMOUTTYPE |
+ * | configuration | ENABLED | ENABLED |TAMPER1 pin |TIMESTAMP pin | AFO_ALARM |
+ * | and function | | | selection | selection |Configuration |
+ * |-----------------|-----------|--------------|------------|--------------|--------------|
+ * | TAMPER input | | | | Don't | |
+ * | floating | 1 | 0 | 1 | care | Don't care |
+ * |-----------------|-----------|--------------|------------|--------------|--------------|
+ * | TIMESTAMP and | | | | | |
+ * | TAMPER input | 1 | 1 | 1 | 1 | Don't care |
+ * | floating | | | | | |
+ * |-----------------|-----------|--------------|------------|--------------|--------------|
+ * | TIMESTAMP input | | | Don't | | |
+ * | floating | 0 | 1 | care | 1 | Don't care |
+ * |-----------------|-----------|--------------|------------|--------------|--------------|
+ * | Standard GPIO | 0 | 0 | Don't care | Don't care | Don't care |
+ * +---------------------------------------------------------------------------------------+
+ *
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_sdio.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup SDIO
+ * @brief SDIO driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/* ------------ SDIO registers bit address in the alias region ----------- */
+#define SDIO_OFFSET (SDIO_BASE - PERIPH_BASE)
+
+/* --- CLKCR Register ---*/
+/* Alias word address of CLKEN bit */
+#define CLKCR_OFFSET (SDIO_OFFSET + 0x04)
+#define CLKEN_BitNumber 0x08
+#define CLKCR_CLKEN_BB (PERIPH_BB_BASE + (CLKCR_OFFSET * 32) + (CLKEN_BitNumber * 4))
+
+/* --- CMD Register ---*/
+/* Alias word address of SDIOSUSPEND bit */
+#define CMD_OFFSET (SDIO_OFFSET + 0x0C)
+#define SDIOSUSPEND_BitNumber 0x0B
+#define CMD_SDIOSUSPEND_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (SDIOSUSPEND_BitNumber * 4))
+
+/* Alias word address of ENCMDCOMPL bit */
+#define ENCMDCOMPL_BitNumber 0x0C
+#define CMD_ENCMDCOMPL_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (ENCMDCOMPL_BitNumber * 4))
+
+/* Alias word address of NIEN bit */
+#define NIEN_BitNumber 0x0D
+#define CMD_NIEN_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (NIEN_BitNumber * 4))
+
+/* Alias word address of ATACMD bit */
+#define ATACMD_BitNumber 0x0E
+#define CMD_ATACMD_BB (PERIPH_BB_BASE + (CMD_OFFSET * 32) + (ATACMD_BitNumber * 4))
+
+/* --- DCTRL Register ---*/
+/* Alias word address of DMAEN bit */
+#define DCTRL_OFFSET (SDIO_OFFSET + 0x2C)
+#define DMAEN_BitNumber 0x03
+#define DCTRL_DMAEN_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (DMAEN_BitNumber * 4))
+
+/* Alias word address of RWSTART bit */
+#define RWSTART_BitNumber 0x08
+#define DCTRL_RWSTART_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (RWSTART_BitNumber * 4))
+
+/* Alias word address of RWSTOP bit */
+#define RWSTOP_BitNumber 0x09
+#define DCTRL_RWSTOP_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (RWSTOP_BitNumber * 4))
+
+/* Alias word address of RWMOD bit */
+#define RWMOD_BitNumber 0x0A
+#define DCTRL_RWMOD_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (RWMOD_BitNumber * 4))
+
+/* Alias word address of SDIOEN bit */
+#define SDIOEN_BitNumber 0x0B
+#define DCTRL_SDIOEN_BB (PERIPH_BB_BASE + (DCTRL_OFFSET * 32) + (SDIOEN_BitNumber * 4))
+
+/* ---------------------- SDIO registers bit mask ------------------------ */
+/* --- CLKCR Register ---*/
+/* CLKCR register clear mask */
+#define CLKCR_CLEAR_MASK ((uint32_t)0xFFFF8100)
+
+/* --- PWRCTRL Register ---*/
+/* SDIO PWRCTRL Mask */
+#define PWR_PWRCTRL_MASK ((uint32_t)0xFFFFFFFC)
+
+/* --- DCTRL Register ---*/
+/* SDIO DCTRL Clear Mask */
+#define DCTRL_CLEAR_MASK ((uint32_t)0xFFFFFF08)
+
+/* --- CMD Register ---*/
+/* CMD Register clear mask */
+#define CMD_CLEAR_MASK ((uint32_t)0xFFFFF800)
+
+/* SDIO RESP Registers Address */
+#define SDIO_RESP_ADDR ((uint32_t)(SDIO_BASE + 0x14))
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup SDIO_Private_Functions
+ * @{
+ */
+
+/** @defgroup SDIO_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Initialization and Configuration functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the SDIO peripheral registers to their default reset values.
+ * @param None
+ * @retval None
+ */
+void SDIO_DeInit(void)
+{
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_SDIO, ENABLE);
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_SDIO, DISABLE);
+}
+
+/**
+ * @brief Initializes the SDIO peripheral according to the specified
+ * parameters in the SDIO_InitStruct.
+ * @param SDIO_InitStruct : pointer to a SDIO_InitTypeDef structure
+ * that contains the configuration information for the SDIO peripheral.
+ * @retval None
+ */
+void SDIO_Init(SDIO_InitTypeDef* SDIO_InitStruct)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_SDIO_CLOCK_EDGE(SDIO_InitStruct->SDIO_ClockEdge));
+ assert_param(IS_SDIO_CLOCK_BYPASS(SDIO_InitStruct->SDIO_ClockBypass));
+ assert_param(IS_SDIO_CLOCK_POWER_SAVE(SDIO_InitStruct->SDIO_ClockPowerSave));
+ assert_param(IS_SDIO_BUS_WIDE(SDIO_InitStruct->SDIO_BusWide));
+ assert_param(IS_SDIO_HARDWARE_FLOW_CONTROL(SDIO_InitStruct->SDIO_HardwareFlowControl));
+
+/*---------------------------- SDIO CLKCR Configuration ------------------------*/
+ /* Get the SDIO CLKCR value */
+ tmpreg = SDIO->CLKCR;
+
+ /* Clear CLKDIV, PWRSAV, BYPASS, WIDBUS, NEGEDGE, HWFC_EN bits */
+ tmpreg &= CLKCR_CLEAR_MASK;
+
+ /* Set CLKDIV bits according to SDIO_ClockDiv value */
+ /* Set PWRSAV bit according to SDIO_ClockPowerSave value */
+ /* Set BYPASS bit according to SDIO_ClockBypass value */
+ /* Set WIDBUS bits according to SDIO_BusWide value */
+ /* Set NEGEDGE bits according to SDIO_ClockEdge value */
+ /* Set HWFC_EN bits according to SDIO_HardwareFlowControl value */
+ tmpreg |= (SDIO_InitStruct->SDIO_ClockDiv | SDIO_InitStruct->SDIO_ClockPowerSave |
+ SDIO_InitStruct->SDIO_ClockBypass | SDIO_InitStruct->SDIO_BusWide |
+ SDIO_InitStruct->SDIO_ClockEdge | SDIO_InitStruct->SDIO_HardwareFlowControl);
+
+ /* Write to SDIO CLKCR */
+ SDIO->CLKCR = tmpreg;
+}
+
+/**
+ * @brief Fills each SDIO_InitStruct member with its default value.
+ * @param SDIO_InitStruct: pointer to an SDIO_InitTypeDef structure which
+ * will be initialized.
+ * @retval None
+ */
+void SDIO_StructInit(SDIO_InitTypeDef* SDIO_InitStruct)
+{
+ /* SDIO_InitStruct members default value */
+ SDIO_InitStruct->SDIO_ClockDiv = 0x00;
+ SDIO_InitStruct->SDIO_ClockEdge = SDIO_ClockEdge_Rising;
+ SDIO_InitStruct->SDIO_ClockBypass = SDIO_ClockBypass_Disable;
+ SDIO_InitStruct->SDIO_ClockPowerSave = SDIO_ClockPowerSave_Disable;
+ SDIO_InitStruct->SDIO_BusWide = SDIO_BusWide_1b;
+ SDIO_InitStruct->SDIO_HardwareFlowControl = SDIO_HardwareFlowControl_Disable;
+}
+
+/**
+ * @brief Enables or disables the SDIO Clock.
+ * @param NewState: new state of the SDIO Clock.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_ClockCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CLKCR_CLKEN_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Sets the power status of the controller.
+ * @param SDIO_PowerState: new state of the Power state.
+ * This parameter can be one of the following values:
+ * @arg SDIO_PowerState_OFF: SDIO Power OFF
+ * @arg SDIO_PowerState_ON: SDIO Power ON
+ * @retval None
+ */
+void SDIO_SetPowerState(uint32_t SDIO_PowerState)
+{
+ /* Check the parameters */
+ assert_param(IS_SDIO_POWER_STATE(SDIO_PowerState));
+
+ SDIO->POWER = SDIO_PowerState;
+}
+
+/**
+ * @brief Gets the power status of the controller.
+ * @param None
+ * @retval Power status of the controller. The returned value can be one of the
+ * following values:
+ * - 0x00: Power OFF
+ * - 0x02: Power UP
+ * - 0x03: Power ON
+ */
+uint32_t SDIO_GetPowerState(void)
+{
+ return (SDIO->POWER & (~PWR_PWRCTRL_MASK));
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SDIO_Group2 Command path state machine (CPSM) management functions
+ * @brief Command path state machine (CPSM) management functions
+ *
+@verbatim
+ ===============================================================================
+ Command path state machine (CPSM) management functions
+ ===============================================================================
+
+ This section provide functions allowing to program and read the Command path
+ state machine (CPSM).
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the SDIO Command according to the specified
+ * parameters in the SDIO_CmdInitStruct and send the command.
+ * @param SDIO_CmdInitStruct : pointer to a SDIO_CmdInitTypeDef
+ * structure that contains the configuration information for the SDIO
+ * command.
+ * @retval None
+ */
+void SDIO_SendCommand(SDIO_CmdInitTypeDef *SDIO_CmdInitStruct)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_SDIO_CMD_INDEX(SDIO_CmdInitStruct->SDIO_CmdIndex));
+ assert_param(IS_SDIO_RESPONSE(SDIO_CmdInitStruct->SDIO_Response));
+ assert_param(IS_SDIO_WAIT(SDIO_CmdInitStruct->SDIO_Wait));
+ assert_param(IS_SDIO_CPSM(SDIO_CmdInitStruct->SDIO_CPSM));
+
+/*---------------------------- SDIO ARG Configuration ------------------------*/
+ /* Set the SDIO Argument value */
+ SDIO->ARG = SDIO_CmdInitStruct->SDIO_Argument;
+
+/*---------------------------- SDIO CMD Configuration ------------------------*/
+ /* Get the SDIO CMD value */
+ tmpreg = SDIO->CMD;
+ /* Clear CMDINDEX, WAITRESP, WAITINT, WAITPEND, CPSMEN bits */
+ tmpreg &= CMD_CLEAR_MASK;
+ /* Set CMDINDEX bits according to SDIO_CmdIndex value */
+ /* Set WAITRESP bits according to SDIO_Response value */
+ /* Set WAITINT and WAITPEND bits according to SDIO_Wait value */
+ /* Set CPSMEN bits according to SDIO_CPSM value */
+ tmpreg |= (uint32_t)SDIO_CmdInitStruct->SDIO_CmdIndex | SDIO_CmdInitStruct->SDIO_Response
+ | SDIO_CmdInitStruct->SDIO_Wait | SDIO_CmdInitStruct->SDIO_CPSM;
+
+ /* Write to SDIO CMD */
+ SDIO->CMD = tmpreg;
+}
+
+/**
+ * @brief Fills each SDIO_CmdInitStruct member with its default value.
+ * @param SDIO_CmdInitStruct: pointer to an SDIO_CmdInitTypeDef
+ * structure which will be initialized.
+ * @retval None
+ */
+void SDIO_CmdStructInit(SDIO_CmdInitTypeDef* SDIO_CmdInitStruct)
+{
+ /* SDIO_CmdInitStruct members default value */
+ SDIO_CmdInitStruct->SDIO_Argument = 0x00;
+ SDIO_CmdInitStruct->SDIO_CmdIndex = 0x00;
+ SDIO_CmdInitStruct->SDIO_Response = SDIO_Response_No;
+ SDIO_CmdInitStruct->SDIO_Wait = SDIO_Wait_No;
+ SDIO_CmdInitStruct->SDIO_CPSM = SDIO_CPSM_Disable;
+}
+
+/**
+ * @brief Returns command index of last command for which response received.
+ * @param None
+ * @retval Returns the command index of the last command response received.
+ */
+uint8_t SDIO_GetCommandResponse(void)
+{
+ return (uint8_t)(SDIO->RESPCMD);
+}
+
+/**
+ * @brief Returns response received from the card for the last command.
+ * @param SDIO_RESP: Specifies the SDIO response register.
+ * This parameter can be one of the following values:
+ * @arg SDIO_RESP1: Response Register 1
+ * @arg SDIO_RESP2: Response Register 2
+ * @arg SDIO_RESP3: Response Register 3
+ * @arg SDIO_RESP4: Response Register 4
+ * @retval The Corresponding response register value.
+ */
+uint32_t SDIO_GetResponse(uint32_t SDIO_RESP)
+{
+ __IO uint32_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_SDIO_RESP(SDIO_RESP));
+
+ tmp = SDIO_RESP_ADDR + SDIO_RESP;
+
+ return (*(__IO uint32_t *) tmp);
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SDIO_Group3 Data path state machine (DPSM) management functions
+ * @brief Data path state machine (DPSM) management functions
+ *
+@verbatim
+ ===============================================================================
+ Data path state machine (DPSM) management functions
+ ===============================================================================
+
+ This section provide functions allowing to program and read the Data path
+ state machine (DPSM).
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the SDIO data path according to the specified
+ * parameters in the SDIO_DataInitStruct.
+ * @param SDIO_DataInitStruct : pointer to a SDIO_DataInitTypeDef structure
+ * that contains the configuration information for the SDIO command.
+ * @retval None
+ */
+void SDIO_DataConfig(SDIO_DataInitTypeDef* SDIO_DataInitStruct)
+{
+ uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_SDIO_DATA_LENGTH(SDIO_DataInitStruct->SDIO_DataLength));
+ assert_param(IS_SDIO_BLOCK_SIZE(SDIO_DataInitStruct->SDIO_DataBlockSize));
+ assert_param(IS_SDIO_TRANSFER_DIR(SDIO_DataInitStruct->SDIO_TransferDir));
+ assert_param(IS_SDIO_TRANSFER_MODE(SDIO_DataInitStruct->SDIO_TransferMode));
+ assert_param(IS_SDIO_DPSM(SDIO_DataInitStruct->SDIO_DPSM));
+
+/*---------------------------- SDIO DTIMER Configuration ---------------------*/
+ /* Set the SDIO Data TimeOut value */
+ SDIO->DTIMER = SDIO_DataInitStruct->SDIO_DataTimeOut;
+
+/*---------------------------- SDIO DLEN Configuration -----------------------*/
+ /* Set the SDIO DataLength value */
+ SDIO->DLEN = SDIO_DataInitStruct->SDIO_DataLength;
+
+/*---------------------------- SDIO DCTRL Configuration ----------------------*/
+ /* Get the SDIO DCTRL value */
+ tmpreg = SDIO->DCTRL;
+ /* Clear DEN, DTMODE, DTDIR and DBCKSIZE bits */
+ tmpreg &= DCTRL_CLEAR_MASK;
+ /* Set DEN bit according to SDIO_DPSM value */
+ /* Set DTMODE bit according to SDIO_TransferMode value */
+ /* Set DTDIR bit according to SDIO_TransferDir value */
+ /* Set DBCKSIZE bits according to SDIO_DataBlockSize value */
+ tmpreg |= (uint32_t)SDIO_DataInitStruct->SDIO_DataBlockSize | SDIO_DataInitStruct->SDIO_TransferDir
+ | SDIO_DataInitStruct->SDIO_TransferMode | SDIO_DataInitStruct->SDIO_DPSM;
+
+ /* Write to SDIO DCTRL */
+ SDIO->DCTRL = tmpreg;
+}
+
+/**
+ * @brief Fills each SDIO_DataInitStruct member with its default value.
+ * @param SDIO_DataInitStruct: pointer to an SDIO_DataInitTypeDef structure
+ * which will be initialized.
+ * @retval None
+ */
+void SDIO_DataStructInit(SDIO_DataInitTypeDef* SDIO_DataInitStruct)
+{
+ /* SDIO_DataInitStruct members default value */
+ SDIO_DataInitStruct->SDIO_DataTimeOut = 0xFFFFFFFF;
+ SDIO_DataInitStruct->SDIO_DataLength = 0x00;
+ SDIO_DataInitStruct->SDIO_DataBlockSize = SDIO_DataBlockSize_1b;
+ SDIO_DataInitStruct->SDIO_TransferDir = SDIO_TransferDir_ToCard;
+ SDIO_DataInitStruct->SDIO_TransferMode = SDIO_TransferMode_Block;
+ SDIO_DataInitStruct->SDIO_DPSM = SDIO_DPSM_Disable;
+}
+
+/**
+ * @brief Returns number of remaining data bytes to be transferred.
+ * @param None
+ * @retval Number of remaining data bytes to be transferred
+ */
+uint32_t SDIO_GetDataCounter(void)
+{
+ return SDIO->DCOUNT;
+}
+
+/**
+ * @brief Read one data word from Rx FIFO.
+ * @param None
+ * @retval Data received
+ */
+uint32_t SDIO_ReadData(void)
+{
+ return SDIO->FIFO;
+}
+
+/**
+ * @brief Write one data word to Tx FIFO.
+ * @param Data: 32-bit data word to write.
+ * @retval None
+ */
+void SDIO_WriteData(uint32_t Data)
+{
+ SDIO->FIFO = Data;
+}
+
+/**
+ * @brief Returns the number of words left to be written to or read from FIFO.
+ * @param None
+ * @retval Remaining number of words.
+ */
+uint32_t SDIO_GetFIFOCount(void)
+{
+ return SDIO->FIFOCNT;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SDIO_Group4 SDIO IO Cards mode management functions
+ * @brief SDIO IO Cards mode management functions
+ *
+@verbatim
+ ===============================================================================
+ SDIO IO Cards mode management functions
+ ===============================================================================
+
+ This section provide functions allowing to program and read the SDIO IO Cards.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Starts the SD I/O Read Wait operation.
+ * @param NewState: new state of the Start SDIO Read Wait operation.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_StartSDIOReadWait(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) DCTRL_RWSTART_BB = (uint32_t) NewState;
+}
+
+/**
+ * @brief Stops the SD I/O Read Wait operation.
+ * @param NewState: new state of the Stop SDIO Read Wait operation.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_StopSDIOReadWait(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) DCTRL_RWSTOP_BB = (uint32_t) NewState;
+}
+
+/**
+ * @brief Sets one of the two options of inserting read wait interval.
+ * @param SDIO_ReadWaitMode: SD I/O Read Wait operation mode.
+ * This parameter can be:
+ * @arg SDIO_ReadWaitMode_CLK: Read Wait control by stopping SDIOCLK
+ * @arg SDIO_ReadWaitMode_DATA2: Read Wait control using SDIO_DATA2
+ * @retval None
+ */
+void SDIO_SetSDIOReadWaitMode(uint32_t SDIO_ReadWaitMode)
+{
+ /* Check the parameters */
+ assert_param(IS_SDIO_READWAIT_MODE(SDIO_ReadWaitMode));
+
+ *(__IO uint32_t *) DCTRL_RWMOD_BB = SDIO_ReadWaitMode;
+}
+
+/**
+ * @brief Enables or disables the SD I/O Mode Operation.
+ * @param NewState: new state of SDIO specific operation.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_SetSDIOOperation(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) DCTRL_SDIOEN_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Enables or disables the SD I/O Mode suspend command sending.
+ * @param NewState: new state of the SD I/O Mode suspend command.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_SendSDIOSuspendCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CMD_SDIOSUSPEND_BB = (uint32_t)NewState;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SDIO_Group5 CE-ATA mode management functions
+ * @brief CE-ATA mode management functions
+ *
+@verbatim
+ ===============================================================================
+ CE-ATA mode management functions
+ ===============================================================================
+
+ This section provide functions allowing to program and read the CE-ATA card.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the command completion signal.
+ * @param NewState: new state of command completion signal.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_CommandCompletionCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CMD_ENCMDCOMPL_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Enables or disables the CE-ATA interrupt.
+ * @param NewState: new state of CE-ATA interrupt.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_CEATAITCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CMD_NIEN_BB = (uint32_t)((~((uint32_t)NewState)) & ((uint32_t)0x1));
+}
+
+/**
+ * @brief Sends CE-ATA command (CMD61).
+ * @param NewState: new state of CE-ATA command.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_SendCEATACmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CMD_ATACMD_BB = (uint32_t)NewState;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SDIO_Group6 DMA transfers management functions
+ * @brief DMA transfers management functions
+ *
+@verbatim
+ ===============================================================================
+ DMA transfers management functions
+ ===============================================================================
+
+ This section provide functions allowing to program SDIO DMA transfer.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the SDIO DMA request.
+ * @param NewState: new state of the selected SDIO DMA request.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_DMACmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) DCTRL_DMAEN_BB = (uint32_t)NewState;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SDIO_Group7 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts and flags management functions
+ ===============================================================================
+
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the SDIO interrupts.
+ * @param SDIO_IT: specifies the SDIO interrupt sources to be enabled or disabled.
+ * This parameter can be one or a combination of the following values:
+ * @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
+ * @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
+ * @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
+ * @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
+ * @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
+ * @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
+ * @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
+ * @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
+ * @arg SDIO_IT_DATAEND: Data end (data counter, SDIDCOUNT, is zero) interrupt
+ * @arg SDIO_IT_STBITERR: Start bit not detected on all data signals in wide
+ * bus mode interrupt
+ * @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt
+ * @arg SDIO_IT_CMDACT: Command transfer in progress interrupt
+ * @arg SDIO_IT_TXACT: Data transmit in progress interrupt
+ * @arg SDIO_IT_RXACT: Data receive in progress interrupt
+ * @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt
+ * @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt
+ * @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt
+ * @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt
+ * @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt
+ * @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt
+ * @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt
+ * @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt
+ * @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt
+ * @arg SDIO_IT_CEATAEND: CE-ATA command completion signal received for CMD61 interrupt
+ * @param NewState: new state of the specified SDIO interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SDIO_ITConfig(uint32_t SDIO_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_SDIO_IT(SDIO_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the SDIO interrupts */
+ SDIO->MASK |= SDIO_IT;
+ }
+ else
+ {
+ /* Disable the SDIO interrupts */
+ SDIO->MASK &= ~SDIO_IT;
+ }
+}
+
+/**
+ * @brief Checks whether the specified SDIO flag is set or not.
+ * @param SDIO_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg SDIO_FLAG_CCRCFAIL: Command response received (CRC check failed)
+ * @arg SDIO_FLAG_DCRCFAIL: Data block sent/received (CRC check failed)
+ * @arg SDIO_FLAG_CTIMEOUT: Command response timeout
+ * @arg SDIO_FLAG_DTIMEOUT: Data timeout
+ * @arg SDIO_FLAG_TXUNDERR: Transmit FIFO underrun error
+ * @arg SDIO_FLAG_RXOVERR: Received FIFO overrun error
+ * @arg SDIO_FLAG_CMDREND: Command response received (CRC check passed)
+ * @arg SDIO_FLAG_CMDSENT: Command sent (no response required)
+ * @arg SDIO_FLAG_DATAEND: Data end (data counter, SDIDCOUNT, is zero)
+ * @arg SDIO_FLAG_STBITERR: Start bit not detected on all data signals in wide bus mode.
+ * @arg SDIO_FLAG_DBCKEND: Data block sent/received (CRC check passed)
+ * @arg SDIO_FLAG_CMDACT: Command transfer in progress
+ * @arg SDIO_FLAG_TXACT: Data transmit in progress
+ * @arg SDIO_FLAG_RXACT: Data receive in progress
+ * @arg SDIO_FLAG_TXFIFOHE: Transmit FIFO Half Empty
+ * @arg SDIO_FLAG_RXFIFOHF: Receive FIFO Half Full
+ * @arg SDIO_FLAG_TXFIFOF: Transmit FIFO full
+ * @arg SDIO_FLAG_RXFIFOF: Receive FIFO full
+ * @arg SDIO_FLAG_TXFIFOE: Transmit FIFO empty
+ * @arg SDIO_FLAG_RXFIFOE: Receive FIFO empty
+ * @arg SDIO_FLAG_TXDAVL: Data available in transmit FIFO
+ * @arg SDIO_FLAG_RXDAVL: Data available in receive FIFO
+ * @arg SDIO_FLAG_SDIOIT: SD I/O interrupt received
+ * @arg SDIO_FLAG_CEATAEND: CE-ATA command completion signal received for CMD61
+ * @retval The new state of SDIO_FLAG (SET or RESET).
+ */
+FlagStatus SDIO_GetFlagStatus(uint32_t SDIO_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_SDIO_FLAG(SDIO_FLAG));
+
+ if ((SDIO->STA & SDIO_FLAG) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the SDIO's pending flags.
+ * @param SDIO_FLAG: specifies the flag to clear.
+ * This parameter can be one or a combination of the following values:
+ * @arg SDIO_FLAG_CCRCFAIL: Command response received (CRC check failed)
+ * @arg SDIO_FLAG_DCRCFAIL: Data block sent/received (CRC check failed)
+ * @arg SDIO_FLAG_CTIMEOUT: Command response timeout
+ * @arg SDIO_FLAG_DTIMEOUT: Data timeout
+ * @arg SDIO_FLAG_TXUNDERR: Transmit FIFO underrun error
+ * @arg SDIO_FLAG_RXOVERR: Received FIFO overrun error
+ * @arg SDIO_FLAG_CMDREND: Command response received (CRC check passed)
+ * @arg SDIO_FLAG_CMDSENT: Command sent (no response required)
+ * @arg SDIO_FLAG_DATAEND: Data end (data counter, SDIDCOUNT, is zero)
+ * @arg SDIO_FLAG_STBITERR: Start bit not detected on all data signals in wide bus mode
+ * @arg SDIO_FLAG_DBCKEND: Data block sent/received (CRC check passed)
+ * @arg SDIO_FLAG_SDIOIT: SD I/O interrupt received
+ * @arg SDIO_FLAG_CEATAEND: CE-ATA command completion signal received for CMD61
+ * @retval None
+ */
+void SDIO_ClearFlag(uint32_t SDIO_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_SDIO_CLEAR_FLAG(SDIO_FLAG));
+
+ SDIO->ICR = SDIO_FLAG;
+}
+
+/**
+ * @brief Checks whether the specified SDIO interrupt has occurred or not.
+ * @param SDIO_IT: specifies the SDIO interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
+ * @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
+ * @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
+ * @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
+ * @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
+ * @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
+ * @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
+ * @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
+ * @arg SDIO_IT_DATAEND: Data end (data counter, SDIDCOUNT, is zero) interrupt
+ * @arg SDIO_IT_STBITERR: Start bit not detected on all data signals in wide
+ * bus mode interrupt
+ * @arg SDIO_IT_DBCKEND: Data block sent/received (CRC check passed) interrupt
+ * @arg SDIO_IT_CMDACT: Command transfer in progress interrupt
+ * @arg SDIO_IT_TXACT: Data transmit in progress interrupt
+ * @arg SDIO_IT_RXACT: Data receive in progress interrupt
+ * @arg SDIO_IT_TXFIFOHE: Transmit FIFO Half Empty interrupt
+ * @arg SDIO_IT_RXFIFOHF: Receive FIFO Half Full interrupt
+ * @arg SDIO_IT_TXFIFOF: Transmit FIFO full interrupt
+ * @arg SDIO_IT_RXFIFOF: Receive FIFO full interrupt
+ * @arg SDIO_IT_TXFIFOE: Transmit FIFO empty interrupt
+ * @arg SDIO_IT_RXFIFOE: Receive FIFO empty interrupt
+ * @arg SDIO_IT_TXDAVL: Data available in transmit FIFO interrupt
+ * @arg SDIO_IT_RXDAVL: Data available in receive FIFO interrupt
+ * @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt
+ * @arg SDIO_IT_CEATAEND: CE-ATA command completion signal received for CMD61 interrupt
+ * @retval The new state of SDIO_IT (SET or RESET).
+ */
+ITStatus SDIO_GetITStatus(uint32_t SDIO_IT)
+{
+ ITStatus bitstatus = RESET;
+
+ /* Check the parameters */
+ assert_param(IS_SDIO_GET_IT(SDIO_IT));
+ if ((SDIO->STA & SDIO_IT) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the SDIO's interrupt pending bits.
+ * @param SDIO_IT: specifies the interrupt pending bit to clear.
+ * This parameter can be one or a combination of the following values:
+ * @arg SDIO_IT_CCRCFAIL: Command response received (CRC check failed) interrupt
+ * @arg SDIO_IT_DCRCFAIL: Data block sent/received (CRC check failed) interrupt
+ * @arg SDIO_IT_CTIMEOUT: Command response timeout interrupt
+ * @arg SDIO_IT_DTIMEOUT: Data timeout interrupt
+ * @arg SDIO_IT_TXUNDERR: Transmit FIFO underrun error interrupt
+ * @arg SDIO_IT_RXOVERR: Received FIFO overrun error interrupt
+ * @arg SDIO_IT_CMDREND: Command response received (CRC check passed) interrupt
+ * @arg SDIO_IT_CMDSENT: Command sent (no response required) interrupt
+ * @arg SDIO_IT_DATAEND: Data end (data counter, SDIO_DCOUNT, is zero) interrupt
+ * @arg SDIO_IT_STBITERR: Start bit not detected on all data signals in wide
+ * bus mode interrupt
+ * @arg SDIO_IT_SDIOIT: SD I/O interrupt received interrupt
+ * @arg SDIO_IT_CEATAEND: CE-ATA command completion signal received for CMD61
+ * @retval None
+ */
+void SDIO_ClearITPendingBit(uint32_t SDIO_IT)
+{
+ /* Check the parameters */
+ assert_param(IS_SDIO_CLEAR_IT(SDIO_IT));
+
+ SDIO->ICR = SDIO_IT;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_spi.c b/TimerCounter/SPL/src/stm32f4xx_spi.c
new file mode 100644
index 0000000..d02193e
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_spi.c
@@ -0,0 +1,1286 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_spi.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Serial peripheral interface (SPI):
+ * - Initialization and Configuration
+ * - Data transfers functions
+ * - Hardware CRC Calculation
+ * - DMA transfers management
+ * - Interrupts and flags management
+ *
+ * @verbatim
+ *
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ *
+ * 1. Enable peripheral clock using the following functions
+ * RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE) for SPI1
+ * RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE) for SPI2
+ * RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI3, ENABLE) for SPI3.
+ *
+ * 2. Enable SCK, MOSI, MISO and NSS GPIO clocks using RCC_AHB1PeriphClockCmd()
+ * function.
+ * In I2S mode, if an external clock source is used then the I2S CKIN pin GPIO
+ * clock should also be enabled.
+ *
+ * 3. Peripherals alternate function:
+ * - Connect the pin to the desired peripherals' Alternate
+ * Function (AF) using GPIO_PinAFConfig() function
+ * - Configure the desired pin in alternate function by:
+ * GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AF
+ * - Select the type, pull-up/pull-down and output speed via
+ * GPIO_PuPd, GPIO_OType and GPIO_Speed members
+ * - Call GPIO_Init() function
+ * In I2S mode, if an external clock source is used then the I2S CKIN pin
+ * should be also configured in Alternate function Push-pull pull-up mode.
+ *
+ * 4. Program the Polarity, Phase, First Data, Baud Rate Prescaler, Slave
+ * Management, Peripheral Mode and CRC Polynomial values using the SPI_Init()
+ * function.
+ * In I2S mode, program the Mode, Standard, Data Format, MCLK Output, Audio
+ * frequency and Polarity using I2S_Init() function.
+ * For I2S mode, make sure that either:
+ * - I2S PLL is configured using the functions RCC_I2SCLKConfig(RCC_I2S2CLKSource_PLLI2S),
+ * RCC_PLLI2SCmd(ENABLE) and RCC_GetFlagStatus(RCC_FLAG_PLLI2SRDY).
+ * or
+ * - External clock source is configured using the function
+ * RCC_I2SCLKConfig(RCC_I2S2CLKSource_Ext) and after setting correctly the define constant
+ * I2S_EXTERNAL_CLOCK_VAL in the stm32f4xx_conf.h file.
+ *
+ * 5. Enable the NVIC and the corresponding interrupt using the function
+ * SPI_ITConfig() if you need to use interrupt mode.
+ *
+ * 6. When using the DMA mode
+ * - Configure the DMA using DMA_Init() function
+ * - Active the needed channel Request using SPI_I2S_DMACmd() function
+ *
+ * 7. Enable the SPI using the SPI_Cmd() function or enable the I2S using
+ * I2S_Cmd().
+ *
+ * 8. Enable the DMA using the DMA_Cmd() function when using DMA mode.
+ *
+ * 9. Optionally, you can enable/configure the following parameters without
+ * re-initialization (i.e there is no need to call again SPI_Init() function):
+ * - When bidirectional mode (SPI_Direction_1Line_Rx or SPI_Direction_1Line_Tx)
+ * is programmed as Data direction parameter using the SPI_Init() function
+ * it can be possible to switch between SPI_Direction_Tx or SPI_Direction_Rx
+ * using the SPI_BiDirectionalLineConfig() function.
+ * - When SPI_NSS_Soft is selected as Slave Select Management parameter
+ * using the SPI_Init() function it can be possible to manage the
+ * NSS internal signal using the SPI_NSSInternalSoftwareConfig() function.
+ * - Reconfigure the data size using the SPI_DataSizeConfig() function
+ * - Enable or disable the SS output using the SPI_SSOutputCmd() function
+ *
+ * 10. To use the CRC Hardware calculation feature refer to the Peripheral
+ * CRC hardware Calculation subsection.
+ *
+ *
+ * It is possible to use SPI in I2S full duplex mode, in this case, each SPI
+ * peripheral is able to manage sending and receiving data simultaneously
+ * using two data lines. Each SPI peripheral has an extended block called I2Sxext
+ * (ie. I2S2ext for SPI2 and I2S3ext for SPI3).
+ * The extension block is not a full SPI IP, it is used only as I2S slave to
+ * implement full duplex mode. The extension block uses the same clock sources
+ * as its master.
+ * To configure I2S full duplex you have to:
+ *
+ * 1. Configure SPIx in I2S mode (I2S_Init() function) as described above.
+ *
+ * 2. Call the I2S_FullDuplexConfig() function using the same strucutre passed to
+ * I2S_Init() function.
+ *
+ * 3. Call I2S_Cmd() for SPIx then for its extended block.
+ *
+ * 4. To configure interrupts or DMA requests and to get/clear flag status,
+ * use I2Sxext instance for the extension block.
+ *
+ * Functions that can be called with I2Sxext instances are:
+ * I2S_Cmd(), I2S_FullDuplexConfig(), SPI_I2S_ReceiveData(), SPI_I2S_SendData(),
+ * SPI_I2S_DMACmd(), SPI_I2S_ITConfig(), SPI_I2S_GetFlagStatus(), SPI_I2S_ClearFlag(),
+ * SPI_I2S_GetITStatus() and SPI_I2S_ClearITPendingBit().
+ *
+ * Example: To use SPI3 in Full duplex mode (SPI3 is Master Tx, I2S3ext is Slave Rx):
+ *
+ * RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE);
+ * I2S_StructInit(&I2SInitStruct);
+ * I2SInitStruct.Mode = I2S_Mode_MasterTx;
+ * I2S_Init(SPI3, &I2SInitStruct);
+ * I2S_FullDuplexConfig(SPI3ext, &I2SInitStruct)
+ * I2S_Cmd(SPI3, ENABLE);
+ * I2S_Cmd(SPI3ext, ENABLE);
+ * ...
+ * while (SPI_I2S_GetFlagStatus(SPI2, SPI_FLAG_TXE) == RESET)
+ * {}
+ * SPI_I2S_SendData(SPI3, txdata[i]);
+ * ...
+ * while (SPI_I2S_GetFlagStatus(I2S3ext, SPI_FLAG_RXNE) == RESET)
+ * {}
+ * rxdata[i] = SPI_I2S_ReceiveData(I2S3ext);
+ * ...
+ *
+ *
+ * @note In I2S mode: if an external clock is used as source clock for the I2S,
+ * then the define I2S_EXTERNAL_CLOCK_VAL in file stm32f4xx_conf.h should
+ * be enabled and set to the value of the source clock frequency (in Hz).
+ *
+ * @note In SPI mode: To use the SPI TI mode, call the function SPI_TIModeCmd()
+ * just after calling the function SPI_Init().
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_spi.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup SPI
+ * @brief SPI driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/* SPI registers Masks */
+#define CR1_CLEAR_MASK ((uint16_t)0x3040)
+#define I2SCFGR_CLEAR_MASK ((uint16_t)0xF040)
+
+/* RCC PLLs masks */
+#define PLLCFGR_PPLR_MASK ((uint32_t)0x70000000)
+#define PLLCFGR_PPLN_MASK ((uint32_t)0x00007FC0)
+
+#define SPI_CR2_FRF ((uint16_t)0x0010)
+#define SPI_SR_TIFRFE ((uint16_t)0x0100)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup SPI_Private_Functions
+ * @{
+ */
+
+/** @defgroup SPI_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Initialization and Configuration functions
+ ===============================================================================
+
+ This section provides a set of functions allowing to initialize the SPI Direction,
+ SPI Mode, SPI Data Size, SPI Polarity, SPI Phase, SPI NSS Management, SPI Baud
+ Rate Prescaler, SPI First Bit and SPI CRC Polynomial.
+
+ The SPI_Init() function follows the SPI configuration procedures for Master mode
+ and Slave mode (details for these procedures are available in reference manual
+ (RM0090)).
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitialize the SPIx peripheral registers to their default reset values.
+ * @param SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3
+ * in SPI mode or 2 or 3 in I2S mode.
+ *
+ * @note The extended I2S blocks (ie. I2S2ext and I2S3ext blocks) are deinitialized
+ * when the relative I2S peripheral is deinitialized (the extended block's clock
+ * is managed by the I2S peripheral clock).
+ *
+ * @retval None
+ */
+void SPI_I2S_DeInit(SPI_TypeDef* SPIx)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH(SPIx));
+
+ if (SPIx == SPI1)
+ {
+ /* Enable SPI1 reset state */
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, ENABLE);
+ /* Release SPI1 from reset state */
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, DISABLE);
+ }
+ else if (SPIx == SPI2)
+ {
+ /* Enable SPI2 reset state */
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, ENABLE);
+ /* Release SPI2 from reset state */
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, DISABLE);
+ }
+ else
+ {
+ if (SPIx == SPI3)
+ {
+ /* Enable SPI3 reset state */
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI3, ENABLE);
+ /* Release SPI3 from reset state */
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI3, DISABLE);
+ }
+ }
+}
+
+/**
+ * @brief Initializes the SPIx peripheral according to the specified
+ * parameters in the SPI_InitStruct.
+ * @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
+ * @param SPI_InitStruct: pointer to a SPI_InitTypeDef structure that
+ * contains the configuration information for the specified SPI peripheral.
+ * @retval None
+ */
+void SPI_Init(SPI_TypeDef* SPIx, SPI_InitTypeDef* SPI_InitStruct)
+{
+ uint16_t tmpreg = 0;
+
+ /* check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH(SPIx));
+
+ /* Check the SPI parameters */
+ assert_param(IS_SPI_DIRECTION_MODE(SPI_InitStruct->SPI_Direction));
+ assert_param(IS_SPI_MODE(SPI_InitStruct->SPI_Mode));
+ assert_param(IS_SPI_DATASIZE(SPI_InitStruct->SPI_DataSize));
+ assert_param(IS_SPI_CPOL(SPI_InitStruct->SPI_CPOL));
+ assert_param(IS_SPI_CPHA(SPI_InitStruct->SPI_CPHA));
+ assert_param(IS_SPI_NSS(SPI_InitStruct->SPI_NSS));
+ assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_InitStruct->SPI_BaudRatePrescaler));
+ assert_param(IS_SPI_FIRST_BIT(SPI_InitStruct->SPI_FirstBit));
+ assert_param(IS_SPI_CRC_POLYNOMIAL(SPI_InitStruct->SPI_CRCPolynomial));
+
+/*---------------------------- SPIx CR1 Configuration ------------------------*/
+ /* Get the SPIx CR1 value */
+ tmpreg = SPIx->CR1;
+ /* Clear BIDIMode, BIDIOE, RxONLY, SSM, SSI, LSBFirst, BR, MSTR, CPOL and CPHA bits */
+ tmpreg &= CR1_CLEAR_MASK;
+ /* Configure SPIx: direction, NSS management, first transmitted bit, BaudRate prescaler
+ master/salve mode, CPOL and CPHA */
+ /* Set BIDImode, BIDIOE and RxONLY bits according to SPI_Direction value */
+ /* Set SSM, SSI and MSTR bits according to SPI_Mode and SPI_NSS values */
+ /* Set LSBFirst bit according to SPI_FirstBit value */
+ /* Set BR bits according to SPI_BaudRatePrescaler value */
+ /* Set CPOL bit according to SPI_CPOL value */
+ /* Set CPHA bit according to SPI_CPHA value */
+ tmpreg |= (uint16_t)((uint32_t)SPI_InitStruct->SPI_Direction | SPI_InitStruct->SPI_Mode |
+ SPI_InitStruct->SPI_DataSize | SPI_InitStruct->SPI_CPOL |
+ SPI_InitStruct->SPI_CPHA | SPI_InitStruct->SPI_NSS |
+ SPI_InitStruct->SPI_BaudRatePrescaler | SPI_InitStruct->SPI_FirstBit);
+ /* Write to SPIx CR1 */
+ SPIx->CR1 = tmpreg;
+
+ /* Activate the SPI mode (Reset I2SMOD bit in I2SCFGR register) */
+ SPIx->I2SCFGR &= (uint16_t)~((uint16_t)SPI_I2SCFGR_I2SMOD);
+/*---------------------------- SPIx CRCPOLY Configuration --------------------*/
+ /* Write to SPIx CRCPOLY */
+ SPIx->CRCPR = SPI_InitStruct->SPI_CRCPolynomial;
+}
+
+/**
+ * @brief Initializes the SPIx peripheral according to the specified
+ * parameters in the I2S_InitStruct.
+ * @param SPIx: where x can be 2 or 3 to select the SPI peripheral (configured in I2S mode).
+ * @param I2S_InitStruct: pointer to an I2S_InitTypeDef structure that
+ * contains the configuration information for the specified SPI peripheral
+ * configured in I2S mode.
+ *
+ * @note The function calculates the optimal prescaler needed to obtain the most
+ * accurate audio frequency (depending on the I2S clock source, the PLL values
+ * and the product configuration). But in case the prescaler value is greater
+ * than 511, the default value (0x02) will be configured instead.
+ *
+ * @note if an external clock is used as source clock for the I2S, then the define
+ * I2S_EXTERNAL_CLOCK_VAL in file stm32f4xx_conf.h should be enabled and set
+ * to the value of the the source clock frequency (in Hz).
+ *
+ * @retval None
+ */
+void I2S_Init(SPI_TypeDef* SPIx, I2S_InitTypeDef* I2S_InitStruct)
+{
+ uint16_t tmpreg = 0, i2sdiv = 2, i2sodd = 0, packetlength = 1;
+ uint32_t tmp = 0, i2sclk = 0;
+#ifndef I2S_EXTERNAL_CLOCK_VAL
+ uint32_t pllm = 0, plln = 0, pllr = 0;
+#endif /* I2S_EXTERNAL_CLOCK_VAL */
+
+ /* Check the I2S parameters */
+ assert_param(IS_SPI_23_PERIPH(SPIx));
+ assert_param(IS_I2S_MODE(I2S_InitStruct->I2S_Mode));
+ assert_param(IS_I2S_STANDARD(I2S_InitStruct->I2S_Standard));
+ assert_param(IS_I2S_DATA_FORMAT(I2S_InitStruct->I2S_DataFormat));
+ assert_param(IS_I2S_MCLK_OUTPUT(I2S_InitStruct->I2S_MCLKOutput));
+ assert_param(IS_I2S_AUDIO_FREQ(I2S_InitStruct->I2S_AudioFreq));
+ assert_param(IS_I2S_CPOL(I2S_InitStruct->I2S_CPOL));
+
+/*----------------------- SPIx I2SCFGR & I2SPR Configuration -----------------*/
+ /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
+ SPIx->I2SCFGR &= I2SCFGR_CLEAR_MASK;
+ SPIx->I2SPR = 0x0002;
+
+ /* Get the I2SCFGR register value */
+ tmpreg = SPIx->I2SCFGR;
+
+ /* If the default value has to be written, reinitialize i2sdiv and i2sodd*/
+ if(I2S_InitStruct->I2S_AudioFreq == I2S_AudioFreq_Default)
+ {
+ i2sodd = (uint16_t)0;
+ i2sdiv = (uint16_t)2;
+ }
+ /* If the requested audio frequency is not the default, compute the prescaler */
+ else
+ {
+ /* Check the frame length (For the Prescaler computing) *******************/
+ if(I2S_InitStruct->I2S_DataFormat == I2S_DataFormat_16b)
+ {
+ /* Packet length is 16 bits */
+ packetlength = 1;
+ }
+ else
+ {
+ /* Packet length is 32 bits */
+ packetlength = 2;
+ }
+
+ /* Get I2S source Clock frequency ****************************************/
+
+ /* If an external I2S clock has to be used, this define should be set
+ in the project configuration or in the stm32f4xx_conf.h file */
+ #ifdef I2S_EXTERNAL_CLOCK_VAL
+ /* Set external clock as I2S clock source */
+ if ((RCC->CFGR & RCC_CFGR_I2SSRC) == 0)
+ {
+ RCC->CFGR |= (uint32_t)RCC_CFGR_I2SSRC;
+ }
+
+ /* Set the I2S clock to the external clock value */
+ i2sclk = I2S_EXTERNAL_CLOCK_VAL;
+
+ #else /* There is no define for External I2S clock source */
+ /* Set PLLI2S as I2S clock source */
+ if ((RCC->CFGR & RCC_CFGR_I2SSRC) != 0)
+ {
+ RCC->CFGR &= ~(uint32_t)RCC_CFGR_I2SSRC;
+ }
+
+ /* Get the PLLI2SN value */
+ plln = (uint32_t)(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6) & \
+ (RCC_PLLI2SCFGR_PLLI2SN >> 6));
+
+ /* Get the PLLI2SR value */
+ pllr = (uint32_t)(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> 28) & \
+ (RCC_PLLI2SCFGR_PLLI2SR >> 28));
+
+ /* Get the PLLM value */
+ pllm = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM);
+
+ /* Get the I2S source clock value */
+ i2sclk = (uint32_t)(((HSE_VALUE / pllm) * plln) / pllr);
+ #endif /* I2S_EXTERNAL_CLOCK_VAL */
+
+ /* Compute the Real divider depending on the MCLK output state, with a floating point */
+ if(I2S_InitStruct->I2S_MCLKOutput == I2S_MCLKOutput_Enable)
+ {
+ /* MCLK output is enabled */
+ tmp = (uint16_t)(((((i2sclk / 256) * 10) / I2S_InitStruct->I2S_AudioFreq)) + 5);
+ }
+ else
+ {
+ /* MCLK output is disabled */
+ tmp = (uint16_t)(((((i2sclk / (32 * packetlength)) *10 ) / I2S_InitStruct->I2S_AudioFreq)) + 5);
+ }
+
+ /* Remove the flatting point */
+ tmp = tmp / 10;
+
+ /* Check the parity of the divider */
+ i2sodd = (uint16_t)(tmp & (uint16_t)0x0001);
+
+ /* Compute the i2sdiv prescaler */
+ i2sdiv = (uint16_t)((tmp - i2sodd) / 2);
+
+ /* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */
+ i2sodd = (uint16_t) (i2sodd << 8);
+ }
+
+ /* Test if the divider is 1 or 0 or greater than 0xFF */
+ if ((i2sdiv < 2) || (i2sdiv > 0xFF))
+ {
+ /* Set the default values */
+ i2sdiv = 2;
+ i2sodd = 0;
+ }
+
+ /* Write to SPIx I2SPR register the computed value */
+ SPIx->I2SPR = (uint16_t)((uint16_t)i2sdiv | (uint16_t)(i2sodd | (uint16_t)I2S_InitStruct->I2S_MCLKOutput));
+
+ /* Configure the I2S with the SPI_InitStruct values */
+ tmpreg |= (uint16_t)((uint16_t)SPI_I2SCFGR_I2SMOD | (uint16_t)(I2S_InitStruct->I2S_Mode | \
+ (uint16_t)(I2S_InitStruct->I2S_Standard | (uint16_t)(I2S_InitStruct->I2S_DataFormat | \
+ (uint16_t)I2S_InitStruct->I2S_CPOL))));
+
+ /* Write to SPIx I2SCFGR */
+ SPIx->I2SCFGR = tmpreg;
+}
+
+/**
+ * @brief Fills each SPI_InitStruct member with its default value.
+ * @param SPI_InitStruct: pointer to a SPI_InitTypeDef structure which will be initialized.
+ * @retval None
+ */
+void SPI_StructInit(SPI_InitTypeDef* SPI_InitStruct)
+{
+/*--------------- Reset SPI init structure parameters values -----------------*/
+ /* Initialize the SPI_Direction member */
+ SPI_InitStruct->SPI_Direction = SPI_Direction_2Lines_FullDuplex;
+ /* initialize the SPI_Mode member */
+ SPI_InitStruct->SPI_Mode = SPI_Mode_Slave;
+ /* initialize the SPI_DataSize member */
+ SPI_InitStruct->SPI_DataSize = SPI_DataSize_8b;
+ /* Initialize the SPI_CPOL member */
+ SPI_InitStruct->SPI_CPOL = SPI_CPOL_Low;
+ /* Initialize the SPI_CPHA member */
+ SPI_InitStruct->SPI_CPHA = SPI_CPHA_1Edge;
+ /* Initialize the SPI_NSS member */
+ SPI_InitStruct->SPI_NSS = SPI_NSS_Hard;
+ /* Initialize the SPI_BaudRatePrescaler member */
+ SPI_InitStruct->SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2;
+ /* Initialize the SPI_FirstBit member */
+ SPI_InitStruct->SPI_FirstBit = SPI_FirstBit_MSB;
+ /* Initialize the SPI_CRCPolynomial member */
+ SPI_InitStruct->SPI_CRCPolynomial = 7;
+}
+
+/**
+ * @brief Fills each I2S_InitStruct member with its default value.
+ * @param I2S_InitStruct: pointer to a I2S_InitTypeDef structure which will be initialized.
+ * @retval None
+ */
+void I2S_StructInit(I2S_InitTypeDef* I2S_InitStruct)
+{
+/*--------------- Reset I2S init structure parameters values -----------------*/
+ /* Initialize the I2S_Mode member */
+ I2S_InitStruct->I2S_Mode = I2S_Mode_SlaveTx;
+
+ /* Initialize the I2S_Standard member */
+ I2S_InitStruct->I2S_Standard = I2S_Standard_Phillips;
+
+ /* Initialize the I2S_DataFormat member */
+ I2S_InitStruct->I2S_DataFormat = I2S_DataFormat_16b;
+
+ /* Initialize the I2S_MCLKOutput member */
+ I2S_InitStruct->I2S_MCLKOutput = I2S_MCLKOutput_Disable;
+
+ /* Initialize the I2S_AudioFreq member */
+ I2S_InitStruct->I2S_AudioFreq = I2S_AudioFreq_Default;
+
+ /* Initialize the I2S_CPOL member */
+ I2S_InitStruct->I2S_CPOL = I2S_CPOL_Low;
+}
+
+/**
+ * @brief Enables or disables the specified SPI peripheral.
+ * @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
+ * @param NewState: new state of the SPIx peripheral.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SPI_Cmd(SPI_TypeDef* SPIx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH(SPIx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected SPI peripheral */
+ SPIx->CR1 |= SPI_CR1_SPE;
+ }
+ else
+ {
+ /* Disable the selected SPI peripheral */
+ SPIx->CR1 &= (uint16_t)~((uint16_t)SPI_CR1_SPE);
+ }
+}
+
+/**
+ * @brief Enables or disables the specified SPI peripheral (in I2S mode).
+ * @param SPIx: where x can be 2 or 3 to select the SPI peripheral (or I2Sxext
+ * for full duplex mode).
+ * @param NewState: new state of the SPIx peripheral.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void I2S_Cmd(SPI_TypeDef* SPIx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_23_PERIPH_EXT(SPIx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected SPI peripheral (in I2S mode) */
+ SPIx->I2SCFGR |= SPI_I2SCFGR_I2SE;
+ }
+ else
+ {
+ /* Disable the selected SPI peripheral in I2S mode */
+ SPIx->I2SCFGR &= (uint16_t)~((uint16_t)SPI_I2SCFGR_I2SE);
+ }
+}
+
+/**
+ * @brief Configures the data size for the selected SPI.
+ * @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
+ * @param SPI_DataSize: specifies the SPI data size.
+ * This parameter can be one of the following values:
+ * @arg SPI_DataSize_16b: Set data frame format to 16bit
+ * @arg SPI_DataSize_8b: Set data frame format to 8bit
+ * @retval None
+ */
+void SPI_DataSizeConfig(SPI_TypeDef* SPIx, uint16_t SPI_DataSize)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH(SPIx));
+ assert_param(IS_SPI_DATASIZE(SPI_DataSize));
+ /* Clear DFF bit */
+ SPIx->CR1 &= (uint16_t)~SPI_DataSize_16b;
+ /* Set new DFF bit value */
+ SPIx->CR1 |= SPI_DataSize;
+}
+
+/**
+ * @brief Selects the data transfer direction in bidirectional mode for the specified SPI.
+ * @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
+ * @param SPI_Direction: specifies the data transfer direction in bidirectional mode.
+ * This parameter can be one of the following values:
+ * @arg SPI_Direction_Tx: Selects Tx transmission direction
+ * @arg SPI_Direction_Rx: Selects Rx receive direction
+ * @retval None
+ */
+void SPI_BiDirectionalLineConfig(SPI_TypeDef* SPIx, uint16_t SPI_Direction)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH(SPIx));
+ assert_param(IS_SPI_DIRECTION(SPI_Direction));
+ if (SPI_Direction == SPI_Direction_Tx)
+ {
+ /* Set the Tx only mode */
+ SPIx->CR1 |= SPI_Direction_Tx;
+ }
+ else
+ {
+ /* Set the Rx only mode */
+ SPIx->CR1 &= SPI_Direction_Rx;
+ }
+}
+
+/**
+ * @brief Configures internally by software the NSS pin for the selected SPI.
+ * @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
+ * @param SPI_NSSInternalSoft: specifies the SPI NSS internal state.
+ * This parameter can be one of the following values:
+ * @arg SPI_NSSInternalSoft_Set: Set NSS pin internally
+ * @arg SPI_NSSInternalSoft_Reset: Reset NSS pin internally
+ * @retval None
+ */
+void SPI_NSSInternalSoftwareConfig(SPI_TypeDef* SPIx, uint16_t SPI_NSSInternalSoft)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH(SPIx));
+ assert_param(IS_SPI_NSS_INTERNAL(SPI_NSSInternalSoft));
+ if (SPI_NSSInternalSoft != SPI_NSSInternalSoft_Reset)
+ {
+ /* Set NSS pin internally by software */
+ SPIx->CR1 |= SPI_NSSInternalSoft_Set;
+ }
+ else
+ {
+ /* Reset NSS pin internally by software */
+ SPIx->CR1 &= SPI_NSSInternalSoft_Reset;
+ }
+}
+
+/**
+ * @brief Enables or disables the SS output for the selected SPI.
+ * @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
+ * @param NewState: new state of the SPIx SS output.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SPI_SSOutputCmd(SPI_TypeDef* SPIx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH(SPIx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected SPI SS output */
+ SPIx->CR2 |= (uint16_t)SPI_CR2_SSOE;
+ }
+ else
+ {
+ /* Disable the selected SPI SS output */
+ SPIx->CR2 &= (uint16_t)~((uint16_t)SPI_CR2_SSOE);
+ }
+}
+
+/**
+ * @brief Enables or disables the SPIx/I2Sx DMA interface.
+ *
+ * @note This function can be called only after the SPI_Init() function has
+ * been called.
+ * @note When TI mode is selected, the control bits SSM, SSI, CPOL and CPHA
+ * are not taken into consideration and are configured by hardware
+ * respectively to the TI mode requirements.
+ *
+ * @param SPIx: where x can be 1, 2 or 3
+ * @param NewState: new state of the selected SPI TI communication mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SPI_TIModeCmd(SPI_TypeDef* SPIx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH(SPIx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the TI mode for the selected SPI peripheral */
+ SPIx->CR2 |= SPI_CR2_FRF;
+ }
+ else
+ {
+ /* Disable the TI mode for the selected SPI peripheral */
+ SPIx->CR2 &= (uint16_t)~SPI_CR2_FRF;
+ }
+}
+
+/**
+ * @brief Configures the full duplex mode for the I2Sx peripheral using its
+ * extension I2Sxext according to the specified parameters in the
+ * I2S_InitStruct.
+ * @param I2Sxext: where x can be 2 or 3 to select the I2S peripheral extension block.
+ * @param I2S_InitStruct: pointer to an I2S_InitTypeDef structure that
+ * contains the configuration information for the specified I2S peripheral
+ * extension.
+ *
+ * @note The structure pointed by I2S_InitStruct parameter should be the same
+ * used for the master I2S peripheral. In this case, if the master is
+ * configured as transmitter, the slave will be receiver and vice versa.
+ * Or you can force a different mode by modifying the field I2S_Mode to the
+ * value I2S_SlaveRx or I2S_SlaveTx indepedently of the master configuration.
+ *
+ * @note The I2S full duplex extension can be configured in slave mode only.
+ *
+ * @retval None
+ */
+void I2S_FullDuplexConfig(SPI_TypeDef* I2Sxext, I2S_InitTypeDef* I2S_InitStruct)
+{
+ uint16_t tmpreg = 0, tmp = 0;
+
+ /* Check the I2S parameters */
+ assert_param(IS_I2S_EXT_PERIPH(I2Sxext));
+ assert_param(IS_I2S_MODE(I2S_InitStruct->I2S_Mode));
+ assert_param(IS_I2S_STANDARD(I2S_InitStruct->I2S_Standard));
+ assert_param(IS_I2S_DATA_FORMAT(I2S_InitStruct->I2S_DataFormat));
+ assert_param(IS_I2S_CPOL(I2S_InitStruct->I2S_CPOL));
+
+/*----------------------- SPIx I2SCFGR & I2SPR Configuration -----------------*/
+ /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
+ I2Sxext->I2SCFGR &= I2SCFGR_CLEAR_MASK;
+ I2Sxext->I2SPR = 0x0002;
+
+ /* Get the I2SCFGR register value */
+ tmpreg = I2Sxext->I2SCFGR;
+
+ /* Get the mode to be configured for the extended I2S */
+ if ((I2S_InitStruct->I2S_Mode == I2S_Mode_MasterTx) || (I2S_InitStruct->I2S_Mode == I2S_Mode_SlaveTx))
+ {
+ tmp = I2S_Mode_SlaveRx;
+ }
+ else
+ {
+ if ((I2S_InitStruct->I2S_Mode == I2S_Mode_MasterRx) || (I2S_InitStruct->I2S_Mode == I2S_Mode_SlaveRx))
+ {
+ tmp = I2S_Mode_SlaveTx;
+ }
+ }
+
+
+ /* Configure the I2S with the SPI_InitStruct values */
+ tmpreg |= (uint16_t)((uint16_t)SPI_I2SCFGR_I2SMOD | (uint16_t)(tmp | \
+ (uint16_t)(I2S_InitStruct->I2S_Standard | (uint16_t)(I2S_InitStruct->I2S_DataFormat | \
+ (uint16_t)I2S_InitStruct->I2S_CPOL))));
+
+ /* Write to SPIx I2SCFGR */
+ I2Sxext->I2SCFGR = tmpreg;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SPI_Group2 Data transfers functions
+ * @brief Data transfers functions
+ *
+@verbatim
+ ===============================================================================
+ Data transfers functions
+ ===============================================================================
+
+ This section provides a set of functions allowing to manage the SPI data transfers
+
+ In reception, data are received and then stored into an internal Rx buffer while
+ In transmission, data are first stored into an internal Tx buffer before being
+ transmitted.
+
+ The read access of the SPI_DR register can be done using the SPI_I2S_ReceiveData()
+ function and returns the Rx buffered value. Whereas a write access to the SPI_DR
+ can be done using SPI_I2S_SendData() function and stores the written data into
+ Tx buffer.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Returns the most recent received data by the SPIx/I2Sx peripheral.
+ * @param SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3
+ * in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode.
+ * @retval The value of the received data.
+ */
+uint16_t SPI_I2S_ReceiveData(SPI_TypeDef* SPIx)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
+
+ /* Return the data in the DR register */
+ return SPIx->DR;
+}
+
+/**
+ * @brief Transmits a Data through the SPIx/I2Sx peripheral.
+ * @param SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3
+ * in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode.
+ * @param Data: Data to be transmitted.
+ * @retval None
+ */
+void SPI_I2S_SendData(SPI_TypeDef* SPIx, uint16_t Data)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
+
+ /* Write in the DR register the data to be sent */
+ SPIx->DR = Data;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SPI_Group3 Hardware CRC Calculation functions
+ * @brief Hardware CRC Calculation functions
+ *
+@verbatim
+ ===============================================================================
+ Hardware CRC Calculation functions
+ ===============================================================================
+
+ This section provides a set of functions allowing to manage the SPI CRC hardware
+ calculation
+
+ SPI communication using CRC is possible through the following procedure:
+ 1. Program the Data direction, Polarity, Phase, First Data, Baud Rate Prescaler,
+ Slave Management, Peripheral Mode and CRC Polynomial values using the SPI_Init()
+ function.
+ 2. Enable the CRC calculation using the SPI_CalculateCRC() function.
+ 3. Enable the SPI using the SPI_Cmd() function
+ 4. Before writing the last data to the TX buffer, set the CRCNext bit using the
+ SPI_TransmitCRC() function to indicate that after transmission of the last
+ data, the CRC should be transmitted.
+ 5. After transmitting the last data, the SPI transmits the CRC. The SPI_CR1_CRCNEXT
+ bit is reset. The CRC is also received and compared against the SPI_RXCRCR
+ value.
+ If the value does not match, the SPI_FLAG_CRCERR flag is set and an interrupt
+ can be generated when the SPI_I2S_IT_ERR interrupt is enabled.
+
+@note It is advised not to read the calculated CRC values during the communication.
+
+@note When the SPI is in slave mode, be careful to enable CRC calculation only
+ when the clock is stable, that is, when the clock is in the steady state.
+ If not, a wrong CRC calculation may be done. In fact, the CRC is sensitive
+ to the SCK slave input clock as soon as CRCEN is set, and this, whatever
+ the value of the SPE bit.
+
+@note With high bitrate frequencies, be careful when transmitting the CRC.
+ As the number of used CPU cycles has to be as low as possible in the CRC
+ transfer phase, it is forbidden to call software functions in the CRC
+ transmission sequence to avoid errors in the last data and CRC reception.
+ In fact, CRCNEXT bit has to be written before the end of the transmission/reception
+ of the last data.
+
+@note For high bit rate frequencies, it is advised to use the DMA mode to avoid the
+ degradation of the SPI speed performance due to CPU accesses impacting the
+ SPI bandwidth.
+
+@note When the STM32F4xx is configured as slave and the NSS hardware mode is
+ used, the NSS pin needs to be kept low between the data phase and the CRC
+ phase.
+
+@note When the SPI is configured in slave mode with the CRC feature enabled, CRC
+ calculation takes place even if a high level is applied on the NSS pin.
+ This may happen for example in case of a multi-slave environment where the
+ communication master addresses slaves alternately.
+
+@note Between a slave de-selection (high level on NSS) and a new slave selection
+ (low level on NSS), the CRC value should be cleared on both master and slave
+ sides in order to resynchronize the master and slave for their respective
+ CRC calculation.
+
+@note To clear the CRC, follow the procedure below:
+ 1. Disable SPI using the SPI_Cmd() function
+ 2. Disable the CRC calculation using the SPI_CalculateCRC() function.
+ 3. Enable the CRC calculation using the SPI_CalculateCRC() function.
+ 4. Enable SPI using the SPI_Cmd() function.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the CRC value calculation of the transferred bytes.
+ * @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
+ * @param NewState: new state of the SPIx CRC value calculation.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SPI_CalculateCRC(SPI_TypeDef* SPIx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH(SPIx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected SPI CRC calculation */
+ SPIx->CR1 |= SPI_CR1_CRCEN;
+ }
+ else
+ {
+ /* Disable the selected SPI CRC calculation */
+ SPIx->CR1 &= (uint16_t)~((uint16_t)SPI_CR1_CRCEN);
+ }
+}
+
+/**
+ * @brief Transmit the SPIx CRC value.
+ * @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
+ * @retval None
+ */
+void SPI_TransmitCRC(SPI_TypeDef* SPIx)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH(SPIx));
+
+ /* Enable the selected SPI CRC transmission */
+ SPIx->CR1 |= SPI_CR1_CRCNEXT;
+}
+
+/**
+ * @brief Returns the transmit or the receive CRC register value for the specified SPI.
+ * @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
+ * @param SPI_CRC: specifies the CRC register to be read.
+ * This parameter can be one of the following values:
+ * @arg SPI_CRC_Tx: Selects Tx CRC register
+ * @arg SPI_CRC_Rx: Selects Rx CRC register
+ * @retval The selected CRC register value..
+ */
+uint16_t SPI_GetCRC(SPI_TypeDef* SPIx, uint8_t SPI_CRC)
+{
+ uint16_t crcreg = 0;
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH(SPIx));
+ assert_param(IS_SPI_CRC(SPI_CRC));
+ if (SPI_CRC != SPI_CRC_Rx)
+ {
+ /* Get the Tx CRC register */
+ crcreg = SPIx->TXCRCR;
+ }
+ else
+ {
+ /* Get the Rx CRC register */
+ crcreg = SPIx->RXCRCR;
+ }
+ /* Return the selected CRC register */
+ return crcreg;
+}
+
+/**
+ * @brief Returns the CRC Polynomial register value for the specified SPI.
+ * @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
+ * @retval The CRC Polynomial register value.
+ */
+uint16_t SPI_GetCRCPolynomial(SPI_TypeDef* SPIx)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH(SPIx));
+
+ /* Return the CRC polynomial register */
+ return SPIx->CRCPR;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SPI_Group4 DMA transfers management functions
+ * @brief DMA transfers management functions
+ *
+@verbatim
+ ===============================================================================
+ DMA transfers management functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the SPIx/I2Sx DMA interface.
+ * @param SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3
+ * in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode.
+ * @param SPI_I2S_DMAReq: specifies the SPI DMA transfer request to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg SPI_I2S_DMAReq_Tx: Tx buffer DMA transfer request
+ * @arg SPI_I2S_DMAReq_Rx: Rx buffer DMA transfer request
+ * @param NewState: new state of the selected SPI DMA transfer request.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SPI_I2S_DMACmd(SPI_TypeDef* SPIx, uint16_t SPI_I2S_DMAReq, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ assert_param(IS_SPI_I2S_DMAREQ(SPI_I2S_DMAReq));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected SPI DMA requests */
+ SPIx->CR2 |= SPI_I2S_DMAReq;
+ }
+ else
+ {
+ /* Disable the selected SPI DMA requests */
+ SPIx->CR2 &= (uint16_t)~SPI_I2S_DMAReq;
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup SPI_Group5 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts and flags management functions
+ ===============================================================================
+
+ This section provides a set of functions allowing to configure the SPI Interrupts
+ sources and check or clear the flags or pending bits status.
+ The user should identify which mode will be used in his application to manage
+ the communication: Polling mode, Interrupt mode or DMA mode.
+
+ Polling Mode
+ =============
+ In Polling Mode, the SPI/I2S communication can be managed by 9 flags:
+ 1. SPI_I2S_FLAG_TXE : to indicate the status of the transmit buffer register
+ 2. SPI_I2S_FLAG_RXNE : to indicate the status of the receive buffer register
+ 3. SPI_I2S_FLAG_BSY : to indicate the state of the communication layer of the SPI.
+ 4. SPI_FLAG_CRCERR : to indicate if a CRC Calculation error occur
+ 5. SPI_FLAG_MODF : to indicate if a Mode Fault error occur
+ 6. SPI_I2S_FLAG_OVR : to indicate if an Overrun error occur
+ 7. I2S_FLAG_TIFRFE: to indicate a Frame Format error occurs.
+ 8. I2S_FLAG_UDR: to indicate an Underrun error occurs.
+ 9. I2S_FLAG_CHSIDE: to indicate Channel Side.
+
+@note Do not use the BSY flag to handle each data transmission or reception. It is
+ better to use the TXE and RXNE flags instead.
+
+ In this Mode it is advised to use the following functions:
+ - FlagStatus SPI_I2S_GetFlagStatus(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG);
+ - void SPI_I2S_ClearFlag(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG);
+
+ Interrupt Mode
+ ===============
+ In Interrupt Mode, the SPI communication can be managed by 3 interrupt sources
+ and 7 pending bits:
+ Pending Bits:
+ -------------
+ 1. SPI_I2S_IT_TXE : to indicate the status of the transmit buffer register
+ 2. SPI_I2S_IT_RXNE : to indicate the status of the receive buffer register
+ 3. SPI_IT_CRCERR : to indicate if a CRC Calculation error occur (available in SPI mode only)
+ 4. SPI_IT_MODF : to indicate if a Mode Fault error occur (available in SPI mode only)
+ 5. SPI_I2S_IT_OVR : to indicate if an Overrun error occur
+ 6. I2S_IT_UDR : to indicate an Underrun Error occurs (available in I2S mode only).
+ 7. I2S_FLAG_TIFRFE : to indicate a Frame Format error occurs (available in TI mode only).
+
+ Interrupt Source:
+ -----------------
+ 1. SPI_I2S_IT_TXE: specifies the interrupt source for the Tx buffer empty
+ interrupt.
+ 2. SPI_I2S_IT_RXNE : specifies the interrupt source for the Rx buffer not
+ empty interrupt.
+ 3. SPI_I2S_IT_ERR : specifies the interrupt source for the errors interrupt.
+
+ In this Mode it is advised to use the following functions:
+ - void SPI_I2S_ITConfig(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT, FunctionalState NewState);
+ - ITStatus SPI_I2S_GetITStatus(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT);
+ - void SPI_I2S_ClearITPendingBit(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT);
+
+ DMA Mode
+ ========
+ In DMA Mode, the SPI communication can be managed by 2 DMA Channel requests:
+ 1. SPI_I2S_DMAReq_Tx: specifies the Tx buffer DMA transfer request
+ 2. SPI_I2S_DMAReq_Rx: specifies the Rx buffer DMA transfer request
+
+ In this Mode it is advised to use the following function:
+ - void SPI_I2S_DMACmd(SPI_TypeDef* SPIx, uint16_t SPI_I2S_DMAReq, FunctionalState NewState);
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified SPI/I2S interrupts.
+ * @param SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3
+ * in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode.
+ * @param SPI_I2S_IT: specifies the SPI interrupt source to be enabled or disabled.
+ * This parameter can be one of the following values:
+ * @arg SPI_I2S_IT_TXE: Tx buffer empty interrupt mask
+ * @arg SPI_I2S_IT_RXNE: Rx buffer not empty interrupt mask
+ * @arg SPI_I2S_IT_ERR: Error interrupt mask
+ * @param NewState: new state of the specified SPI interrupt.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void SPI_I2S_ITConfig(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT, FunctionalState NewState)
+{
+ uint16_t itpos = 0, itmask = 0 ;
+
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ assert_param(IS_SPI_I2S_CONFIG_IT(SPI_I2S_IT));
+
+ /* Get the SPI IT index */
+ itpos = SPI_I2S_IT >> 4;
+
+ /* Set the IT mask */
+ itmask = (uint16_t)1 << (uint16_t)itpos;
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected SPI interrupt */
+ SPIx->CR2 |= itmask;
+ }
+ else
+ {
+ /* Disable the selected SPI interrupt */
+ SPIx->CR2 &= (uint16_t)~itmask;
+ }
+}
+
+/**
+ * @brief Checks whether the specified SPIx/I2Sx flag is set or not.
+ * @param SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3
+ * in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode.
+ * @param SPI_I2S_FLAG: specifies the SPI flag to check.
+ * This parameter can be one of the following values:
+ * @arg SPI_I2S_FLAG_TXE: Transmit buffer empty flag.
+ * @arg SPI_I2S_FLAG_RXNE: Receive buffer not empty flag.
+ * @arg SPI_I2S_FLAG_BSY: Busy flag.
+ * @arg SPI_I2S_FLAG_OVR: Overrun flag.
+ * @arg SPI_FLAG_MODF: Mode Fault flag.
+ * @arg SPI_FLAG_CRCERR: CRC Error flag.
+ * @arg SPI_I2S_FLAG_TIFRFE: Format Error.
+ * @arg I2S_FLAG_UDR: Underrun Error flag.
+ * @arg I2S_FLAG_CHSIDE: Channel Side flag.
+ * @retval The new state of SPI_I2S_FLAG (SET or RESET).
+ */
+FlagStatus SPI_I2S_GetFlagStatus(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
+ assert_param(IS_SPI_I2S_GET_FLAG(SPI_I2S_FLAG));
+
+ /* Check the status of the specified SPI flag */
+ if ((SPIx->SR & SPI_I2S_FLAG) != (uint16_t)RESET)
+ {
+ /* SPI_I2S_FLAG is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* SPI_I2S_FLAG is reset */
+ bitstatus = RESET;
+ }
+ /* Return the SPI_I2S_FLAG status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the SPIx CRC Error (CRCERR) flag.
+ * @param SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3
+ * in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode.
+ * @param SPI_I2S_FLAG: specifies the SPI flag to clear.
+ * This function clears only CRCERR flag.
+ * @arg SPI_FLAG_CRCERR: CRC Error flag.
+ *
+ * @note OVR (OverRun error) flag is cleared by software sequence: a read
+ * operation to SPI_DR register (SPI_I2S_ReceiveData()) followed by a read
+ * operation to SPI_SR register (SPI_I2S_GetFlagStatus()).
+ * @note UDR (UnderRun error) flag is cleared by a read operation to
+ * SPI_SR register (SPI_I2S_GetFlagStatus()).
+ * @note MODF (Mode Fault) flag is cleared by software sequence: a read/write
+ * operation to SPI_SR register (SPI_I2S_GetFlagStatus()) followed by a
+ * write operation to SPI_CR1 register (SPI_Cmd() to enable the SPI).
+ *
+ * @retval None
+ */
+void SPI_I2S_ClearFlag(SPI_TypeDef* SPIx, uint16_t SPI_I2S_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
+ assert_param(IS_SPI_I2S_CLEAR_FLAG(SPI_I2S_FLAG));
+
+ /* Clear the selected SPI CRC Error (CRCERR) flag */
+ SPIx->SR = (uint16_t)~SPI_I2S_FLAG;
+}
+
+/**
+ * @brief Checks whether the specified SPIx/I2Sx interrupt has occurred or not.
+ * @param SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3
+ * in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode.
+ * @param SPI_I2S_IT: specifies the SPI interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg SPI_I2S_IT_TXE: Transmit buffer empty interrupt.
+ * @arg SPI_I2S_IT_RXNE: Receive buffer not empty interrupt.
+ * @arg SPI_I2S_IT_OVR: Overrun interrupt.
+ * @arg SPI_IT_MODF: Mode Fault interrupt.
+ * @arg SPI_IT_CRCERR: CRC Error interrupt.
+ * @arg I2S_IT_UDR: Underrun interrupt.
+ * @arg SPI_I2S_IT_TIFRFE: Format Error interrupt.
+ * @retval The new state of SPI_I2S_IT (SET or RESET).
+ */
+ITStatus SPI_I2S_GetITStatus(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT)
+{
+ ITStatus bitstatus = RESET;
+ uint16_t itpos = 0, itmask = 0, enablestatus = 0;
+
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
+ assert_param(IS_SPI_I2S_GET_IT(SPI_I2S_IT));
+
+ /* Get the SPI_I2S_IT index */
+ itpos = 0x01 << (SPI_I2S_IT & 0x0F);
+
+ /* Get the SPI_I2S_IT IT mask */
+ itmask = SPI_I2S_IT >> 4;
+
+ /* Set the IT mask */
+ itmask = 0x01 << itmask;
+
+ /* Get the SPI_I2S_IT enable bit status */
+ enablestatus = (SPIx->CR2 & itmask) ;
+
+ /* Check the status of the specified SPI interrupt */
+ if (((SPIx->SR & itpos) != (uint16_t)RESET) && enablestatus)
+ {
+ /* SPI_I2S_IT is set */
+ bitstatus = SET;
+ }
+ else
+ {
+ /* SPI_I2S_IT is reset */
+ bitstatus = RESET;
+ }
+ /* Return the SPI_I2S_IT status */
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the SPIx CRC Error (CRCERR) interrupt pending bit.
+ * @param SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3
+ * in SPI mode or 2 or 3 in I2S mode or I2Sxext for I2S full duplex mode.
+ * @param SPI_I2S_IT: specifies the SPI interrupt pending bit to clear.
+ * This function clears only CRCERR interrupt pending bit.
+ * @arg SPI_IT_CRCERR: CRC Error interrupt.
+ *
+ * @note OVR (OverRun Error) interrupt pending bit is cleared by software
+ * sequence: a read operation to SPI_DR register (SPI_I2S_ReceiveData())
+ * followed by a read operation to SPI_SR register (SPI_I2S_GetITStatus()).
+ * @note UDR (UnderRun Error) interrupt pending bit is cleared by a read
+ * operation to SPI_SR register (SPI_I2S_GetITStatus()).
+ * @note MODF (Mode Fault) interrupt pending bit is cleared by software sequence:
+ * a read/write operation to SPI_SR register (SPI_I2S_GetITStatus())
+ * followed by a write operation to SPI_CR1 register (SPI_Cmd() to enable
+ * the SPI).
+ * @retval None
+ */
+void SPI_I2S_ClearITPendingBit(SPI_TypeDef* SPIx, uint8_t SPI_I2S_IT)
+{
+ uint16_t itpos = 0;
+ /* Check the parameters */
+ assert_param(IS_SPI_ALL_PERIPH_EXT(SPIx));
+ assert_param(IS_SPI_I2S_CLEAR_IT(SPI_I2S_IT));
+
+ /* Get the SPI_I2S IT index */
+ itpos = 0x01 << (SPI_I2S_IT & 0x0F);
+
+ /* Clear the selected SPI CRC Error (CRCERR) interrupt pending bit */
+ SPIx->SR = (uint16_t)~itpos;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_syscfg.c b/TimerCounter/SPL/src/stm32f4xx_syscfg.c
new file mode 100644
index 0000000..2625cfe
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_syscfg.c
@@ -0,0 +1,197 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_syscfg.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the SYSCFG peripheral.
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ *
+ * This driver provides functions for:
+ *
+ * 1. Remapping the memory accessible in the code area using SYSCFG_MemoryRemapConfig()
+ *
+ * 2. Manage the EXTI lines connection to the GPIOs using SYSCFG_EXTILineConfig()
+ *
+ * 3. Select the ETHERNET media interface (RMII/RII) using SYSCFG_ETH_MediaInterfaceConfig()
+ *
+ * @note SYSCFG APB clock must be enabled to get write access to SYSCFG registers,
+ * using RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE);
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_syscfg.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup SYSCFG
+ * @brief SYSCFG driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* ------------ RCC registers bit address in the alias region ----------- */
+#define SYSCFG_OFFSET (SYSCFG_BASE - PERIPH_BASE)
+/* --- PMC Register ---*/
+/* Alias word address of MII_RMII_SEL bit */
+#define PMC_OFFSET (SYSCFG_OFFSET + 0x04)
+#define MII_RMII_SEL_BitNumber ((uint8_t)0x17)
+#define PMC_MII_RMII_SEL_BB (PERIPH_BB_BASE + (PMC_OFFSET * 32) + (MII_RMII_SEL_BitNumber * 4))
+
+/* --- CMPCR Register ---*/
+/* Alias word address of CMP_PD bit */
+#define CMPCR_OFFSET (SYSCFG_OFFSET + 0x20)
+#define CMP_PD_BitNumber ((uint8_t)0x00)
+#define CMPCR_CMP_PD_BB (PERIPH_BB_BASE + (CMPCR_OFFSET * 32) + (CMP_PD_BitNumber * 4))
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup SYSCFG_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the Alternate Functions (remap and EXTI configuration)
+ * registers to their default reset values.
+ * @param None
+ * @retval None
+ */
+void SYSCFG_DeInit(void)
+{
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_SYSCFG, ENABLE);
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_SYSCFG, DISABLE);
+}
+
+/**
+ * @brief Changes the mapping of the specified pin.
+ * @param SYSCFG_Memory: selects the memory remapping.
+ * This parameter can be one of the following values:
+ * @arg SYSCFG_MemoryRemap_Flash: Main Flash memory mapped at 0x00000000
+ * @arg SYSCFG_MemoryRemap_SystemFlash: System Flash memory mapped at 0x00000000
+ * @arg SYSCFG_MemoryRemap_FSMC: FSMC (Bank1 (NOR/PSRAM 1 and 2) mapped at 0x00000000
+ * @arg SYSCFG_MemoryRemap_SRAM: Embedded SRAM (112kB) mapped at 0x00000000
+ * @retval None
+ */
+void SYSCFG_MemoryRemapConfig(uint8_t SYSCFG_MemoryRemap)
+{
+ /* Check the parameters */
+ assert_param(IS_SYSCFG_MEMORY_REMAP_CONFING(SYSCFG_MemoryRemap));
+
+ SYSCFG->MEMRMP = SYSCFG_MemoryRemap;
+}
+
+/**
+ * @brief Selects the GPIO pin used as EXTI Line.
+ * @param EXTI_PortSourceGPIOx : selects the GPIO port to be used as source for
+ * EXTI lines where x can be (A..I).
+ * @param EXTI_PinSourcex: specifies the EXTI line to be configured.
+ * This parameter can be EXTI_PinSourcex where x can be (0..15, except
+ * for EXTI_PortSourceGPIOI x can be (0..11).
+ * @retval None
+ */
+void SYSCFG_EXTILineConfig(uint8_t EXTI_PortSourceGPIOx, uint8_t EXTI_PinSourcex)
+{
+ uint32_t tmp = 0x00;
+
+ /* Check the parameters */
+ assert_param(IS_EXTI_PORT_SOURCE(EXTI_PortSourceGPIOx));
+ assert_param(IS_EXTI_PIN_SOURCE(EXTI_PinSourcex));
+
+ tmp = ((uint32_t)0x0F) << (0x04 * (EXTI_PinSourcex & (uint8_t)0x03));
+ SYSCFG->EXTICR[EXTI_PinSourcex >> 0x02] &= ~tmp;
+ SYSCFG->EXTICR[EXTI_PinSourcex >> 0x02] |= (((uint32_t)EXTI_PortSourceGPIOx) << (0x04 * (EXTI_PinSourcex & (uint8_t)0x03)));
+}
+
+/**
+ * @brief Selects the ETHERNET media interface
+ * @param SYSCFG_ETH_MediaInterface: specifies the Media Interface mode.
+ * This parameter can be one of the following values:
+ * @arg SYSCFG_ETH_MediaInterface_MII: MII mode selected
+ * @arg SYSCFG_ETH_MediaInterface_RMII: RMII mode selected
+ * @retval None
+ */
+void SYSCFG_ETH_MediaInterfaceConfig(uint32_t SYSCFG_ETH_MediaInterface)
+{
+ assert_param(IS_SYSCFG_ETH_MEDIA_INTERFACE(SYSCFG_ETH_MediaInterface));
+ /* Configure MII_RMII selection bit */
+ *(__IO uint32_t *) PMC_MII_RMII_SEL_BB = SYSCFG_ETH_MediaInterface;
+}
+
+/**
+ * @brief Enables or disables the I/O Compensation Cell.
+ * @note The I/O compensation cell can be used only when the device supply
+ * voltage ranges from 2.4 to 3.6 V.
+ * @param NewState: new state of the I/O Compensation Cell.
+ * This parameter can be one of the following values:
+ * @arg ENABLE: I/O compensation cell enabled
+ * @arg DISABLE: I/O compensation cell power-down mode
+ * @retval None
+ */
+void SYSCFG_CompensationCellCmd(FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ *(__IO uint32_t *) CMPCR_CMP_PD_BB = (uint32_t)NewState;
+}
+
+/**
+ * @brief Checks whether the I/O Compensation Cell ready flag is set or not.
+ * @param None
+ * @retval The new state of the I/O Compensation Cell ready flag (SET or RESET)
+ */
+FlagStatus SYSCFG_GetCompensationCellStatus(void)
+{
+ FlagStatus bitstatus = RESET;
+
+ if ((SYSCFG->CMPCR & SYSCFG_CMPCR_READY ) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_tim.c b/TimerCounter/SPL/src/stm32f4xx_tim.c
new file mode 100644
index 0000000..02982f8
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_tim.c
@@ -0,0 +1,3352 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_tim.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the TIM peripheral:
+ * - TimeBase management
+ * - Output Compare management
+ * - Input Capture management
+ * - Advanced-control timers (TIM1 and TIM8) specific features
+ * - Interrupts, DMA and flags management
+ * - Clocks management
+ * - Synchronization management
+ * - Specific interface management
+ * - Specific remapping management
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ * This driver provides functions to configure and program the TIM
+ * of all STM32F4xx devices.
+ * These functions are split in 9 groups:
+ *
+ * 1. TIM TimeBase management: this group includes all needed functions
+ * to configure the TM Timebase unit:
+ * - Set/Get Prescaler
+ * - Set/Get Autoreload
+ * - Counter modes configuration
+ * - Set Clock division
+ * - Select the One Pulse mode
+ * - Update Request Configuration
+ * - Update Disable Configuration
+ * - Auto-Preload Configuration
+ * - Enable/Disable the counter
+ *
+ * 2. TIM Output Compare management: this group includes all needed
+ * functions to configure the Capture/Compare unit used in Output
+ * compare mode:
+ * - Configure each channel, independently, in Output Compare mode
+ * - Select the output compare modes
+ * - Select the Polarities of each channel
+ * - Set/Get the Capture/Compare register values
+ * - Select the Output Compare Fast mode
+ * - Select the Output Compare Forced mode
+ * - Output Compare-Preload Configuration
+ * - Clear Output Compare Reference
+ * - Select the OCREF Clear signal
+ * - Enable/Disable the Capture/Compare Channels
+ *
+ * 3. TIM Input Capture management: this group includes all needed
+ * functions to configure the Capture/Compare unit used in
+ * Input Capture mode:
+ * - Configure each channel in input capture mode
+ * - Configure Channel1/2 in PWM Input mode
+ * - Set the Input Capture Prescaler
+ * - Get the Capture/Compare values
+ *
+ * 4. Advanced-control timers (TIM1 and TIM8) specific features
+ * - Configures the Break input, dead time, Lock level, the OSSI,
+ * the OSSR State and the AOE(automatic output enable)
+ * - Enable/Disable the TIM peripheral Main Outputs
+ * - Select the Commutation event
+ * - Set/Reset the Capture Compare Preload Control bit
+ *
+ * 5. TIM interrupts, DMA and flags management
+ * - Enable/Disable interrupt sources
+ * - Get flags status
+ * - Clear flags/ Pending bits
+ * - Enable/Disable DMA requests
+ * - Configure DMA burst mode
+ * - Select CaptureCompare DMA request
+ *
+ * 6. TIM clocks management: this group includes all needed functions
+ * to configure the clock controller unit:
+ * - Select internal/External clock
+ * - Select the external clock mode: ETR(Mode1/Mode2), TIx or ITRx
+ *
+ * 7. TIM synchronization management: this group includes all needed
+ * functions to configure the Synchronization unit:
+ * - Select Input Trigger
+ * - Select Output Trigger
+ * - Select Master Slave Mode
+ * - ETR Configuration when used as external trigger
+ *
+ * 8. TIM specific interface management, this group includes all
+ * needed functions to use the specific TIM interface:
+ * - Encoder Interface Configuration
+ * - Select Hall Sensor
+ *
+ * 9. TIM specific remapping management includes the Remapping
+ * configuration of specific timers
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_tim.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup TIM
+ * @brief TIM driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/* ---------------------- TIM registers bit mask ------------------------ */
+#define SMCR_ETR_MASK ((uint16_t)0x00FF)
+#define CCMR_OFFSET ((uint16_t)0x0018)
+#define CCER_CCE_SET ((uint16_t)0x0001)
+#define CCER_CCNE_SET ((uint16_t)0x0004)
+#define CCMR_OC13M_MASK ((uint16_t)0xFF8F)
+#define CCMR_OC24M_MASK ((uint16_t)0x8FFF)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter);
+static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter);
+static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter);
+static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter);
+
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup TIM_Private_Functions
+ * @{
+ */
+
+/** @defgroup TIM_Group1 TimeBase management functions
+ * @brief TimeBase management functions
+ *
+@verbatim
+ ===============================================================================
+ TimeBase management functions
+ ===============================================================================
+
+ ===================================================================
+ TIM Driver: how to use it in Timing(Time base) Mode
+ ===================================================================
+ To use the Timer in Timing(Time base) mode, the following steps are mandatory:
+
+ 1. Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) function
+
+ 2. Fill the TIM_TimeBaseInitStruct with the desired parameters.
+
+ 3. Call TIM_TimeBaseInit(TIMx, &TIM_TimeBaseInitStruct) to configure the Time Base unit
+ with the corresponding configuration
+
+ 4. Enable the NVIC if you need to generate the update interrupt.
+
+ 5. Enable the corresponding interrupt using the function TIM_ITConfig(TIMx, TIM_IT_Update)
+
+ 6. Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
+
+ Note1: All other functions can be used separately to modify, if needed,
+ a specific feature of the Timer.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the TIMx peripheral registers to their default reset values.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @retval None
+
+ */
+void TIM_DeInit(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+
+ if (TIMx == TIM1)
+ {
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, ENABLE);
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, DISABLE);
+ }
+ else if (TIMx == TIM2)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, DISABLE);
+ }
+ else if (TIMx == TIM3)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, DISABLE);
+ }
+ else if (TIMx == TIM4)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, DISABLE);
+ }
+ else if (TIMx == TIM5)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, DISABLE);
+ }
+ else if (TIMx == TIM6)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, DISABLE);
+ }
+ else if (TIMx == TIM7)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, DISABLE);
+ }
+ else if (TIMx == TIM8)
+ {
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, ENABLE);
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, DISABLE);
+ }
+ else if (TIMx == TIM9)
+ {
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, ENABLE);
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, DISABLE);
+ }
+ else if (TIMx == TIM10)
+ {
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, ENABLE);
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, DISABLE);
+ }
+ else if (TIMx == TIM11)
+ {
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, ENABLE);
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, DISABLE);
+ }
+ else if (TIMx == TIM12)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, DISABLE);
+ }
+ else if (TIMx == TIM13)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, DISABLE);
+ }
+ else
+ {
+ if (TIMx == TIM14)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, DISABLE);
+ }
+ }
+}
+
+/**
+ * @brief Initializes the TIMx Time Base Unit peripheral according to
+ * the specified parameters in the TIM_TimeBaseInitStruct.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @param TIM_TimeBaseInitStruct: pointer to a TIM_TimeBaseInitTypeDef structure
+ * that contains the configuration information for the specified TIM peripheral.
+ * @retval None
+ */
+void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
+{
+ uint16_t tmpcr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_COUNTER_MODE(TIM_TimeBaseInitStruct->TIM_CounterMode));
+ assert_param(IS_TIM_CKD_DIV(TIM_TimeBaseInitStruct->TIM_ClockDivision));
+
+ tmpcr1 = TIMx->CR1;
+
+ if((TIMx == TIM1) || (TIMx == TIM8)||
+ (TIMx == TIM2) || (TIMx == TIM3)||
+ (TIMx == TIM4) || (TIMx == TIM5))
+ {
+ /* Select the Counter Mode */
+ tmpcr1 &= (uint16_t)(~(TIM_CR1_DIR | TIM_CR1_CMS));
+ tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_CounterMode;
+ }
+
+ if((TIMx != TIM6) && (TIMx != TIM7))
+ {
+ /* Set the clock division */
+ tmpcr1 &= (uint16_t)(~TIM_CR1_CKD);
+ tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_ClockDivision;
+ }
+
+ TIMx->CR1 = tmpcr1;
+
+ /* Set the Autoreload value */
+ TIMx->ARR = TIM_TimeBaseInitStruct->TIM_Period ;
+
+ /* Set the Prescaler value */
+ TIMx->PSC = TIM_TimeBaseInitStruct->TIM_Prescaler;
+
+ if ((TIMx == TIM1) || (TIMx == TIM8))
+ {
+ /* Set the Repetition Counter value */
+ TIMx->RCR = TIM_TimeBaseInitStruct->TIM_RepetitionCounter;
+ }
+
+ /* Generate an update event to reload the Prescaler
+ and the repetition counter(only for TIM1 and TIM8) value immediatly */
+ TIMx->EGR = TIM_PSCReloadMode_Immediate;
+}
+
+/**
+ * @brief Fills each TIM_TimeBaseInitStruct member with its default value.
+ * @param TIM_TimeBaseInitStruct : pointer to a TIM_TimeBaseInitTypeDef
+ * structure which will be initialized.
+ * @retval None
+ */
+void TIM_TimeBaseStructInit(TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
+{
+ /* Set the default configuration */
+ TIM_TimeBaseInitStruct->TIM_Period = 0xFFFFFFFF;
+ TIM_TimeBaseInitStruct->TIM_Prescaler = 0x0000;
+ TIM_TimeBaseInitStruct->TIM_ClockDivision = TIM_CKD_DIV1;
+ TIM_TimeBaseInitStruct->TIM_CounterMode = TIM_CounterMode_Up;
+ TIM_TimeBaseInitStruct->TIM_RepetitionCounter = 0x0000;
+}
+
+/**
+ * @brief Configures the TIMx Prescaler.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @param Prescaler: specifies the Prescaler Register value
+ * @param TIM_PSCReloadMode: specifies the TIM Prescaler Reload mode
+ * This parameter can be one of the following values:
+ * @arg TIM_PSCReloadMode_Update: The Prescaler is loaded at the update event.
+ * @arg TIM_PSCReloadMode_Immediate: The Prescaler is loaded immediatly.
+ * @retval None
+ */
+void TIM_PrescalerConfig(TIM_TypeDef* TIMx, uint16_t Prescaler, uint16_t TIM_PSCReloadMode)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_PRESCALER_RELOAD(TIM_PSCReloadMode));
+ /* Set the Prescaler value */
+ TIMx->PSC = Prescaler;
+ /* Set or reset the UG Bit */
+ TIMx->EGR = TIM_PSCReloadMode;
+}
+
+/**
+ * @brief Specifies the TIMx Counter Mode to be used.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_CounterMode: specifies the Counter Mode to be used
+ * This parameter can be one of the following values:
+ * @arg TIM_CounterMode_Up: TIM Up Counting Mode
+ * @arg TIM_CounterMode_Down: TIM Down Counting Mode
+ * @arg TIM_CounterMode_CenterAligned1: TIM Center Aligned Mode1
+ * @arg TIM_CounterMode_CenterAligned2: TIM Center Aligned Mode2
+ * @arg TIM_CounterMode_CenterAligned3: TIM Center Aligned Mode3
+ * @retval None
+ */
+void TIM_CounterModeConfig(TIM_TypeDef* TIMx, uint16_t TIM_CounterMode)
+{
+ uint16_t tmpcr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_COUNTER_MODE(TIM_CounterMode));
+
+ tmpcr1 = TIMx->CR1;
+
+ /* Reset the CMS and DIR Bits */
+ tmpcr1 &= (uint16_t)~(TIM_CR1_DIR | TIM_CR1_CMS);
+
+ /* Set the Counter Mode */
+ tmpcr1 |= TIM_CounterMode;
+
+ /* Write to TIMx CR1 register */
+ TIMx->CR1 = tmpcr1;
+}
+
+/**
+ * @brief Sets the TIMx Counter Register value
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @param Counter: specifies the Counter register new value.
+ * @retval None
+ */
+void TIM_SetCounter(TIM_TypeDef* TIMx, uint32_t Counter)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+
+ /* Set the Counter Register value */
+ TIMx->CNT = Counter;
+}
+
+/**
+ * @brief Sets the TIMx Autoreload Register value
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @param Autoreload: specifies the Autoreload register new value.
+ * @retval None
+ */
+void TIM_SetAutoreload(TIM_TypeDef* TIMx, uint32_t Autoreload)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+
+ /* Set the Autoreload Register value */
+ TIMx->ARR = Autoreload;
+}
+
+/**
+ * @brief Gets the TIMx Counter value.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @retval Counter Register value
+ */
+uint32_t TIM_GetCounter(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+
+ /* Get the Counter Register value */
+ return TIMx->CNT;
+}
+
+/**
+ * @brief Gets the TIMx Prescaler value.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @retval Prescaler Register value.
+ */
+uint16_t TIM_GetPrescaler(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+
+ /* Get the Prescaler Register value */
+ return TIMx->PSC;
+}
+
+/**
+ * @brief Enables or Disables the TIMx Update event.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @param NewState: new state of the TIMx UDIS bit
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_UpdateDisableConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the Update Disable Bit */
+ TIMx->CR1 |= TIM_CR1_UDIS;
+ }
+ else
+ {
+ /* Reset the Update Disable Bit */
+ TIMx->CR1 &= (uint16_t)~TIM_CR1_UDIS;
+ }
+}
+
+/**
+ * @brief Configures the TIMx Update Request Interrupt source.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @param TIM_UpdateSource: specifies the Update source.
+ * This parameter can be one of the following values:
+ * @arg TIM_UpdateSource_Global: Source of update is the counter
+ * overflow/underflow or the setting of UG bit, or an update
+ * generation through the slave mode controller.
+ * @arg TIM_UpdateSource_Regular: Source of update is counter overflow/underflow.
+ * @retval None
+ */
+void TIM_UpdateRequestConfig(TIM_TypeDef* TIMx, uint16_t TIM_UpdateSource)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_UPDATE_SOURCE(TIM_UpdateSource));
+
+ if (TIM_UpdateSource != TIM_UpdateSource_Global)
+ {
+ /* Set the URS Bit */
+ TIMx->CR1 |= TIM_CR1_URS;
+ }
+ else
+ {
+ /* Reset the URS Bit */
+ TIMx->CR1 &= (uint16_t)~TIM_CR1_URS;
+ }
+}
+
+/**
+ * @brief Enables or disables TIMx peripheral Preload register on ARR.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @param NewState: new state of the TIMx peripheral Preload register
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the ARR Preload Bit */
+ TIMx->CR1 |= TIM_CR1_ARPE;
+ }
+ else
+ {
+ /* Reset the ARR Preload Bit */
+ TIMx->CR1 &= (uint16_t)~TIM_CR1_ARPE;
+ }
+}
+
+/**
+ * @brief Selects the TIMx's One Pulse Mode.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @param TIM_OPMode: specifies the OPM Mode to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_OPMode_Single
+ * @arg TIM_OPMode_Repetitive
+ * @retval None
+ */
+void TIM_SelectOnePulseMode(TIM_TypeDef* TIMx, uint16_t TIM_OPMode)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_OPM_MODE(TIM_OPMode));
+
+ /* Reset the OPM Bit */
+ TIMx->CR1 &= (uint16_t)~TIM_CR1_OPM;
+
+ /* Configure the OPM Mode */
+ TIMx->CR1 |= TIM_OPMode;
+}
+
+/**
+ * @brief Sets the TIMx Clock Division value.
+ * @param TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
+ * @param TIM_CKD: specifies the clock division value.
+ * This parameter can be one of the following value:
+ * @arg TIM_CKD_DIV1: TDTS = Tck_tim
+ * @arg TIM_CKD_DIV2: TDTS = 2*Tck_tim
+ * @arg TIM_CKD_DIV4: TDTS = 4*Tck_tim
+ * @retval None
+ */
+void TIM_SetClockDivision(TIM_TypeDef* TIMx, uint16_t TIM_CKD)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_CKD_DIV(TIM_CKD));
+
+ /* Reset the CKD Bits */
+ TIMx->CR1 &= (uint16_t)(~TIM_CR1_CKD);
+
+ /* Set the CKD value */
+ TIMx->CR1 |= TIM_CKD;
+}
+
+/**
+ * @brief Enables or disables the specified TIM peripheral.
+ * @param TIMx: where x can be 1 to 14 to select the TIMx peripheral.
+ * @param NewState: new state of the TIMx peripheral.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the TIM Counter */
+ TIMx->CR1 |= TIM_CR1_CEN;
+ }
+ else
+ {
+ /* Disable the TIM Counter */
+ TIMx->CR1 &= (uint16_t)~TIM_CR1_CEN;
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group2 Output Compare management functions
+ * @brief Output Compare management functions
+ *
+@verbatim
+ ===============================================================================
+ Output Compare management functions
+ ===============================================================================
+
+ ===================================================================
+ TIM Driver: how to use it in Output Compare Mode
+ ===================================================================
+ To use the Timer in Output Compare mode, the following steps are mandatory:
+
+ 1. Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) function
+
+ 2. Configure the TIM pins by configuring the corresponding GPIO pins
+
+ 2. Configure the Time base unit as described in the first part of this driver,
+ if needed, else the Timer will run with the default configuration:
+ - Autoreload value = 0xFFFF
+ - Prescaler value = 0x0000
+ - Counter mode = Up counting
+ - Clock Division = TIM_CKD_DIV1
+
+ 3. Fill the TIM_OCInitStruct with the desired parameters including:
+ - The TIM Output Compare mode: TIM_OCMode
+ - TIM Output State: TIM_OutputState
+ - TIM Pulse value: TIM_Pulse
+ - TIM Output Compare Polarity : TIM_OCPolarity
+
+ 4. Call TIM_OCxInit(TIMx, &TIM_OCInitStruct) to configure the desired channel with the
+ corresponding configuration
+
+ 5. Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
+
+ Note1: All other functions can be used separately to modify, if needed,
+ a specific feature of the Timer.
+
+ Note2: In case of PWM mode, this function is mandatory:
+ TIM_OCxPreloadConfig(TIMx, TIM_OCPreload_ENABLE);
+
+ Note3: If the corresponding interrupt or DMA request are needed, the user should:
+ 1. Enable the NVIC (or the DMA) to use the TIM interrupts (or DMA requests).
+ 2. Enable the corresponding interrupt (or DMA request) using the function
+ TIM_ITConfig(TIMx, TIM_IT_CCx) (or TIM_DMA_Cmd(TIMx, TIM_DMA_CCx))
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the TIMx Channel1 according to the specified parameters in
+ * the TIM_OCInitStruct.
+ * @param TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
+ * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
+ * the configuration information for the specified TIM peripheral.
+ * @retval None
+ */
+void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
+{
+ uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
+ assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));
+
+ /* Disable the Channel 1: Reset the CC1E Bit */
+ TIMx->CCER &= (uint16_t)~TIM_CCER_CC1E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmrx = TIMx->CCMR1;
+
+ /* Reset the Output Compare Mode Bits */
+ tmpccmrx &= (uint16_t)~TIM_CCMR1_OC1M;
+ tmpccmrx &= (uint16_t)~TIM_CCMR1_CC1S;
+ /* Select the Output Compare Mode */
+ tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
+
+ /* Reset the Output Polarity level */
+ tmpccer &= (uint16_t)~TIM_CCER_CC1P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= TIM_OCInitStruct->TIM_OCPolarity;
+
+ /* Set the Output State */
+ tmpccer |= TIM_OCInitStruct->TIM_OutputState;
+
+ if((TIMx == TIM1) || (TIMx == TIM8))
+ {
+ assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
+ assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
+ assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
+ assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
+
+ /* Reset the Output N Polarity level */
+ tmpccer &= (uint16_t)~TIM_CCER_CC1NP;
+ /* Set the Output N Polarity */
+ tmpccer |= TIM_OCInitStruct->TIM_OCNPolarity;
+ /* Reset the Output N State */
+ tmpccer &= (uint16_t)~TIM_CCER_CC1NE;
+
+ /* Set the Output N State */
+ tmpccer |= TIM_OCInitStruct->TIM_OutputNState;
+ /* Reset the Output Compare and Output Compare N IDLE State */
+ tmpcr2 &= (uint16_t)~TIM_CR2_OIS1;
+ tmpcr2 &= (uint16_t)~TIM_CR2_OIS1N;
+ /* Set the Output Idle state */
+ tmpcr2 |= TIM_OCInitStruct->TIM_OCIdleState;
+ /* Set the Output N Idle state */
+ tmpcr2 |= TIM_OCInitStruct->TIM_OCNIdleState;
+ }
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR1 = TIM_OCInitStruct->TIM_Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Initializes the TIMx Channel2 according to the specified parameters
+ * in the TIM_OCInitStruct.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
+ * the configuration information for the specified TIM peripheral.
+ * @retval None
+ */
+void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
+{
+ uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
+ assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));
+
+ /* Disable the Channel 2: Reset the CC2E Bit */
+ TIMx->CCER &= (uint16_t)~TIM_CCER_CC2E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmrx = TIMx->CCMR1;
+
+ /* Reset the Output Compare mode and Capture/Compare selection Bits */
+ tmpccmrx &= (uint16_t)~TIM_CCMR1_OC2M;
+ tmpccmrx &= (uint16_t)~TIM_CCMR1_CC2S;
+
+ /* Select the Output Compare Mode */
+ tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
+
+ /* Reset the Output Polarity level */
+ tmpccer &= (uint16_t)~TIM_CCER_CC2P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 4);
+
+ /* Set the Output State */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 4);
+
+ if((TIMx == TIM1) || (TIMx == TIM8))
+ {
+ assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
+ assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
+ assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
+ assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
+
+ /* Reset the Output N Polarity level */
+ tmpccer &= (uint16_t)~TIM_CCER_CC2NP;
+ /* Set the Output N Polarity */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCNPolarity << 4);
+ /* Reset the Output N State */
+ tmpccer &= (uint16_t)~TIM_CCER_CC2NE;
+
+ /* Set the Output N State */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputNState << 4);
+ /* Reset the Output Compare and Output Compare N IDLE State */
+ tmpcr2 &= (uint16_t)~TIM_CR2_OIS2;
+ tmpcr2 &= (uint16_t)~TIM_CR2_OIS2N;
+ /* Set the Output Idle state */
+ tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 2);
+ /* Set the Output N Idle state */
+ tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCNIdleState << 2);
+ }
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR2 = TIM_OCInitStruct->TIM_Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Initializes the TIMx Channel3 according to the specified parameters
+ * in the TIM_OCInitStruct.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
+ * the configuration information for the specified TIM peripheral.
+ * @retval None
+ */
+void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
+{
+ uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
+ assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));
+
+ /* Disable the Channel 3: Reset the CC2E Bit */
+ TIMx->CCER &= (uint16_t)~TIM_CCER_CC3E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+
+ /* Get the TIMx CCMR2 register value */
+ tmpccmrx = TIMx->CCMR2;
+
+ /* Reset the Output Compare mode and Capture/Compare selection Bits */
+ tmpccmrx &= (uint16_t)~TIM_CCMR2_OC3M;
+ tmpccmrx &= (uint16_t)~TIM_CCMR2_CC3S;
+ /* Select the Output Compare Mode */
+ tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
+
+ /* Reset the Output Polarity level */
+ tmpccer &= (uint16_t)~TIM_CCER_CC3P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 8);
+
+ /* Set the Output State */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 8);
+
+ if((TIMx == TIM1) || (TIMx == TIM8))
+ {
+ assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
+ assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
+ assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
+ assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
+
+ /* Reset the Output N Polarity level */
+ tmpccer &= (uint16_t)~TIM_CCER_CC3NP;
+ /* Set the Output N Polarity */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCNPolarity << 8);
+ /* Reset the Output N State */
+ tmpccer &= (uint16_t)~TIM_CCER_CC3NE;
+
+ /* Set the Output N State */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputNState << 8);
+ /* Reset the Output Compare and Output Compare N IDLE State */
+ tmpcr2 &= (uint16_t)~TIM_CR2_OIS3;
+ tmpcr2 &= (uint16_t)~TIM_CR2_OIS3N;
+ /* Set the Output Idle state */
+ tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 4);
+ /* Set the Output N Idle state */
+ tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCNIdleState << 4);
+ }
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR2 */
+ TIMx->CCMR2 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR3 = TIM_OCInitStruct->TIM_Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Initializes the TIMx Channel4 according to the specified parameters
+ * in the TIM_OCInitStruct.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
+ * the configuration information for the specified TIM peripheral.
+ * @retval None
+ */
+void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
+{
+ uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
+ assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));
+
+ /* Disable the Channel 4: Reset the CC4E Bit */
+ TIMx->CCER &= (uint16_t)~TIM_CCER_CC4E;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+ /* Get the TIMx CR2 register value */
+ tmpcr2 = TIMx->CR2;
+
+ /* Get the TIMx CCMR2 register value */
+ tmpccmrx = TIMx->CCMR2;
+
+ /* Reset the Output Compare mode and Capture/Compare selection Bits */
+ tmpccmrx &= (uint16_t)~TIM_CCMR2_OC4M;
+ tmpccmrx &= (uint16_t)~TIM_CCMR2_CC4S;
+
+ /* Select the Output Compare Mode */
+ tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
+
+ /* Reset the Output Polarity level */
+ tmpccer &= (uint16_t)~TIM_CCER_CC4P;
+ /* Set the Output Compare Polarity */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 12);
+
+ /* Set the Output State */
+ tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 12);
+
+ if((TIMx == TIM1) || (TIMx == TIM8))
+ {
+ assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
+ /* Reset the Output Compare IDLE State */
+ tmpcr2 &=(uint16_t) ~TIM_CR2_OIS4;
+ /* Set the Output Idle state */
+ tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 6);
+ }
+ /* Write to TIMx CR2 */
+ TIMx->CR2 = tmpcr2;
+
+ /* Write to TIMx CCMR2 */
+ TIMx->CCMR2 = tmpccmrx;
+
+ /* Set the Capture Compare Register value */
+ TIMx->CCR4 = TIM_OCInitStruct->TIM_Pulse;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Fills each TIM_OCInitStruct member with its default value.
+ * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure which will
+ * be initialized.
+ * @retval None
+ */
+void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct)
+{
+ /* Set the default configuration */
+ TIM_OCInitStruct->TIM_OCMode = TIM_OCMode_Timing;
+ TIM_OCInitStruct->TIM_OutputState = TIM_OutputState_Disable;
+ TIM_OCInitStruct->TIM_OutputNState = TIM_OutputNState_Disable;
+ TIM_OCInitStruct->TIM_Pulse = 0x00000000;
+ TIM_OCInitStruct->TIM_OCPolarity = TIM_OCPolarity_High;
+ TIM_OCInitStruct->TIM_OCNPolarity = TIM_OCPolarity_High;
+ TIM_OCInitStruct->TIM_OCIdleState = TIM_OCIdleState_Reset;
+ TIM_OCInitStruct->TIM_OCNIdleState = TIM_OCNIdleState_Reset;
+}
+
+/**
+ * @brief Selects the TIM Output Compare Mode.
+ * @note This function disables the selected channel before changing the Output
+ * Compare Mode. If needed, user has to enable this channel using
+ * TIM_CCxCmd() and TIM_CCxNCmd() functions.
+ * @param TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
+ * @param TIM_Channel: specifies the TIM Channel
+ * This parameter can be one of the following values:
+ * @arg TIM_Channel_1: TIM Channel 1
+ * @arg TIM_Channel_2: TIM Channel 2
+ * @arg TIM_Channel_3: TIM Channel 3
+ * @arg TIM_Channel_4: TIM Channel 4
+ * @param TIM_OCMode: specifies the TIM Output Compare Mode.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCMode_Timing
+ * @arg TIM_OCMode_Active
+ * @arg TIM_OCMode_Toggle
+ * @arg TIM_OCMode_PWM1
+ * @arg TIM_OCMode_PWM2
+ * @arg TIM_ForcedAction_Active
+ * @arg TIM_ForcedAction_InActive
+ * @retval None
+ */
+void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode)
+{
+ uint32_t tmp = 0;
+ uint16_t tmp1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_CHANNEL(TIM_Channel));
+ assert_param(IS_TIM_OCM(TIM_OCMode));
+
+ tmp = (uint32_t) TIMx;
+ tmp += CCMR_OFFSET;
+
+ tmp1 = CCER_CCE_SET << (uint16_t)TIM_Channel;
+
+ /* Disable the Channel: Reset the CCxE Bit */
+ TIMx->CCER &= (uint16_t) ~tmp1;
+
+ if((TIM_Channel == TIM_Channel_1) ||(TIM_Channel == TIM_Channel_3))
+ {
+ tmp += (TIM_Channel>>1);
+
+ /* Reset the OCxM bits in the CCMRx register */
+ *(__IO uint32_t *) tmp &= CCMR_OC13M_MASK;
+
+ /* Configure the OCxM bits in the CCMRx register */
+ *(__IO uint32_t *) tmp |= TIM_OCMode;
+ }
+ else
+ {
+ tmp += (uint16_t)(TIM_Channel - (uint16_t)4)>> (uint16_t)1;
+
+ /* Reset the OCxM bits in the CCMRx register */
+ *(__IO uint32_t *) tmp &= CCMR_OC24M_MASK;
+
+ /* Configure the OCxM bits in the CCMRx register */
+ *(__IO uint32_t *) tmp |= (uint16_t)(TIM_OCMode << 8);
+ }
+}
+
+/**
+ * @brief Sets the TIMx Capture Compare1 Register value
+ * @param TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
+ * @param Compare1: specifies the Capture Compare1 register new value.
+ * @retval None
+ */
+void TIM_SetCompare1(TIM_TypeDef* TIMx, uint32_t Compare1)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+
+ /* Set the Capture Compare1 Register value */
+ TIMx->CCR1 = Compare1;
+}
+
+/**
+ * @brief Sets the TIMx Capture Compare2 Register value
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @param Compare2: specifies the Capture Compare2 register new value.
+ * @retval None
+ */
+void TIM_SetCompare2(TIM_TypeDef* TIMx, uint32_t Compare2)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+
+ /* Set the Capture Compare2 Register value */
+ TIMx->CCR2 = Compare2;
+}
+
+/**
+ * @brief Sets the TIMx Capture Compare3 Register value
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param Compare3: specifies the Capture Compare3 register new value.
+ * @retval None
+ */
+void TIM_SetCompare3(TIM_TypeDef* TIMx, uint32_t Compare3)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+
+ /* Set the Capture Compare3 Register value */
+ TIMx->CCR3 = Compare3;
+}
+
+/**
+ * @brief Sets the TIMx Capture Compare4 Register value
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param Compare4: specifies the Capture Compare4 register new value.
+ * @retval None
+ */
+void TIM_SetCompare4(TIM_TypeDef* TIMx, uint32_t Compare4)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+
+ /* Set the Capture Compare4 Register value */
+ TIMx->CCR4 = Compare4;
+}
+
+/**
+ * @brief Forces the TIMx output 1 waveform to active or inactive level.
+ * @param TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
+ * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
+ * This parameter can be one of the following values:
+ * @arg TIM_ForcedAction_Active: Force active level on OC1REF
+ * @arg TIM_ForcedAction_InActive: Force inactive level on OC1REF.
+ * @retval None
+ */
+void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
+{
+ uint16_t tmpccmr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
+ tmpccmr1 = TIMx->CCMR1;
+
+ /* Reset the OC1M Bits */
+ tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC1M;
+
+ /* Configure The Forced output Mode */
+ tmpccmr1 |= TIM_ForcedAction;
+
+ /* Write to TIMx CCMR1 register */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Forces the TIMx output 2 waveform to active or inactive level.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
+ * This parameter can be one of the following values:
+ * @arg TIM_ForcedAction_Active: Force active level on OC2REF
+ * @arg TIM_ForcedAction_InActive: Force inactive level on OC2REF.
+ * @retval None
+ */
+void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
+{
+ uint16_t tmpccmr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
+ tmpccmr1 = TIMx->CCMR1;
+
+ /* Reset the OC2M Bits */
+ tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC2M;
+
+ /* Configure The Forced output Mode */
+ tmpccmr1 |= (uint16_t)(TIM_ForcedAction << 8);
+
+ /* Write to TIMx CCMR1 register */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Forces the TIMx output 3 waveform to active or inactive level.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
+ * This parameter can be one of the following values:
+ * @arg TIM_ForcedAction_Active: Force active level on OC3REF
+ * @arg TIM_ForcedAction_InActive: Force inactive level on OC3REF.
+ * @retval None
+ */
+void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
+
+ tmpccmr2 = TIMx->CCMR2;
+
+ /* Reset the OC1M Bits */
+ tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC3M;
+
+ /* Configure The Forced output Mode */
+ tmpccmr2 |= TIM_ForcedAction;
+
+ /* Write to TIMx CCMR2 register */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Forces the TIMx output 4 waveform to active or inactive level.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
+ * This parameter can be one of the following values:
+ * @arg TIM_ForcedAction_Active: Force active level on OC4REF
+ * @arg TIM_ForcedAction_InActive: Force inactive level on OC4REF.
+ * @retval None
+ */
+void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
+ tmpccmr2 = TIMx->CCMR2;
+
+ /* Reset the OC2M Bits */
+ tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC4M;
+
+ /* Configure The Forced output Mode */
+ tmpccmr2 |= (uint16_t)(TIM_ForcedAction << 8);
+
+ /* Write to TIMx CCMR2 register */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Enables or disables the TIMx peripheral Preload register on CCR1.
+ * @param TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
+ * @param TIM_OCPreload: new state of the TIMx peripheral Preload register
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPreload_Enable
+ * @arg TIM_OCPreload_Disable
+ * @retval None
+ */
+void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
+{
+ uint16_t tmpccmr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
+
+ tmpccmr1 = TIMx->CCMR1;
+
+ /* Reset the OC1PE Bit */
+ tmpccmr1 &= (uint16_t)(~TIM_CCMR1_OC1PE);
+
+ /* Enable or Disable the Output Compare Preload feature */
+ tmpccmr1 |= TIM_OCPreload;
+
+ /* Write to TIMx CCMR1 register */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Enables or disables the TIMx peripheral Preload register on CCR2.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @param TIM_OCPreload: new state of the TIMx peripheral Preload register
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPreload_Enable
+ * @arg TIM_OCPreload_Disable
+ * @retval None
+ */
+void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
+{
+ uint16_t tmpccmr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
+
+ tmpccmr1 = TIMx->CCMR1;
+
+ /* Reset the OC2PE Bit */
+ tmpccmr1 &= (uint16_t)(~TIM_CCMR1_OC2PE);
+
+ /* Enable or Disable the Output Compare Preload feature */
+ tmpccmr1 |= (uint16_t)(TIM_OCPreload << 8);
+
+ /* Write to TIMx CCMR1 register */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Enables or disables the TIMx peripheral Preload register on CCR3.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_OCPreload: new state of the TIMx peripheral Preload register
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPreload_Enable
+ * @arg TIM_OCPreload_Disable
+ * @retval None
+ */
+void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
+
+ tmpccmr2 = TIMx->CCMR2;
+
+ /* Reset the OC3PE Bit */
+ tmpccmr2 &= (uint16_t)(~TIM_CCMR2_OC3PE);
+
+ /* Enable or Disable the Output Compare Preload feature */
+ tmpccmr2 |= TIM_OCPreload;
+
+ /* Write to TIMx CCMR2 register */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Enables or disables the TIMx peripheral Preload register on CCR4.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_OCPreload: new state of the TIMx peripheral Preload register
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPreload_Enable
+ * @arg TIM_OCPreload_Disable
+ * @retval None
+ */
+void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
+
+ tmpccmr2 = TIMx->CCMR2;
+
+ /* Reset the OC4PE Bit */
+ tmpccmr2 &= (uint16_t)(~TIM_CCMR2_OC4PE);
+
+ /* Enable or Disable the Output Compare Preload feature */
+ tmpccmr2 |= (uint16_t)(TIM_OCPreload << 8);
+
+ /* Write to TIMx CCMR2 register */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Configures the TIMx Output Compare 1 Fast feature.
+ * @param TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
+ * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCFast_Enable: TIM output compare fast enable
+ * @arg TIM_OCFast_Disable: TIM output compare fast disable
+ * @retval None
+ */
+void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
+{
+ uint16_t tmpccmr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmr1 = TIMx->CCMR1;
+
+ /* Reset the OC1FE Bit */
+ tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC1FE;
+
+ /* Enable or Disable the Output Compare Fast Bit */
+ tmpccmr1 |= TIM_OCFast;
+
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Configures the TIMx Output Compare 2 Fast feature.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCFast_Enable: TIM output compare fast enable
+ * @arg TIM_OCFast_Disable: TIM output compare fast disable
+ * @retval None
+ */
+void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
+{
+ uint16_t tmpccmr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmr1 = TIMx->CCMR1;
+
+ /* Reset the OC2FE Bit */
+ tmpccmr1 &= (uint16_t)(~TIM_CCMR1_OC2FE);
+
+ /* Enable or Disable the Output Compare Fast Bit */
+ tmpccmr1 |= (uint16_t)(TIM_OCFast << 8);
+
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Configures the TIMx Output Compare 3 Fast feature.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCFast_Enable: TIM output compare fast enable
+ * @arg TIM_OCFast_Disable: TIM output compare fast disable
+ * @retval None
+ */
+void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
+
+ /* Get the TIMx CCMR2 register value */
+ tmpccmr2 = TIMx->CCMR2;
+
+ /* Reset the OC3FE Bit */
+ tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC3FE;
+
+ /* Enable or Disable the Output Compare Fast Bit */
+ tmpccmr2 |= TIM_OCFast;
+
+ /* Write to TIMx CCMR2 */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Configures the TIMx Output Compare 4 Fast feature.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCFast_Enable: TIM output compare fast enable
+ * @arg TIM_OCFast_Disable: TIM output compare fast disable
+ * @retval None
+ */
+void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
+
+ /* Get the TIMx CCMR2 register value */
+ tmpccmr2 = TIMx->CCMR2;
+
+ /* Reset the OC4FE Bit */
+ tmpccmr2 &= (uint16_t)(~TIM_CCMR2_OC4FE);
+
+ /* Enable or Disable the Output Compare Fast Bit */
+ tmpccmr2 |= (uint16_t)(TIM_OCFast << 8);
+
+ /* Write to TIMx CCMR2 */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Clears or safeguards the OCREF1 signal on an external event
+ * @param TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
+ * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCClear_Enable: TIM Output clear enable
+ * @arg TIM_OCClear_Disable: TIM Output clear disable
+ * @retval None
+ */
+void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
+{
+ uint16_t tmpccmr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
+
+ tmpccmr1 = TIMx->CCMR1;
+
+ /* Reset the OC1CE Bit */
+ tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC1CE;
+
+ /* Enable or Disable the Output Compare Clear Bit */
+ tmpccmr1 |= TIM_OCClear;
+
+ /* Write to TIMx CCMR1 register */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Clears or safeguards the OCREF2 signal on an external event
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCClear_Enable: TIM Output clear enable
+ * @arg TIM_OCClear_Disable: TIM Output clear disable
+ * @retval None
+ */
+void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
+{
+ uint16_t tmpccmr1 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
+
+ tmpccmr1 = TIMx->CCMR1;
+
+ /* Reset the OC2CE Bit */
+ tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC2CE;
+
+ /* Enable or Disable the Output Compare Clear Bit */
+ tmpccmr1 |= (uint16_t)(TIM_OCClear << 8);
+
+ /* Write to TIMx CCMR1 register */
+ TIMx->CCMR1 = tmpccmr1;
+}
+
+/**
+ * @brief Clears or safeguards the OCREF3 signal on an external event
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCClear_Enable: TIM Output clear enable
+ * @arg TIM_OCClear_Disable: TIM Output clear disable
+ * @retval None
+ */
+void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
+
+ tmpccmr2 = TIMx->CCMR2;
+
+ /* Reset the OC3CE Bit */
+ tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC3CE;
+
+ /* Enable or Disable the Output Compare Clear Bit */
+ tmpccmr2 |= TIM_OCClear;
+
+ /* Write to TIMx CCMR2 register */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Clears or safeguards the OCREF4 signal on an external event
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit.
+ * This parameter can be one of the following values:
+ * @arg TIM_OCClear_Enable: TIM Output clear enable
+ * @arg TIM_OCClear_Disable: TIM Output clear disable
+ * @retval None
+ */
+void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
+{
+ uint16_t tmpccmr2 = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
+
+ tmpccmr2 = TIMx->CCMR2;
+
+ /* Reset the OC4CE Bit */
+ tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC4CE;
+
+ /* Enable or Disable the Output Compare Clear Bit */
+ tmpccmr2 |= (uint16_t)(TIM_OCClear << 8);
+
+ /* Write to TIMx CCMR2 register */
+ TIMx->CCMR2 = tmpccmr2;
+}
+
+/**
+ * @brief Configures the TIMx channel 1 polarity.
+ * @param TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
+ * @param TIM_OCPolarity: specifies the OC1 Polarity
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPolarity_High: Output Compare active high
+ * @arg TIM_OCPolarity_Low: Output Compare active low
+ * @retval None
+ */
+void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
+{
+ uint16_t tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
+
+ tmpccer = TIMx->CCER;
+
+ /* Set or Reset the CC1P Bit */
+ tmpccer &= (uint16_t)(~TIM_CCER_CC1P);
+ tmpccer |= TIM_OCPolarity;
+
+ /* Write to TIMx CCER register */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configures the TIMx Channel 1N polarity.
+ * @param TIMx: where x can be 1 or 8 to select the TIM peripheral.
+ * @param TIM_OCNPolarity: specifies the OC1N Polarity
+ * This parameter can be one of the following values:
+ * @arg TIM_OCNPolarity_High: Output Compare active high
+ * @arg TIM_OCNPolarity_Low: Output Compare active low
+ * @retval None
+ */
+void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
+{
+ uint16_t tmpccer = 0;
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST4_PERIPH(TIMx));
+ assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
+
+ tmpccer = TIMx->CCER;
+
+ /* Set or Reset the CC1NP Bit */
+ tmpccer &= (uint16_t)~TIM_CCER_CC1NP;
+ tmpccer |= TIM_OCNPolarity;
+
+ /* Write to TIMx CCER register */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configures the TIMx channel 2 polarity.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @param TIM_OCPolarity: specifies the OC2 Polarity
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPolarity_High: Output Compare active high
+ * @arg TIM_OCPolarity_Low: Output Compare active low
+ * @retval None
+ */
+void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
+{
+ uint16_t tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
+
+ tmpccer = TIMx->CCER;
+
+ /* Set or Reset the CC2P Bit */
+ tmpccer &= (uint16_t)(~TIM_CCER_CC2P);
+ tmpccer |= (uint16_t)(TIM_OCPolarity << 4);
+
+ /* Write to TIMx CCER register */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configures the TIMx Channel 2N polarity.
+ * @param TIMx: where x can be 1 or 8 to select the TIM peripheral.
+ * @param TIM_OCNPolarity: specifies the OC2N Polarity
+ * This parameter can be one of the following values:
+ * @arg TIM_OCNPolarity_High: Output Compare active high
+ * @arg TIM_OCNPolarity_Low: Output Compare active low
+ * @retval None
+ */
+void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
+{
+ uint16_t tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST4_PERIPH(TIMx));
+ assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
+
+ tmpccer = TIMx->CCER;
+
+ /* Set or Reset the CC2NP Bit */
+ tmpccer &= (uint16_t)~TIM_CCER_CC2NP;
+ tmpccer |= (uint16_t)(TIM_OCNPolarity << 4);
+
+ /* Write to TIMx CCER register */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configures the TIMx channel 3 polarity.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_OCPolarity: specifies the OC3 Polarity
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPolarity_High: Output Compare active high
+ * @arg TIM_OCPolarity_Low: Output Compare active low
+ * @retval None
+ */
+void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
+{
+ uint16_t tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
+
+ tmpccer = TIMx->CCER;
+
+ /* Set or Reset the CC3P Bit */
+ tmpccer &= (uint16_t)~TIM_CCER_CC3P;
+ tmpccer |= (uint16_t)(TIM_OCPolarity << 8);
+
+ /* Write to TIMx CCER register */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configures the TIMx Channel 3N polarity.
+ * @param TIMx: where x can be 1 or 8 to select the TIM peripheral.
+ * @param TIM_OCNPolarity: specifies the OC3N Polarity
+ * This parameter can be one of the following values:
+ * @arg TIM_OCNPolarity_High: Output Compare active high
+ * @arg TIM_OCNPolarity_Low: Output Compare active low
+ * @retval None
+ */
+void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
+{
+ uint16_t tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST4_PERIPH(TIMx));
+ assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
+
+ tmpccer = TIMx->CCER;
+
+ /* Set or Reset the CC3NP Bit */
+ tmpccer &= (uint16_t)~TIM_CCER_CC3NP;
+ tmpccer |= (uint16_t)(TIM_OCNPolarity << 8);
+
+ /* Write to TIMx CCER register */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configures the TIMx channel 4 polarity.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_OCPolarity: specifies the OC4 Polarity
+ * This parameter can be one of the following values:
+ * @arg TIM_OCPolarity_High: Output Compare active high
+ * @arg TIM_OCPolarity_Low: Output Compare active low
+ * @retval None
+ */
+void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
+{
+ uint16_t tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
+
+ tmpccer = TIMx->CCER;
+
+ /* Set or Reset the CC4P Bit */
+ tmpccer &= (uint16_t)~TIM_CCER_CC4P;
+ tmpccer |= (uint16_t)(TIM_OCPolarity << 12);
+
+ /* Write to TIMx CCER register */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Enables or disables the TIM Capture Compare Channel x.
+ * @param TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
+ * @param TIM_Channel: specifies the TIM Channel
+ * This parameter can be one of the following values:
+ * @arg TIM_Channel_1: TIM Channel 1
+ * @arg TIM_Channel_2: TIM Channel 2
+ * @arg TIM_Channel_3: TIM Channel 3
+ * @arg TIM_Channel_4: TIM Channel 4
+ * @param TIM_CCx: specifies the TIM Channel CCxE bit new state.
+ * This parameter can be: TIM_CCx_Enable or TIM_CCx_Disable.
+ * @retval None
+ */
+void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx)
+{
+ uint16_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_CHANNEL(TIM_Channel));
+ assert_param(IS_TIM_CCX(TIM_CCx));
+
+ tmp = CCER_CCE_SET << TIM_Channel;
+
+ /* Reset the CCxE Bit */
+ TIMx->CCER &= (uint16_t)~ tmp;
+
+ /* Set or reset the CCxE Bit */
+ TIMx->CCER |= (uint16_t)(TIM_CCx << TIM_Channel);
+}
+
+/**
+ * @brief Enables or disables the TIM Capture Compare Channel xN.
+ * @param TIMx: where x can be 1 or 8 to select the TIM peripheral.
+ * @param TIM_Channel: specifies the TIM Channel
+ * This parameter can be one of the following values:
+ * @arg TIM_Channel_1: TIM Channel 1
+ * @arg TIM_Channel_2: TIM Channel 2
+ * @arg TIM_Channel_3: TIM Channel 3
+ * @param TIM_CCxN: specifies the TIM Channel CCxNE bit new state.
+ * This parameter can be: TIM_CCxN_Enable or TIM_CCxN_Disable.
+ * @retval None
+ */
+void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN)
+{
+ uint16_t tmp = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST4_PERIPH(TIMx));
+ assert_param(IS_TIM_COMPLEMENTARY_CHANNEL(TIM_Channel));
+ assert_param(IS_TIM_CCXN(TIM_CCxN));
+
+ tmp = CCER_CCNE_SET << TIM_Channel;
+
+ /* Reset the CCxNE Bit */
+ TIMx->CCER &= (uint16_t) ~tmp;
+
+ /* Set or reset the CCxNE Bit */
+ TIMx->CCER |= (uint16_t)(TIM_CCxN << TIM_Channel);
+}
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group3 Input Capture management functions
+ * @brief Input Capture management functions
+ *
+@verbatim
+ ===============================================================================
+ Input Capture management functions
+ ===============================================================================
+
+ ===================================================================
+ TIM Driver: how to use it in Input Capture Mode
+ ===================================================================
+ To use the Timer in Input Capture mode, the following steps are mandatory:
+
+ 1. Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) function
+
+ 2. Configure the TIM pins by configuring the corresponding GPIO pins
+
+ 2. Configure the Time base unit as described in the first part of this driver,
+ if needed, else the Timer will run with the default configuration:
+ - Autoreload value = 0xFFFF
+ - Prescaler value = 0x0000
+ - Counter mode = Up counting
+ - Clock Division = TIM_CKD_DIV1
+
+ 3. Fill the TIM_ICInitStruct with the desired parameters including:
+ - TIM Channel: TIM_Channel
+ - TIM Input Capture polarity: TIM_ICPolarity
+ - TIM Input Capture selection: TIM_ICSelection
+ - TIM Input Capture Prescaler: TIM_ICPrescaler
+ - TIM Input CApture filter value: TIM_ICFilter
+
+ 4. Call TIM_ICInit(TIMx, &TIM_ICInitStruct) to configure the desired channel with the
+ corresponding configuration and to measure only frequency or duty cycle of the input signal,
+ or,
+ Call TIM_PWMIConfig(TIMx, &TIM_ICInitStruct) to configure the desired channels with the
+ corresponding configuration and to measure the frequency and the duty cycle of the input signal
+
+ 5. Enable the NVIC or the DMA to read the measured frequency.
+
+ 6. Enable the corresponding interrupt (or DMA request) to read the Captured value,
+ using the function TIM_ITConfig(TIMx, TIM_IT_CCx) (or TIM_DMA_Cmd(TIMx, TIM_DMA_CCx))
+
+ 7. Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
+
+ 8. Use TIM_GetCapturex(TIMx); to read the captured value.
+
+ Note1: All other functions can be used separately to modify, if needed,
+ a specific feature of the Timer.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the TIM peripheral according to the specified parameters
+ * in the TIM_ICInitStruct.
+ * @param TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
+ * @param TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure that contains
+ * the configuration information for the specified TIM peripheral.
+ * @retval None
+ */
+void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_IC_POLARITY(TIM_ICInitStruct->TIM_ICPolarity));
+ assert_param(IS_TIM_IC_SELECTION(TIM_ICInitStruct->TIM_ICSelection));
+ assert_param(IS_TIM_IC_PRESCALER(TIM_ICInitStruct->TIM_ICPrescaler));
+ assert_param(IS_TIM_IC_FILTER(TIM_ICInitStruct->TIM_ICFilter));
+
+ if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
+ {
+ /* TI1 Configuration */
+ TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
+ TIM_ICInitStruct->TIM_ICSelection,
+ TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ }
+ else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_2)
+ {
+ /* TI2 Configuration */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
+ TIM_ICInitStruct->TIM_ICSelection,
+ TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ }
+ else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_3)
+ {
+ /* TI3 Configuration */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ TI3_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
+ TIM_ICInitStruct->TIM_ICSelection,
+ TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC3Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ }
+ else
+ {
+ /* TI4 Configuration */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ TI4_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
+ TIM_ICInitStruct->TIM_ICSelection,
+ TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC4Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ }
+}
+
+/**
+ * @brief Fills each TIM_ICInitStruct member with its default value.
+ * @param TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure which will
+ * be initialized.
+ * @retval None
+ */
+void TIM_ICStructInit(TIM_ICInitTypeDef* TIM_ICInitStruct)
+{
+ /* Set the default configuration */
+ TIM_ICInitStruct->TIM_Channel = TIM_Channel_1;
+ TIM_ICInitStruct->TIM_ICPolarity = TIM_ICPolarity_Rising;
+ TIM_ICInitStruct->TIM_ICSelection = TIM_ICSelection_DirectTI;
+ TIM_ICInitStruct->TIM_ICPrescaler = TIM_ICPSC_DIV1;
+ TIM_ICInitStruct->TIM_ICFilter = 0x00;
+}
+
+/**
+ * @brief Configures the TIM peripheral according to the specified parameters
+ * in the TIM_ICInitStruct to measure an external PWM signal.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5,8, 9 or 12 to select the TIM
+ * peripheral.
+ * @param TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure that contains
+ * the configuration information for the specified TIM peripheral.
+ * @retval None
+ */
+void TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
+{
+ uint16_t icoppositepolarity = TIM_ICPolarity_Rising;
+ uint16_t icoppositeselection = TIM_ICSelection_DirectTI;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+
+ /* Select the Opposite Input Polarity */
+ if (TIM_ICInitStruct->TIM_ICPolarity == TIM_ICPolarity_Rising)
+ {
+ icoppositepolarity = TIM_ICPolarity_Falling;
+ }
+ else
+ {
+ icoppositepolarity = TIM_ICPolarity_Rising;
+ }
+ /* Select the Opposite Input */
+ if (TIM_ICInitStruct->TIM_ICSelection == TIM_ICSelection_DirectTI)
+ {
+ icoppositeselection = TIM_ICSelection_IndirectTI;
+ }
+ else
+ {
+ icoppositeselection = TIM_ICSelection_DirectTI;
+ }
+ if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
+ {
+ /* TI1 Configuration */
+ TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
+ TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ /* TI2 Configuration */
+ TI2_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ }
+ else
+ {
+ /* TI2 Configuration */
+ TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
+ TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ /* TI1 Configuration */
+ TI1_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
+ /* Set the Input Capture Prescaler value */
+ TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
+ }
+}
+
+/**
+ * @brief Gets the TIMx Input Capture 1 value.
+ * @param TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
+ * @retval Capture Compare 1 Register value.
+ */
+uint32_t TIM_GetCapture1(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+
+ /* Get the Capture 1 Register value */
+ return TIMx->CCR1;
+}
+
+/**
+ * @brief Gets the TIMx Input Capture 2 value.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @retval Capture Compare 2 Register value.
+ */
+uint32_t TIM_GetCapture2(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+
+ /* Get the Capture 2 Register value */
+ return TIMx->CCR2;
+}
+
+/**
+ * @brief Gets the TIMx Input Capture 3 value.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @retval Capture Compare 3 Register value.
+ */
+uint32_t TIM_GetCapture3(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+
+ /* Get the Capture 3 Register value */
+ return TIMx->CCR3;
+}
+
+/**
+ * @brief Gets the TIMx Input Capture 4 value.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @retval Capture Compare 4 Register value.
+ */
+uint32_t TIM_GetCapture4(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+
+ /* Get the Capture 4 Register value */
+ return TIMx->CCR4;
+}
+
+/**
+ * @brief Sets the TIMx Input Capture 1 prescaler.
+ * @param TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
+ * @param TIM_ICPSC: specifies the Input Capture1 prescaler new value.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPSC_DIV1: no prescaler
+ * @arg TIM_ICPSC_DIV2: capture is done once every 2 events
+ * @arg TIM_ICPSC_DIV4: capture is done once every 4 events
+ * @arg TIM_ICPSC_DIV8: capture is done once every 8 events
+ * @retval None
+ */
+void TIM_SetIC1Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
+
+ /* Reset the IC1PSC Bits */
+ TIMx->CCMR1 &= (uint16_t)~TIM_CCMR1_IC1PSC;
+
+ /* Set the IC1PSC value */
+ TIMx->CCMR1 |= TIM_ICPSC;
+}
+
+/**
+ * @brief Sets the TIMx Input Capture 2 prescaler.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @param TIM_ICPSC: specifies the Input Capture2 prescaler new value.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPSC_DIV1: no prescaler
+ * @arg TIM_ICPSC_DIV2: capture is done once every 2 events
+ * @arg TIM_ICPSC_DIV4: capture is done once every 4 events
+ * @arg TIM_ICPSC_DIV8: capture is done once every 8 events
+ * @retval None
+ */
+void TIM_SetIC2Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
+
+ /* Reset the IC2PSC Bits */
+ TIMx->CCMR1 &= (uint16_t)~TIM_CCMR1_IC2PSC;
+
+ /* Set the IC2PSC value */
+ TIMx->CCMR1 |= (uint16_t)(TIM_ICPSC << 8);
+}
+
+/**
+ * @brief Sets the TIMx Input Capture 3 prescaler.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_ICPSC: specifies the Input Capture3 prescaler new value.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPSC_DIV1: no prescaler
+ * @arg TIM_ICPSC_DIV2: capture is done once every 2 events
+ * @arg TIM_ICPSC_DIV4: capture is done once every 4 events
+ * @arg TIM_ICPSC_DIV8: capture is done once every 8 events
+ * @retval None
+ */
+void TIM_SetIC3Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
+
+ /* Reset the IC3PSC Bits */
+ TIMx->CCMR2 &= (uint16_t)~TIM_CCMR2_IC3PSC;
+
+ /* Set the IC3PSC value */
+ TIMx->CCMR2 |= TIM_ICPSC;
+}
+
+/**
+ * @brief Sets the TIMx Input Capture 4 prescaler.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_ICPSC: specifies the Input Capture4 prescaler new value.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPSC_DIV1: no prescaler
+ * @arg TIM_ICPSC_DIV2: capture is done once every 2 events
+ * @arg TIM_ICPSC_DIV4: capture is done once every 4 events
+ * @arg TIM_ICPSC_DIV8: capture is done once every 8 events
+ * @retval None
+ */
+void TIM_SetIC4Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
+
+ /* Reset the IC4PSC Bits */
+ TIMx->CCMR2 &= (uint16_t)~TIM_CCMR2_IC4PSC;
+
+ /* Set the IC4PSC value */
+ TIMx->CCMR2 |= (uint16_t)(TIM_ICPSC << 8);
+}
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group4 Advanced-control timers (TIM1 and TIM8) specific features
+ * @brief Advanced-control timers (TIM1 and TIM8) specific features
+ *
+@verbatim
+ ===============================================================================
+ Advanced-control timers (TIM1 and TIM8) specific features
+ ===============================================================================
+
+ ===================================================================
+ TIM Driver: how to use the Break feature
+ ===================================================================
+ After configuring the Timer channel(s) in the appropriate Output Compare mode:
+
+ 1. Fill the TIM_BDTRInitStruct with the desired parameters for the Timer
+ Break Polarity, dead time, Lock level, the OSSI/OSSR State and the
+ AOE(automatic output enable).
+
+ 2. Call TIM_BDTRConfig(TIMx, &TIM_BDTRInitStruct) to configure the Timer
+
+ 3. Enable the Main Output using TIM_CtrlPWMOutputs(TIM1, ENABLE)
+
+ 4. Once the break even occurs, the Timer's output signals are put in reset
+ state or in a known state (according to the configuration made in
+ TIM_BDTRConfig() function).
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State
+ * and the AOE(automatic output enable).
+ * @param TIMx: where x can be 1 or 8 to select the TIM
+ * @param TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure that
+ * contains the BDTR Register configuration information for the TIM peripheral.
+ * @retval None
+ */
+void TIM_BDTRConfig(TIM_TypeDef* TIMx, TIM_BDTRInitTypeDef *TIM_BDTRInitStruct)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST4_PERIPH(TIMx));
+ assert_param(IS_TIM_OSSR_STATE(TIM_BDTRInitStruct->TIM_OSSRState));
+ assert_param(IS_TIM_OSSI_STATE(TIM_BDTRInitStruct->TIM_OSSIState));
+ assert_param(IS_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->TIM_LOCKLevel));
+ assert_param(IS_TIM_BREAK_STATE(TIM_BDTRInitStruct->TIM_Break));
+ assert_param(IS_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->TIM_BreakPolarity));
+ assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->TIM_AutomaticOutput));
+
+ /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
+ the OSSI State, the dead time value and the Automatic Output Enable Bit */
+ TIMx->BDTR = (uint32_t)TIM_BDTRInitStruct->TIM_OSSRState | TIM_BDTRInitStruct->TIM_OSSIState |
+ TIM_BDTRInitStruct->TIM_LOCKLevel | TIM_BDTRInitStruct->TIM_DeadTime |
+ TIM_BDTRInitStruct->TIM_Break | TIM_BDTRInitStruct->TIM_BreakPolarity |
+ TIM_BDTRInitStruct->TIM_AutomaticOutput;
+}
+
+/**
+ * @brief Fills each TIM_BDTRInitStruct member with its default value.
+ * @param TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure which
+ * will be initialized.
+ * @retval None
+ */
+void TIM_BDTRStructInit(TIM_BDTRInitTypeDef* TIM_BDTRInitStruct)
+{
+ /* Set the default configuration */
+ TIM_BDTRInitStruct->TIM_OSSRState = TIM_OSSRState_Disable;
+ TIM_BDTRInitStruct->TIM_OSSIState = TIM_OSSIState_Disable;
+ TIM_BDTRInitStruct->TIM_LOCKLevel = TIM_LOCKLevel_OFF;
+ TIM_BDTRInitStruct->TIM_DeadTime = 0x00;
+ TIM_BDTRInitStruct->TIM_Break = TIM_Break_Disable;
+ TIM_BDTRInitStruct->TIM_BreakPolarity = TIM_BreakPolarity_Low;
+ TIM_BDTRInitStruct->TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;
+}
+
+/**
+ * @brief Enables or disables the TIM peripheral Main Outputs.
+ * @param TIMx: where x can be 1 or 8 to select the TIMx peripheral.
+ * @param NewState: new state of the TIM peripheral Main Outputs.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST4_PERIPH(TIMx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the TIM Main Output */
+ TIMx->BDTR |= TIM_BDTR_MOE;
+ }
+ else
+ {
+ /* Disable the TIM Main Output */
+ TIMx->BDTR &= (uint16_t)~TIM_BDTR_MOE;
+ }
+}
+
+/**
+ * @brief Selects the TIM peripheral Commutation event.
+ * @param TIMx: where x can be 1 or 8 to select the TIMx peripheral
+ * @param NewState: new state of the Commutation event.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_SelectCOM(TIM_TypeDef* TIMx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST4_PERIPH(TIMx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the COM Bit */
+ TIMx->CR2 |= TIM_CR2_CCUS;
+ }
+ else
+ {
+ /* Reset the COM Bit */
+ TIMx->CR2 &= (uint16_t)~TIM_CR2_CCUS;
+ }
+}
+
+/**
+ * @brief Sets or Resets the TIM peripheral Capture Compare Preload Control bit.
+ * @param TIMx: where x can be 1 or 8 to select the TIMx peripheral
+ * @param NewState: new state of the Capture Compare Preload Control bit
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_CCPreloadControl(TIM_TypeDef* TIMx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST4_PERIPH(TIMx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Set the CCPC Bit */
+ TIMx->CR2 |= TIM_CR2_CCPC;
+ }
+ else
+ {
+ /* Reset the CCPC Bit */
+ TIMx->CR2 &= (uint16_t)~TIM_CR2_CCPC;
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group5 Interrupts DMA and flags management functions
+ * @brief Interrupts, DMA and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts, DMA and flags management functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified TIM interrupts.
+ * @param TIMx: where x can be 1 to 14 to select the TIMx peripheral.
+ * @param TIM_IT: specifies the TIM interrupts sources to be enabled or disabled.
+ * This parameter can be any combination of the following values:
+ * @arg TIM_IT_Update: TIM update Interrupt source
+ * @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
+ * @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
+ * @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
+ * @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
+ * @arg TIM_IT_COM: TIM Commutation Interrupt source
+ * @arg TIM_IT_Trigger: TIM Trigger Interrupt source
+ * @arg TIM_IT_Break: TIM Break Interrupt source
+ *
+ * @note For TIM6 and TIM7 only the parameter TIM_IT_Update can be used
+ * @note For TIM9 and TIM12 only one of the following parameters can be used: TIM_IT_Update,
+ * TIM_IT_CC1, TIM_IT_CC2 or TIM_IT_Trigger.
+ * @note For TIM10, TIM11, TIM13 and TIM14 only one of the following parameters can
+ * be used: TIM_IT_Update or TIM_IT_CC1
+ * @note TIM_IT_COM and TIM_IT_Break can be used only with TIM1 and TIM8
+ *
+ * @param NewState: new state of the TIM interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_IT(TIM_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the Interrupt sources */
+ TIMx->DIER |= TIM_IT;
+ }
+ else
+ {
+ /* Disable the Interrupt sources */
+ TIMx->DIER &= (uint16_t)~TIM_IT;
+ }
+}
+
+/**
+ * @brief Configures the TIMx event to be generate by software.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @param TIM_EventSource: specifies the event source.
+ * This parameter can be one or more of the following values:
+ * @arg TIM_EventSource_Update: Timer update Event source
+ * @arg TIM_EventSource_CC1: Timer Capture Compare 1 Event source
+ * @arg TIM_EventSource_CC2: Timer Capture Compare 2 Event source
+ * @arg TIM_EventSource_CC3: Timer Capture Compare 3 Event source
+ * @arg TIM_EventSource_CC4: Timer Capture Compare 4 Event source
+ * @arg TIM_EventSource_COM: Timer COM event source
+ * @arg TIM_EventSource_Trigger: Timer Trigger Event source
+ * @arg TIM_EventSource_Break: Timer Break event source
+ *
+ * @note TIM6 and TIM7 can only generate an update event.
+ * @note TIM_EventSource_COM and TIM_EventSource_Break are used only with TIM1 and TIM8.
+ *
+ * @retval None
+ */
+void TIM_GenerateEvent(TIM_TypeDef* TIMx, uint16_t TIM_EventSource)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_EVENT_SOURCE(TIM_EventSource));
+
+ /* Set the event sources */
+ TIMx->EGR = TIM_EventSource;
+}
+
+/**
+ * @brief Checks whether the specified TIM flag is set or not.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @param TIM_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg TIM_FLAG_Update: TIM update Flag
+ * @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag
+ * @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag
+ * @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag
+ * @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag
+ * @arg TIM_FLAG_COM: TIM Commutation Flag
+ * @arg TIM_FLAG_Trigger: TIM Trigger Flag
+ * @arg TIM_FLAG_Break: TIM Break Flag
+ * @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 over capture Flag
+ * @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 over capture Flag
+ * @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 over capture Flag
+ * @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 over capture Flag
+ *
+ * @note TIM6 and TIM7 can have only one update flag.
+ * @note TIM_FLAG_COM and TIM_FLAG_Break are used only with TIM1 and TIM8.
+ *
+ * @retval The new state of TIM_FLAG (SET or RESET).
+ */
+FlagStatus TIM_GetFlagStatus(TIM_TypeDef* TIMx, uint16_t TIM_FLAG)
+{
+ ITStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_GET_FLAG(TIM_FLAG));
+
+
+ if ((TIMx->SR & TIM_FLAG) != (uint16_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the TIMx's pending flags.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @param TIM_FLAG: specifies the flag bit to clear.
+ * This parameter can be any combination of the following values:
+ * @arg TIM_FLAG_Update: TIM update Flag
+ * @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag
+ * @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag
+ * @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag
+ * @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag
+ * @arg TIM_FLAG_COM: TIM Commutation Flag
+ * @arg TIM_FLAG_Trigger: TIM Trigger Flag
+ * @arg TIM_FLAG_Break: TIM Break Flag
+ * @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 over capture Flag
+ * @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 over capture Flag
+ * @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 over capture Flag
+ * @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 over capture Flag
+ *
+ * @note TIM6 and TIM7 can have only one update flag.
+ * @note TIM_FLAG_COM and TIM_FLAG_Break are used only with TIM1 and TIM8.
+ *
+ * @retval None
+ */
+void TIM_ClearFlag(TIM_TypeDef* TIMx, uint16_t TIM_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+
+ /* Clear the flags */
+ TIMx->SR = (uint16_t)~TIM_FLAG;
+}
+
+/**
+ * @brief Checks whether the TIM interrupt has occurred or not.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @param TIM_IT: specifies the TIM interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg TIM_IT_Update: TIM update Interrupt source
+ * @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
+ * @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
+ * @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
+ * @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
+ * @arg TIM_IT_COM: TIM Commutation Interrupt source
+ * @arg TIM_IT_Trigger: TIM Trigger Interrupt source
+ * @arg TIM_IT_Break: TIM Break Interrupt source
+ *
+ * @note TIM6 and TIM7 can generate only an update interrupt.
+ * @note TIM_IT_COM and TIM_IT_Break are used only with TIM1 and TIM8.
+ *
+ * @retval The new state of the TIM_IT(SET or RESET).
+ */
+ITStatus TIM_GetITStatus(TIM_TypeDef* TIMx, uint16_t TIM_IT)
+{
+ ITStatus bitstatus = RESET;
+ uint16_t itstatus = 0x0, itenable = 0x0;
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+ assert_param(IS_TIM_GET_IT(TIM_IT));
+
+ itstatus = TIMx->SR & TIM_IT;
+
+ itenable = TIMx->DIER & TIM_IT;
+ if ((itstatus != (uint16_t)RESET) && (itenable != (uint16_t)RESET))
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the TIMx's interrupt pending bits.
+ * @param TIMx: where x can be 1 to 14 to select the TIM peripheral.
+ * @param TIM_IT: specifies the pending bit to clear.
+ * This parameter can be any combination of the following values:
+ * @arg TIM_IT_Update: TIM1 update Interrupt source
+ * @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
+ * @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
+ * @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
+ * @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
+ * @arg TIM_IT_COM: TIM Commutation Interrupt source
+ * @arg TIM_IT_Trigger: TIM Trigger Interrupt source
+ * @arg TIM_IT_Break: TIM Break Interrupt source
+ *
+ * @note TIM6 and TIM7 can generate only an update interrupt.
+ * @note TIM_IT_COM and TIM_IT_Break are used only with TIM1 and TIM8.
+ *
+ * @retval None
+ */
+void TIM_ClearITPendingBit(TIM_TypeDef* TIMx, uint16_t TIM_IT)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_ALL_PERIPH(TIMx));
+
+ /* Clear the IT pending Bit */
+ TIMx->SR = (uint16_t)~TIM_IT;
+}
+
+/**
+ * @brief Configures the TIMx's DMA interface.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_DMABase: DMA Base address.
+ * This parameter can be one of the following values:
+ * @arg TIM_DMABase_CR1
+ * @arg TIM_DMABase_CR2
+ * @arg TIM_DMABase_SMCR
+ * @arg TIM_DMABase_DIER
+ * @arg TIM1_DMABase_SR
+ * @arg TIM_DMABase_EGR
+ * @arg TIM_DMABase_CCMR1
+ * @arg TIM_DMABase_CCMR2
+ * @arg TIM_DMABase_CCER
+ * @arg TIM_DMABase_CNT
+ * @arg TIM_DMABase_PSC
+ * @arg TIM_DMABase_ARR
+ * @arg TIM_DMABase_RCR
+ * @arg TIM_DMABase_CCR1
+ * @arg TIM_DMABase_CCR2
+ * @arg TIM_DMABase_CCR3
+ * @arg TIM_DMABase_CCR4
+ * @arg TIM_DMABase_BDTR
+ * @arg TIM_DMABase_DCR
+ * @param TIM_DMABurstLength: DMA Burst length. This parameter can be one value
+ * between: TIM_DMABurstLength_1Transfer and TIM_DMABurstLength_18Transfers.
+ * @retval None
+ */
+void TIM_DMAConfig(TIM_TypeDef* TIMx, uint16_t TIM_DMABase, uint16_t TIM_DMABurstLength)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_DMA_BASE(TIM_DMABase));
+ assert_param(IS_TIM_DMA_LENGTH(TIM_DMABurstLength));
+
+ /* Set the DMA Base and the DMA Burst Length */
+ TIMx->DCR = TIM_DMABase | TIM_DMABurstLength;
+}
+
+/**
+ * @brief Enables or disables the TIMx's DMA Requests.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 6, 7 or 8 to select the TIM peripheral.
+ * @param TIM_DMASource: specifies the DMA Request sources.
+ * This parameter can be any combination of the following values:
+ * @arg TIM_DMA_Update: TIM update Interrupt source
+ * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
+ * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
+ * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
+ * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
+ * @arg TIM_DMA_COM: TIM Commutation DMA source
+ * @arg TIM_DMA_Trigger: TIM Trigger DMA source
+ * @param NewState: new state of the DMA Request sources.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST5_PERIPH(TIMx));
+ assert_param(IS_TIM_DMA_SOURCE(TIM_DMASource));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the DMA sources */
+ TIMx->DIER |= TIM_DMASource;
+ }
+ else
+ {
+ /* Disable the DMA sources */
+ TIMx->DIER &= (uint16_t)~TIM_DMASource;
+ }
+}
+
+/**
+ * @brief Selects the TIMx peripheral Capture Compare DMA source.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param NewState: new state of the Capture Compare DMA source
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_SelectCCDMA(TIM_TypeDef* TIMx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the CCDS Bit */
+ TIMx->CR2 |= TIM_CR2_CCDS;
+ }
+ else
+ {
+ /* Reset the CCDS Bit */
+ TIMx->CR2 &= (uint16_t)~TIM_CR2_CCDS;
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group6 Clocks management functions
+ * @brief Clocks management functions
+ *
+@verbatim
+ ===============================================================================
+ Clocks management functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the TIMx internal Clock
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @retval None
+ */
+void TIM_InternalClockConfig(TIM_TypeDef* TIMx)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+
+ /* Disable slave mode to clock the prescaler directly with the internal clock */
+ TIMx->SMCR &= (uint16_t)~TIM_SMCR_SMS;
+}
+
+/**
+ * @brief Configures the TIMx Internal Trigger as External Clock
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @param TIM_InputTriggerSource: Trigger source.
+ * This parameter can be one of the following values:
+ * @arg TIM_TS_ITR0: Internal Trigger 0
+ * @arg TIM_TS_ITR1: Internal Trigger 1
+ * @arg TIM_TS_ITR2: Internal Trigger 2
+ * @arg TIM_TS_ITR3: Internal Trigger 3
+ * @retval None
+ */
+void TIM_ITRxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_INTERNAL_TRIGGER_SELECTION(TIM_InputTriggerSource));
+
+ /* Select the Internal Trigger */
+ TIM_SelectInputTrigger(TIMx, TIM_InputTriggerSource);
+
+ /* Select the External clock mode1 */
+ TIMx->SMCR |= TIM_SlaveMode_External1;
+}
+
+/**
+ * @brief Configures the TIMx Trigger as External Clock
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13 or 14
+ * to select the TIM peripheral.
+ * @param TIM_TIxExternalCLKSource: Trigger source.
+ * This parameter can be one of the following values:
+ * @arg TIM_TIxExternalCLK1Source_TI1ED: TI1 Edge Detector
+ * @arg TIM_TIxExternalCLK1Source_TI1: Filtered Timer Input 1
+ * @arg TIM_TIxExternalCLK1Source_TI2: Filtered Timer Input 2
+ * @param TIM_ICPolarity: specifies the TIx Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPolarity_Rising
+ * @arg TIM_ICPolarity_Falling
+ * @param ICFilter: specifies the filter value.
+ * This parameter must be a value between 0x0 and 0xF.
+ * @retval None
+ */
+void TIM_TIxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_TIxExternalCLKSource,
+ uint16_t TIM_ICPolarity, uint16_t ICFilter)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_IC_POLARITY(TIM_ICPolarity));
+ assert_param(IS_TIM_IC_FILTER(ICFilter));
+
+ /* Configure the Timer Input Clock Source */
+ if (TIM_TIxExternalCLKSource == TIM_TIxExternalCLK1Source_TI2)
+ {
+ TI2_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
+ }
+ else
+ {
+ TI1_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
+ }
+ /* Select the Trigger source */
+ TIM_SelectInputTrigger(TIMx, TIM_TIxExternalCLKSource);
+ /* Select the External clock mode1 */
+ TIMx->SMCR |= TIM_SlaveMode_External1;
+}
+
+/**
+ * @brief Configures the External clock Mode1
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler.
+ * This parameter can be one of the following values:
+ * @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
+ * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
+ * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
+ * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
+ * @param TIM_ExtTRGPolarity: The external Trigger Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
+ * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
+ * @param ExtTRGFilter: External Trigger Filter.
+ * This parameter must be a value between 0x00 and 0x0F
+ * @retval None
+ */
+void TIM_ETRClockMode1Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
+ uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
+{
+ uint16_t tmpsmcr = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
+ assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
+ assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
+ /* Configure the ETR Clock source */
+ TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = TIMx->SMCR;
+
+ /* Reset the SMS Bits */
+ tmpsmcr &= (uint16_t)~TIM_SMCR_SMS;
+
+ /* Select the External clock mode1 */
+ tmpsmcr |= TIM_SlaveMode_External1;
+
+ /* Select the Trigger selection : ETRF */
+ tmpsmcr &= (uint16_t)~TIM_SMCR_TS;
+ tmpsmcr |= TIM_TS_ETRF;
+
+ /* Write to TIMx SMCR */
+ TIMx->SMCR = tmpsmcr;
+}
+
+/**
+ * @brief Configures the External clock Mode2
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler.
+ * This parameter can be one of the following values:
+ * @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
+ * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
+ * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
+ * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
+ * @param TIM_ExtTRGPolarity: The external Trigger Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
+ * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
+ * @param ExtTRGFilter: External Trigger Filter.
+ * This parameter must be a value between 0x00 and 0x0F
+ * @retval None
+ */
+void TIM_ETRClockMode2Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
+ uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
+ assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
+ assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
+
+ /* Configure the ETR Clock source */
+ TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);
+
+ /* Enable the External clock mode2 */
+ TIMx->SMCR |= TIM_SMCR_ECE;
+}
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group7 Synchronization management functions
+ * @brief Synchronization management functions
+ *
+@verbatim
+ ===============================================================================
+ Synchronization management functions
+ ===============================================================================
+
+ ===================================================================
+ TIM Driver: how to use it in synchronization Mode
+ ===================================================================
+ Case of two/several Timers
+ **************************
+ 1. Configure the Master Timers using the following functions:
+ - void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource);
+ - void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode);
+ 2. Configure the Slave Timers using the following functions:
+ - void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource);
+ - void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode);
+
+ Case of Timers and external trigger(ETR pin)
+ ********************************************
+ 1. Configure the External trigger using this function:
+ - void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,
+ uint16_t ExtTRGFilter);
+ 2. Configure the Slave Timers using the following functions:
+ - void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource);
+ - void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode);
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Selects the Input Trigger source
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13 or 14
+ * to select the TIM peripheral.
+ * @param TIM_InputTriggerSource: The Input Trigger source.
+ * This parameter can be one of the following values:
+ * @arg TIM_TS_ITR0: Internal Trigger 0
+ * @arg TIM_TS_ITR1: Internal Trigger 1
+ * @arg TIM_TS_ITR2: Internal Trigger 2
+ * @arg TIM_TS_ITR3: Internal Trigger 3
+ * @arg TIM_TS_TI1F_ED: TI1 Edge Detector
+ * @arg TIM_TS_TI1FP1: Filtered Timer Input 1
+ * @arg TIM_TS_TI2FP2: Filtered Timer Input 2
+ * @arg TIM_TS_ETRF: External Trigger input
+ * @retval None
+ */
+void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
+{
+ uint16_t tmpsmcr = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST1_PERIPH(TIMx));
+ assert_param(IS_TIM_TRIGGER_SELECTION(TIM_InputTriggerSource));
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = TIMx->SMCR;
+
+ /* Reset the TS Bits */
+ tmpsmcr &= (uint16_t)~TIM_SMCR_TS;
+
+ /* Set the Input Trigger source */
+ tmpsmcr |= TIM_InputTriggerSource;
+
+ /* Write to TIMx SMCR */
+ TIMx->SMCR = tmpsmcr;
+}
+
+/**
+ * @brief Selects the TIMx Trigger Output Mode.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 6, 7 or 8 to select the TIM peripheral.
+ *
+ * @param TIM_TRGOSource: specifies the Trigger Output source.
+ * This parameter can be one of the following values:
+ *
+ * - For all TIMx
+ * @arg TIM_TRGOSource_Reset: The UG bit in the TIM_EGR register is used as the trigger output(TRGO)
+ * @arg TIM_TRGOSource_Enable: The Counter Enable CEN is used as the trigger output(TRGO)
+ * @arg TIM_TRGOSource_Update: The update event is selected as the trigger output(TRGO)
+ *
+ * - For all TIMx except TIM6 and TIM7
+ * @arg TIM_TRGOSource_OC1: The trigger output sends a positive pulse when the CC1IF flag
+ * is to be set, as soon as a capture or compare match occurs(TRGO)
+ * @arg TIM_TRGOSource_OC1Ref: OC1REF signal is used as the trigger output(TRGO)
+ * @arg TIM_TRGOSource_OC2Ref: OC2REF signal is used as the trigger output(TRGO)
+ * @arg TIM_TRGOSource_OC3Ref: OC3REF signal is used as the trigger output(TRGO)
+ * @arg TIM_TRGOSource_OC4Ref: OC4REF signal is used as the trigger output(TRGO)
+ *
+ * @retval None
+ */
+void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST5_PERIPH(TIMx));
+ assert_param(IS_TIM_TRGO_SOURCE(TIM_TRGOSource));
+
+ /* Reset the MMS Bits */
+ TIMx->CR2 &= (uint16_t)~TIM_CR2_MMS;
+ /* Select the TRGO source */
+ TIMx->CR2 |= TIM_TRGOSource;
+}
+
+/**
+ * @brief Selects the TIMx Slave Mode.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM peripheral.
+ * @param TIM_SlaveMode: specifies the Timer Slave Mode.
+ * This parameter can be one of the following values:
+ * @arg TIM_SlaveMode_Reset: Rising edge of the selected trigger signal(TRGI) reinitialize
+ * the counter and triggers an update of the registers
+ * @arg TIM_SlaveMode_Gated: The counter clock is enabled when the trigger signal (TRGI) is high
+ * @arg TIM_SlaveMode_Trigger: The counter starts at a rising edge of the trigger TRGI
+ * @arg TIM_SlaveMode_External1: Rising edges of the selected trigger (TRGI) clock the counter
+ * @retval None
+ */
+void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_SLAVE_MODE(TIM_SlaveMode));
+
+ /* Reset the SMS Bits */
+ TIMx->SMCR &= (uint16_t)~TIM_SMCR_SMS;
+
+ /* Select the Slave Mode */
+ TIMx->SMCR |= TIM_SlaveMode;
+}
+
+/**
+ * @brief Sets or Resets the TIMx Master/Slave Mode.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM peripheral.
+ * @param TIM_MasterSlaveMode: specifies the Timer Master Slave Mode.
+ * This parameter can be one of the following values:
+ * @arg TIM_MasterSlaveMode_Enable: synchronization between the current timer
+ * and its slaves (through TRGO)
+ * @arg TIM_MasterSlaveMode_Disable: No action
+ * @retval None
+ */
+void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_MSM_STATE(TIM_MasterSlaveMode));
+
+ /* Reset the MSM Bit */
+ TIMx->SMCR &= (uint16_t)~TIM_SMCR_MSM;
+
+ /* Set or Reset the MSM Bit */
+ TIMx->SMCR |= TIM_MasterSlaveMode;
+}
+
+/**
+ * @brief Configures the TIMx External Trigger (ETR).
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler.
+ * This parameter can be one of the following values:
+ * @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
+ * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
+ * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
+ * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
+ * @param TIM_ExtTRGPolarity: The external Trigger Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
+ * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
+ * @param ExtTRGFilter: External Trigger Filter.
+ * This parameter must be a value between 0x00 and 0x0F
+ * @retval None
+ */
+void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
+ uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
+{
+ uint16_t tmpsmcr = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST3_PERIPH(TIMx));
+ assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
+ assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
+ assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
+
+ tmpsmcr = TIMx->SMCR;
+
+ /* Reset the ETR Bits */
+ tmpsmcr &= SMCR_ETR_MASK;
+
+ /* Set the Prescaler, the Filter value and the Polarity */
+ tmpsmcr |= (uint16_t)(TIM_ExtTRGPrescaler | (uint16_t)(TIM_ExtTRGPolarity | (uint16_t)(ExtTRGFilter << (uint16_t)8)));
+
+ /* Write to TIMx SMCR */
+ TIMx->SMCR = tmpsmcr;
+}
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group8 Specific interface management functions
+ * @brief Specific interface management functions
+ *
+@verbatim
+ ===============================================================================
+ Specific interface management functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the TIMx Encoder Interface.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @param TIM_EncoderMode: specifies the TIMx Encoder Mode.
+ * This parameter can be one of the following values:
+ * @arg TIM_EncoderMode_TI1: Counter counts on TI1FP1 edge depending on TI2FP2 level.
+ * @arg TIM_EncoderMode_TI2: Counter counts on TI2FP2 edge depending on TI1FP1 level.
+ * @arg TIM_EncoderMode_TI12: Counter counts on both TI1FP1 and TI2FP2 edges depending
+ * on the level of the other input.
+ * @param TIM_IC1Polarity: specifies the IC1 Polarity
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPolarity_Falling: IC Falling edge.
+ * @arg TIM_ICPolarity_Rising: IC Rising edge.
+ * @param TIM_IC2Polarity: specifies the IC2 Polarity
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPolarity_Falling: IC Falling edge.
+ * @arg TIM_ICPolarity_Rising: IC Rising edge.
+ * @retval None
+ */
+void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode,
+ uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity)
+{
+ uint16_t tmpsmcr = 0;
+ uint16_t tmpccmr1 = 0;
+ uint16_t tmpccer = 0;
+
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_TIM_ENCODER_MODE(TIM_EncoderMode));
+ assert_param(IS_TIM_IC_POLARITY(TIM_IC1Polarity));
+ assert_param(IS_TIM_IC_POLARITY(TIM_IC2Polarity));
+
+ /* Get the TIMx SMCR register value */
+ tmpsmcr = TIMx->SMCR;
+
+ /* Get the TIMx CCMR1 register value */
+ tmpccmr1 = TIMx->CCMR1;
+
+ /* Get the TIMx CCER register value */
+ tmpccer = TIMx->CCER;
+
+ /* Set the encoder Mode */
+ tmpsmcr &= (uint16_t)~TIM_SMCR_SMS;
+ tmpsmcr |= TIM_EncoderMode;
+
+ /* Select the Capture Compare 1 and the Capture Compare 2 as input */
+ tmpccmr1 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR1_CC2S);
+ tmpccmr1 |= TIM_CCMR1_CC1S_0 | TIM_CCMR1_CC2S_0;
+
+ /* Set the TI1 and the TI2 Polarities */
+ tmpccer &= ((uint16_t)~TIM_CCER_CC1P) & ((uint16_t)~TIM_CCER_CC2P);
+ tmpccer |= (uint16_t)(TIM_IC1Polarity | (uint16_t)(TIM_IC2Polarity << (uint16_t)4));
+
+ /* Write to TIMx SMCR */
+ TIMx->SMCR = tmpsmcr;
+
+ /* Write to TIMx CCMR1 */
+ TIMx->CCMR1 = tmpccmr1;
+
+ /* Write to TIMx CCER */
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Enables or disables the TIMx's Hall sensor interface.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @param NewState: new state of the TIMx Hall sensor interface.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void TIM_SelectHallSensor(TIM_TypeDef* TIMx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST2_PERIPH(TIMx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Set the TI1S Bit */
+ TIMx->CR2 |= TIM_CR2_TI1S;
+ }
+ else
+ {
+ /* Reset the TI1S Bit */
+ TIMx->CR2 &= (uint16_t)~TIM_CR2_TI1S;
+ }
+}
+/**
+ * @}
+ */
+
+/** @defgroup TIM_Group9 Specific remapping management function
+ * @brief Specific remapping management function
+ *
+@verbatim
+ ===============================================================================
+ Specific remapping management function
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the TIM2, TIM5 and TIM11 Remapping input capabilities.
+ * @param TIMx: where x can be 2, 5 or 11 to select the TIM peripheral.
+ * @param TIM_Remap: specifies the TIM input remapping source.
+ * This parameter can be one of the following values:
+ * @arg TIM2_TIM8_TRGO: TIM2 ITR1 input is connected to TIM8 Trigger output(default)
+ * @arg TIM2_ETH_PTP: TIM2 ITR1 input is connected to ETH PTP trogger output.
+ * @arg TIM2_USBFS_SOF: TIM2 ITR1 input is connected to USB FS SOF.
+ * @arg TIM2_USBHS_SOF: TIM2 ITR1 input is connected to USB HS SOF.
+ * @arg TIM5_GPIO: TIM5 CH4 input is connected to dedicated Timer pin(default)
+ * @arg TIM5_LSI: TIM5 CH4 input is connected to LSI clock.
+ * @arg TIM5_LSE: TIM5 CH4 input is connected to LSE clock.
+ * @arg TIM5_RTC: TIM5 CH4 input is connected to RTC Output event.
+ * @arg TIM11_GPIO: TIM11 CH4 input is connected to dedicated Timer pin(default)
+ * @arg TIM11_HSE: TIM11 CH4 input is connected to HSE_RTC clock
+ * (HSE divided by a programmable prescaler)
+ * @retval None
+ */
+void TIM_RemapConfig(TIM_TypeDef* TIMx, uint16_t TIM_Remap)
+{
+ /* Check the parameters */
+ assert_param(IS_TIM_LIST6_PERIPH(TIMx));
+ assert_param(IS_TIM_REMAP(TIM_Remap));
+
+ /* Set the Timer remapping configuration */
+ TIMx->OR = TIM_Remap;
+}
+/**
+ * @}
+ */
+
+/**
+ * @brief Configure the TI1 as Input.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13 or 14
+ * to select the TIM peripheral.
+ * @param TIM_ICPolarity : The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPolarity_Rising
+ * @arg TIM_ICPolarity_Falling
+ * @arg TIM_ICPolarity_BothEdge
+ * @param TIM_ICSelection: specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSelection_DirectTI: TIM Input 1 is selected to be connected to IC1.
+ * @arg TIM_ICSelection_IndirectTI: TIM Input 1 is selected to be connected to IC2.
+ * @arg TIM_ICSelection_TRC: TIM Input 1 is selected to be connected to TRC.
+ * @param TIM_ICFilter: Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ */
+static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter)
+{
+ uint16_t tmpccmr1 = 0, tmpccer = 0;
+
+ /* Disable the Channel 1: Reset the CC1E Bit */
+ TIMx->CCER &= (uint16_t)~TIM_CCER_CC1E;
+ tmpccmr1 = TIMx->CCMR1;
+ tmpccer = TIMx->CCER;
+
+ /* Select the Input and set the filter */
+ tmpccmr1 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR1_IC1F);
+ tmpccmr1 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4));
+
+ /* Select the Polarity and set the CC1E Bit */
+ tmpccer &= (uint16_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
+ tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC1E);
+
+ /* Write to TIMx CCMR1 and CCER registers */
+ TIMx->CCMR1 = tmpccmr1;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the TI2 as Input.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM
+ * peripheral.
+ * @param TIM_ICPolarity : The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPolarity_Rising
+ * @arg TIM_ICPolarity_Falling
+ * @arg TIM_ICPolarity_BothEdge
+ * @param TIM_ICSelection: specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSelection_DirectTI: TIM Input 2 is selected to be connected to IC2.
+ * @arg TIM_ICSelection_IndirectTI: TIM Input 2 is selected to be connected to IC1.
+ * @arg TIM_ICSelection_TRC: TIM Input 2 is selected to be connected to TRC.
+ * @param TIM_ICFilter: Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ */
+static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter)
+{
+ uint16_t tmpccmr1 = 0, tmpccer = 0, tmp = 0;
+
+ /* Disable the Channel 2: Reset the CC2E Bit */
+ TIMx->CCER &= (uint16_t)~TIM_CCER_CC2E;
+ tmpccmr1 = TIMx->CCMR1;
+ tmpccer = TIMx->CCER;
+ tmp = (uint16_t)(TIM_ICPolarity << 4);
+
+ /* Select the Input and set the filter */
+ tmpccmr1 &= ((uint16_t)~TIM_CCMR1_CC2S) & ((uint16_t)~TIM_CCMR1_IC2F);
+ tmpccmr1 |= (uint16_t)(TIM_ICFilter << 12);
+ tmpccmr1 |= (uint16_t)(TIM_ICSelection << 8);
+
+ /* Select the Polarity and set the CC2E Bit */
+ tmpccer &= (uint16_t)~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
+ tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC2E);
+
+ /* Write to TIMx CCMR1 and CCER registers */
+ TIMx->CCMR1 = tmpccmr1 ;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the TI3 as Input.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_ICPolarity : The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPolarity_Rising
+ * @arg TIM_ICPolarity_Falling
+ * @arg TIM_ICPolarity_BothEdge
+ * @param TIM_ICSelection: specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSelection_DirectTI: TIM Input 3 is selected to be connected to IC3.
+ * @arg TIM_ICSelection_IndirectTI: TIM Input 3 is selected to be connected to IC4.
+ * @arg TIM_ICSelection_TRC: TIM Input 3 is selected to be connected to TRC.
+ * @param TIM_ICFilter: Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ */
+static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter)
+{
+ uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;
+
+ /* Disable the Channel 3: Reset the CC3E Bit */
+ TIMx->CCER &= (uint16_t)~TIM_CCER_CC3E;
+ tmpccmr2 = TIMx->CCMR2;
+ tmpccer = TIMx->CCER;
+ tmp = (uint16_t)(TIM_ICPolarity << 8);
+
+ /* Select the Input and set the filter */
+ tmpccmr2 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR2_IC3F);
+ tmpccmr2 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4));
+
+ /* Select the Polarity and set the CC3E Bit */
+ tmpccer &= (uint16_t)~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
+ tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC3E);
+
+ /* Write to TIMx CCMR2 and CCER registers */
+ TIMx->CCMR2 = tmpccmr2;
+ TIMx->CCER = tmpccer;
+}
+
+/**
+ * @brief Configure the TI4 as Input.
+ * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
+ * @param TIM_ICPolarity : The Input Polarity.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICPolarity_Rising
+ * @arg TIM_ICPolarity_Falling
+ * @arg TIM_ICPolarity_BothEdge
+ * @param TIM_ICSelection: specifies the input to be used.
+ * This parameter can be one of the following values:
+ * @arg TIM_ICSelection_DirectTI: TIM Input 4 is selected to be connected to IC4.
+ * @arg TIM_ICSelection_IndirectTI: TIM Input 4 is selected to be connected to IC3.
+ * @arg TIM_ICSelection_TRC: TIM Input 4 is selected to be connected to TRC.
+ * @param TIM_ICFilter: Specifies the Input Capture Filter.
+ * This parameter must be a value between 0x00 and 0x0F.
+ * @retval None
+ */
+static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
+ uint16_t TIM_ICFilter)
+{
+ uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;
+
+ /* Disable the Channel 4: Reset the CC4E Bit */
+ TIMx->CCER &= (uint16_t)~TIM_CCER_CC4E;
+ tmpccmr2 = TIMx->CCMR2;
+ tmpccer = TIMx->CCER;
+ tmp = (uint16_t)(TIM_ICPolarity << 12);
+
+ /* Select the Input and set the filter */
+ tmpccmr2 &= ((uint16_t)~TIM_CCMR1_CC2S) & ((uint16_t)~TIM_CCMR1_IC2F);
+ tmpccmr2 |= (uint16_t)(TIM_ICSelection << 8);
+ tmpccmr2 |= (uint16_t)(TIM_ICFilter << 12);
+
+ /* Select the Polarity and set the CC4E Bit */
+ tmpccer &= (uint16_t)~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
+ tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC4E);
+
+ /* Write to TIMx CCMR2 and CCER registers */
+ TIMx->CCMR2 = tmpccmr2;
+ TIMx->CCER = tmpccer ;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_usart.c b/TimerCounter/SPL/src/stm32f4xx_usart.c
new file mode 100644
index 0000000..1bb99ad
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_usart.c
@@ -0,0 +1,1463 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_usart.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Universal synchronous asynchronous receiver
+ * transmitter (USART):
+ * - Initialization and Configuration
+ * - Data transfers
+ * - Multi-Processor Communication
+ * - LIN mode
+ * - Half-duplex mode
+ * - Smartcard mode
+ * - IrDA mode
+ * - DMA transfers management
+ * - Interrupts and flags management
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ * 1. Enable peripheral clock using the follwoing functions
+ * RCC_APB2PeriphClockCmd(RCC_APB2Periph_USARTx, ENABLE) for USART1 and USART6
+ * RCC_APB1PeriphClockCmd(RCC_APB1Periph_USARTx, ENABLE) for USART2, USART3, UART4 or UART5.
+ *
+ * 2. According to the USART mode, enable the GPIO clocks using
+ * RCC_AHB1PeriphClockCmd() function. (The I/O can be TX, RX, CTS,
+ * or/and SCLK).
+ *
+ * 3. Peripheral's alternate function:
+ * - Connect the pin to the desired peripherals' Alternate
+ * Function (AF) using GPIO_PinAFConfig() function
+ * - Configure the desired pin in alternate function by:
+ * GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AF
+ * - Select the type, pull-up/pull-down and output speed via
+ * GPIO_PuPd, GPIO_OType and GPIO_Speed members
+ * - Call GPIO_Init() function
+ *
+ * 4. Program the Baud Rate, Word Length , Stop Bit, Parity, Hardware
+ * flow control and Mode(Receiver/Transmitter) using the USART_Init()
+ * function.
+ *
+ * 5. For synchronous mode, enable the clock and program the polarity,
+ * phase and last bit using the USART_ClockInit() function.
+ *
+ * 5. Enable the NVIC and the corresponding interrupt using the function
+ * USART_ITConfig() if you need to use interrupt mode.
+ *
+ * 6. When using the DMA mode
+ * - Configure the DMA using DMA_Init() function
+ * - Active the needed channel Request using USART_DMACmd() function
+ *
+ * 7. Enable the USART using the USART_Cmd() function.
+ *
+ * 8. Enable the DMA using the DMA_Cmd() function, when using DMA mode.
+ *
+ * Refer to Multi-Processor, LIN, half-duplex, Smartcard, IrDA sub-sections
+ * for more details
+ *
+ * In order to reach higher communication baudrates, it is possible to
+ * enable the oversampling by 8 mode using the function USART_OverSampling8Cmd().
+ * This function should be called after enabling the USART clock (RCC_APBxPeriphClockCmd())
+ * and before calling the function USART_Init().
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_usart.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup USART
+ * @brief USART driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/*!< USART CR1 register clear Mask ((~(uint16_t)0xE9F3)) */
+#define CR1_CLEAR_MASK ((uint16_t)(USART_CR1_M | USART_CR1_PCE | \
+ USART_CR1_PS | USART_CR1_TE | \
+ USART_CR1_RE))
+
+/*!< USART CR2 register clock bits clear Mask ((~(uint16_t)0xF0FF)) */
+#define CR2_CLOCK_CLEAR_MASK ((uint16_t)(USART_CR2_CLKEN | USART_CR2_CPOL | \
+ USART_CR2_CPHA | USART_CR2_LBCL))
+
+/*!< USART CR3 register clear Mask ((~(uint16_t)0xFCFF)) */
+#define CR3_CLEAR_MASK ((uint16_t)(USART_CR3_RTSE | USART_CR3_CTSE))
+
+/*!< USART Interrupts mask */
+#define IT_MASK ((uint16_t)0x001F)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup USART_Private_Functions
+ * @{
+ */
+
+/** @defgroup USART_Group1 Initialization and Configuration functions
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Initialization and Configuration functions
+ ===============================================================================
+
+ This subsection provides a set of functions allowing to initialize the USART
+ in asynchronous and in synchronous modes.
+ - For the asynchronous mode only these parameters can be configured:
+ - Baud Rate
+ - Word Length
+ - Stop Bit
+ - Parity: If the parity is enabled, then the MSB bit of the data written
+ in the data register is transmitted but is changed by the parity bit.
+ Depending on the frame length defined by the M bit (8-bits or 9-bits),
+ the possible USART frame formats are as listed in the following table:
+ +-------------------------------------------------------------+
+ | M bit | PCE bit | USART frame |
+ |---------------------|---------------------------------------|
+ | 0 | 0 | | SB | 8 bit data | STB | |
+ |---------|-----------|---------------------------------------|
+ | 0 | 1 | | SB | 7 bit data | PB | STB | |
+ |---------|-----------|---------------------------------------|
+ | 1 | 0 | | SB | 9 bit data | STB | |
+ |---------|-----------|---------------------------------------|
+ | 1 | 1 | | SB | 8 bit data | PB | STB | |
+ +-------------------------------------------------------------+
+ - Hardware flow control
+ - Receiver/transmitter modes
+
+ The USART_Init() function follows the USART asynchronous configuration procedure
+ (details for the procedure are available in reference manual (RM0090)).
+
+ - For the synchronous mode in addition to the asynchronous mode parameters these
+ parameters should be also configured:
+ - USART Clock Enabled
+ - USART polarity
+ - USART phase
+ - USART LastBit
+
+ These parameters can be configured using the USART_ClockInit() function.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the USARTx peripheral registers to their default reset values.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @retval None
+ */
+void USART_DeInit(USART_TypeDef* USARTx)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+
+ if (USARTx == USART1)
+ {
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, ENABLE);
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART1, DISABLE);
+ }
+ else if (USARTx == USART2)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART2, DISABLE);
+ }
+ else if (USARTx == USART3)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART3, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_USART3, DISABLE);
+ }
+ else if (USARTx == UART4)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART4, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART4, DISABLE);
+ }
+ else if (USARTx == UART5)
+ {
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART5, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_UART5, DISABLE);
+ }
+ else
+ {
+ if (USARTx == USART6)
+ {
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART6, ENABLE);
+ RCC_APB2PeriphResetCmd(RCC_APB2Periph_USART6, DISABLE);
+ }
+ }
+}
+
+/**
+ * @brief Initializes the USARTx peripheral according to the specified
+ * parameters in the USART_InitStruct .
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param USART_InitStruct: pointer to a USART_InitTypeDef structure that contains
+ * the configuration information for the specified USART peripheral.
+ * @retval None
+ */
+void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct)
+{
+ uint32_t tmpreg = 0x00, apbclock = 0x00;
+ uint32_t integerdivider = 0x00;
+ uint32_t fractionaldivider = 0x00;
+ RCC_ClocksTypeDef RCC_ClocksStatus;
+
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_USART_BAUDRATE(USART_InitStruct->USART_BaudRate));
+ assert_param(IS_USART_WORD_LENGTH(USART_InitStruct->USART_WordLength));
+ assert_param(IS_USART_STOPBITS(USART_InitStruct->USART_StopBits));
+ assert_param(IS_USART_PARITY(USART_InitStruct->USART_Parity));
+ assert_param(IS_USART_MODE(USART_InitStruct->USART_Mode));
+ assert_param(IS_USART_HARDWARE_FLOW_CONTROL(USART_InitStruct->USART_HardwareFlowControl));
+
+ /* The hardware flow control is available only for USART1, USART2, USART3 and USART6 */
+ if (USART_InitStruct->USART_HardwareFlowControl != USART_HardwareFlowControl_None)
+ {
+ assert_param(IS_USART_1236_PERIPH(USARTx));
+ }
+
+/*---------------------------- USART CR2 Configuration -----------------------*/
+ tmpreg = USARTx->CR2;
+
+ /* Clear STOP[13:12] bits */
+ tmpreg &= (uint32_t)~((uint32_t)USART_CR2_STOP);
+
+ /* Configure the USART Stop Bits, Clock, CPOL, CPHA and LastBit :
+ Set STOP[13:12] bits according to USART_StopBits value */
+ tmpreg |= (uint32_t)USART_InitStruct->USART_StopBits;
+
+ /* Write to USART CR2 */
+ USARTx->CR2 = (uint16_t)tmpreg;
+
+/*---------------------------- USART CR1 Configuration -----------------------*/
+ tmpreg = USARTx->CR1;
+
+ /* Clear M, PCE, PS, TE and RE bits */
+ tmpreg &= (uint32_t)~((uint32_t)CR1_CLEAR_MASK);
+
+ /* Configure the USART Word Length, Parity and mode:
+ Set the M bits according to USART_WordLength value
+ Set PCE and PS bits according to USART_Parity value
+ Set TE and RE bits according to USART_Mode value */
+ tmpreg |= (uint32_t)USART_InitStruct->USART_WordLength | USART_InitStruct->USART_Parity |
+ USART_InitStruct->USART_Mode;
+
+ /* Write to USART CR1 */
+ USARTx->CR1 = (uint16_t)tmpreg;
+
+/*---------------------------- USART CR3 Configuration -----------------------*/
+ tmpreg = USARTx->CR3;
+
+ /* Clear CTSE and RTSE bits */
+ tmpreg &= (uint32_t)~((uint32_t)CR3_CLEAR_MASK);
+
+ /* Configure the USART HFC :
+ Set CTSE and RTSE bits according to USART_HardwareFlowControl value */
+ tmpreg |= USART_InitStruct->USART_HardwareFlowControl;
+
+ /* Write to USART CR3 */
+ USARTx->CR3 = (uint16_t)tmpreg;
+
+/*---------------------------- USART BRR Configuration -----------------------*/
+ /* Configure the USART Baud Rate */
+ RCC_GetClocksFreq(&RCC_ClocksStatus);
+
+ if ((USARTx == USART1) || (USARTx == USART6))
+ {
+ apbclock = RCC_ClocksStatus.PCLK2_Frequency;
+ }
+ else
+ {
+ apbclock = RCC_ClocksStatus.PCLK1_Frequency;
+ }
+
+ /* Determine the integer part */
+ if ((USARTx->CR1 & USART_CR1_OVER8) != 0)
+ {
+ /* Integer part computing in case Oversampling mode is 8 Samples */
+ integerdivider = ((25 * apbclock) / (2 * (USART_InitStruct->USART_BaudRate)));
+ }
+ else /* if ((USARTx->CR1 & USART_CR1_OVER8) == 0) */
+ {
+ /* Integer part computing in case Oversampling mode is 16 Samples */
+ integerdivider = ((25 * apbclock) / (4 * (USART_InitStruct->USART_BaudRate)));
+ }
+ tmpreg = (integerdivider / 100) << 4;
+
+ /* Determine the fractional part */
+ fractionaldivider = integerdivider - (100 * (tmpreg >> 4));
+
+ /* Implement the fractional part in the register */
+ if ((USARTx->CR1 & USART_CR1_OVER8) != 0)
+ {
+ tmpreg |= ((((fractionaldivider * 8) + 50) / 100)) & ((uint8_t)0x07);
+ }
+ else /* if ((USARTx->CR1 & USART_CR1_OVER8) == 0) */
+ {
+ tmpreg |= ((((fractionaldivider * 16) + 50) / 100)) & ((uint8_t)0x0F);
+ }
+
+ /* Write to USART BRR register */
+ USARTx->BRR = (uint16_t)tmpreg;
+}
+
+/**
+ * @brief Fills each USART_InitStruct member with its default value.
+ * @param USART_InitStruct: pointer to a USART_InitTypeDef structure which will
+ * be initialized.
+ * @retval None
+ */
+void USART_StructInit(USART_InitTypeDef* USART_InitStruct)
+{
+ /* USART_InitStruct members default value */
+ USART_InitStruct->USART_BaudRate = 9600;
+ USART_InitStruct->USART_WordLength = USART_WordLength_8b;
+ USART_InitStruct->USART_StopBits = USART_StopBits_1;
+ USART_InitStruct->USART_Parity = USART_Parity_No ;
+ USART_InitStruct->USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
+ USART_InitStruct->USART_HardwareFlowControl = USART_HardwareFlowControl_None;
+}
+
+/**
+ * @brief Initializes the USARTx peripheral Clock according to the
+ * specified parameters in the USART_ClockInitStruct .
+ * @param USARTx: where x can be 1, 2, 3 or 6 to select the USART peripheral.
+ * @param USART_ClockInitStruct: pointer to a USART_ClockInitTypeDef structure that
+ * contains the configuration information for the specified USART peripheral.
+ * @note The Smart Card and Synchronous modes are not available for UART4 and UART5.
+ * @retval None
+ */
+void USART_ClockInit(USART_TypeDef* USARTx, USART_ClockInitTypeDef* USART_ClockInitStruct)
+{
+ uint32_t tmpreg = 0x00;
+ /* Check the parameters */
+ assert_param(IS_USART_1236_PERIPH(USARTx));
+ assert_param(IS_USART_CLOCK(USART_ClockInitStruct->USART_Clock));
+ assert_param(IS_USART_CPOL(USART_ClockInitStruct->USART_CPOL));
+ assert_param(IS_USART_CPHA(USART_ClockInitStruct->USART_CPHA));
+ assert_param(IS_USART_LASTBIT(USART_ClockInitStruct->USART_LastBit));
+
+/*---------------------------- USART CR2 Configuration -----------------------*/
+ tmpreg = USARTx->CR2;
+ /* Clear CLKEN, CPOL, CPHA and LBCL bits */
+ tmpreg &= (uint32_t)~((uint32_t)CR2_CLOCK_CLEAR_MASK);
+ /* Configure the USART Clock, CPOL, CPHA and LastBit ------------*/
+ /* Set CLKEN bit according to USART_Clock value */
+ /* Set CPOL bit according to USART_CPOL value */
+ /* Set CPHA bit according to USART_CPHA value */
+ /* Set LBCL bit according to USART_LastBit value */
+ tmpreg |= (uint32_t)USART_ClockInitStruct->USART_Clock | USART_ClockInitStruct->USART_CPOL |
+ USART_ClockInitStruct->USART_CPHA | USART_ClockInitStruct->USART_LastBit;
+ /* Write to USART CR2 */
+ USARTx->CR2 = (uint16_t)tmpreg;
+}
+
+/**
+ * @brief Fills each USART_ClockInitStruct member with its default value.
+ * @param USART_ClockInitStruct: pointer to a USART_ClockInitTypeDef structure
+ * which will be initialized.
+ * @retval None
+ */
+void USART_ClockStructInit(USART_ClockInitTypeDef* USART_ClockInitStruct)
+{
+ /* USART_ClockInitStruct members default value */
+ USART_ClockInitStruct->USART_Clock = USART_Clock_Disable;
+ USART_ClockInitStruct->USART_CPOL = USART_CPOL_Low;
+ USART_ClockInitStruct->USART_CPHA = USART_CPHA_1Edge;
+ USART_ClockInitStruct->USART_LastBit = USART_LastBit_Disable;
+}
+
+/**
+ * @brief Enables or disables the specified USART peripheral.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param NewState: new state of the USARTx peripheral.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void USART_Cmd(USART_TypeDef* USARTx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the selected USART by setting the UE bit in the CR1 register */
+ USARTx->CR1 |= USART_CR1_UE;
+ }
+ else
+ {
+ /* Disable the selected USART by clearing the UE bit in the CR1 register */
+ USARTx->CR1 &= (uint16_t)~((uint16_t)USART_CR1_UE);
+ }
+}
+
+/**
+ * @brief Sets the system clock prescaler.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param USART_Prescaler: specifies the prescaler clock.
+ * @note The function is used for IrDA mode with UART4 and UART5.
+ * @retval None
+ */
+void USART_SetPrescaler(USART_TypeDef* USARTx, uint8_t USART_Prescaler)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+
+ /* Clear the USART prescaler */
+ USARTx->GTPR &= USART_GTPR_GT;
+ /* Set the USART prescaler */
+ USARTx->GTPR |= USART_Prescaler;
+}
+
+/**
+ * @brief Enables or disables the USART's 8x oversampling mode.
+ * @note This function has to be called before calling USART_Init() function
+ * in order to have correct baudrate Divider value.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param NewState: new state of the USART 8x oversampling mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void USART_OverSampling8Cmd(USART_TypeDef* USARTx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the 8x Oversampling mode by setting the OVER8 bit in the CR1 register */
+ USARTx->CR1 |= USART_CR1_OVER8;
+ }
+ else
+ {
+ /* Disable the 8x Oversampling mode by clearing the OVER8 bit in the CR1 register */
+ USARTx->CR1 &= (uint16_t)~((uint16_t)USART_CR1_OVER8);
+ }
+}
+
+/**
+ * @brief Enables or disables the USART's one bit sampling method.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param NewState: new state of the USART one bit sampling method.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void USART_OneBitMethodCmd(USART_TypeDef* USARTx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the one bit method by setting the ONEBITE bit in the CR3 register */
+ USARTx->CR3 |= USART_CR3_ONEBIT;
+ }
+ else
+ {
+ /* Disable the one bit method by clearing the ONEBITE bit in the CR3 register */
+ USARTx->CR3 &= (uint16_t)~((uint16_t)USART_CR3_ONEBIT);
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup USART_Group2 Data transfers functions
+ * @brief Data transfers functions
+ *
+@verbatim
+ ===============================================================================
+ Data transfers functions
+ ===============================================================================
+
+ This subsection provides a set of functions allowing to manage the USART data
+ transfers.
+
+ During an USART reception, data shifts in least significant bit first through
+ the RX pin. In this mode, the USART_DR register consists of a buffer (RDR)
+ between the internal bus and the received shift register.
+
+ When a transmission is taking place, a write instruction to the USART_DR register
+ stores the data in the TDR register and which is copied in the shift register
+ at the end of the current transmission.
+
+ The read access of the USART_DR register can be done using the USART_ReceiveData()
+ function and returns the RDR buffered value. Whereas a write access to the USART_DR
+ can be done using USART_SendData() function and stores the written data into
+ TDR buffer.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Transmits single data through the USARTx peripheral.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param Data: the data to transmit.
+ * @retval None
+ */
+void USART_SendData(USART_TypeDef* USARTx, uint16_t Data)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_USART_DATA(Data));
+
+ /* Transmit Data */
+ USARTx->DR = (Data & (uint16_t)0x01FF);
+}
+
+/**
+ * @brief Returns the most recent received data by the USARTx peripheral.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @retval The received data.
+ */
+uint16_t USART_ReceiveData(USART_TypeDef* USARTx)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+
+ /* Receive Data */
+ return (uint16_t)(USARTx->DR & (uint16_t)0x01FF);
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup USART_Group3 MultiProcessor Communication functions
+ * @brief Multi-Processor Communication functions
+ *
+@verbatim
+ ===============================================================================
+ Multi-Processor Communication functions
+ ===============================================================================
+
+ This subsection provides a set of functions allowing to manage the USART
+ multiprocessor communication.
+
+ For instance one of the USARTs can be the master, its TX output is connected to
+ the RX input of the other USART. The others are slaves, their respective TX outputs
+ are logically ANDed together and connected to the RX input of the master.
+
+ USART multiprocessor communication is possible through the following procedure:
+ 1. Program the Baud rate, Word length = 9 bits, Stop bits, Parity, Mode transmitter
+ or Mode receiver and hardware flow control values using the USART_Init()
+ function.
+ 2. Configures the USART address using the USART_SetAddress() function.
+ 3. Configures the wake up method (USART_WakeUp_IdleLine or USART_WakeUp_AddressMark)
+ using USART_WakeUpConfig() function only for the slaves.
+ 4. Enable the USART using the USART_Cmd() function.
+ 5. Enter the USART slaves in mute mode using USART_ReceiverWakeUpCmd() function.
+
+ The USART Slave exit from mute mode when receive the wake up condition.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Sets the address of the USART node.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param USART_Address: Indicates the address of the USART node.
+ * @retval None
+ */
+void USART_SetAddress(USART_TypeDef* USARTx, uint8_t USART_Address)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_USART_ADDRESS(USART_Address));
+
+ /* Clear the USART address */
+ USARTx->CR2 &= (uint16_t)~((uint16_t)USART_CR2_ADD);
+ /* Set the USART address node */
+ USARTx->CR2 |= USART_Address;
+}
+
+/**
+ * @brief Determines if the USART is in mute mode or not.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param NewState: new state of the USART mute mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void USART_ReceiverWakeUpCmd(USART_TypeDef* USARTx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the USART mute mode by setting the RWU bit in the CR1 register */
+ USARTx->CR1 |= USART_CR1_RWU;
+ }
+ else
+ {
+ /* Disable the USART mute mode by clearing the RWU bit in the CR1 register */
+ USARTx->CR1 &= (uint16_t)~((uint16_t)USART_CR1_RWU);
+ }
+}
+/**
+ * @brief Selects the USART WakeUp method.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param USART_WakeUp: specifies the USART wakeup method.
+ * This parameter can be one of the following values:
+ * @arg USART_WakeUp_IdleLine: WakeUp by an idle line detection
+ * @arg USART_WakeUp_AddressMark: WakeUp by an address mark
+ * @retval None
+ */
+void USART_WakeUpConfig(USART_TypeDef* USARTx, uint16_t USART_WakeUp)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_USART_WAKEUP(USART_WakeUp));
+
+ USARTx->CR1 &= (uint16_t)~((uint16_t)USART_CR1_WAKE);
+ USARTx->CR1 |= USART_WakeUp;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup USART_Group4 LIN mode functions
+ * @brief LIN mode functions
+ *
+@verbatim
+ ===============================================================================
+ LIN mode functions
+ ===============================================================================
+
+ This subsection provides a set of functions allowing to manage the USART LIN
+ Mode communication.
+
+ In LIN mode, 8-bit data format with 1 stop bit is required in accordance with
+ the LIN standard.
+
+ Only this LIN Feature is supported by the USART IP:
+ - LIN Master Synchronous Break send capability and LIN slave break detection
+ capability : 13-bit break generation and 10/11 bit break detection
+
+
+ USART LIN Master transmitter communication is possible through the following procedure:
+ 1. Program the Baud rate, Word length = 8bits, Stop bits = 1bit, Parity,
+ Mode transmitter or Mode receiver and hardware flow control values using
+ the USART_Init() function.
+ 2. Enable the USART using the USART_Cmd() function.
+ 3. Enable the LIN mode using the USART_LINCmd() function.
+ 4. Send the break character using USART_SendBreak() function.
+
+ USART LIN Master receiver communication is possible through the following procedure:
+ 1. Program the Baud rate, Word length = 8bits, Stop bits = 1bit, Parity,
+ Mode transmitter or Mode receiver and hardware flow control values using
+ the USART_Init() function.
+ 2. Enable the USART using the USART_Cmd() function.
+ 3. Configures the break detection length using the USART_LINBreakDetectLengthConfig()
+ function.
+ 4. Enable the LIN mode using the USART_LINCmd() function.
+
+
+@note In LIN mode, the following bits must be kept cleared:
+ - CLKEN in the USART_CR2 register,
+ - STOP[1:0], SCEN, HDSEL and IREN in the USART_CR3 register.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Sets the USART LIN Break detection length.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param USART_LINBreakDetectLength: specifies the LIN break detection length.
+ * This parameter can be one of the following values:
+ * @arg USART_LINBreakDetectLength_10b: 10-bit break detection
+ * @arg USART_LINBreakDetectLength_11b: 11-bit break detection
+ * @retval None
+ */
+void USART_LINBreakDetectLengthConfig(USART_TypeDef* USARTx, uint16_t USART_LINBreakDetectLength)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_USART_LIN_BREAK_DETECT_LENGTH(USART_LINBreakDetectLength));
+
+ USARTx->CR2 &= (uint16_t)~((uint16_t)USART_CR2_LBDL);
+ USARTx->CR2 |= USART_LINBreakDetectLength;
+}
+
+/**
+ * @brief Enables or disables the USART's LIN mode.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param NewState: new state of the USART LIN mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void USART_LINCmd(USART_TypeDef* USARTx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the LIN mode by setting the LINEN bit in the CR2 register */
+ USARTx->CR2 |= USART_CR2_LINEN;
+ }
+ else
+ {
+ /* Disable the LIN mode by clearing the LINEN bit in the CR2 register */
+ USARTx->CR2 &= (uint16_t)~((uint16_t)USART_CR2_LINEN);
+ }
+}
+
+/**
+ * @brief Transmits break characters.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @retval None
+ */
+void USART_SendBreak(USART_TypeDef* USARTx)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+
+ /* Send break characters */
+ USARTx->CR1 |= USART_CR1_SBK;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup USART_Group5 Halfduplex mode function
+ * @brief Half-duplex mode function
+ *
+@verbatim
+ ===============================================================================
+ Half-duplex mode function
+ ===============================================================================
+
+ This subsection provides a set of functions allowing to manage the USART
+ Half-duplex communication.
+
+ The USART can be configured to follow a single-wire half-duplex protocol where
+ the TX and RX lines are internally connected.
+
+ USART Half duplex communication is possible through the following procedure:
+ 1. Program the Baud rate, Word length, Stop bits, Parity, Mode transmitter
+ or Mode receiver and hardware flow control values using the USART_Init()
+ function.
+ 2. Configures the USART address using the USART_SetAddress() function.
+ 3. Enable the USART using the USART_Cmd() function.
+ 4. Enable the half duplex mode using USART_HalfDuplexCmd() function.
+
+
+@note The RX pin is no longer used
+@note In Half-duplex mode the following bits must be kept cleared:
+ - LINEN and CLKEN bits in the USART_CR2 register.
+ - SCEN and IREN bits in the USART_CR3 register.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the USART's Half Duplex communication.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param NewState: new state of the USART Communication.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void USART_HalfDuplexCmd(USART_TypeDef* USARTx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
+ USARTx->CR3 |= USART_CR3_HDSEL;
+ }
+ else
+ {
+ /* Disable the Half-Duplex mode by clearing the HDSEL bit in the CR3 register */
+ USARTx->CR3 &= (uint16_t)~((uint16_t)USART_CR3_HDSEL);
+ }
+}
+
+/**
+ * @}
+ */
+
+
+/** @defgroup USART_Group6 Smartcard mode functions
+ * @brief Smartcard mode functions
+ *
+@verbatim
+ ===============================================================================
+ Smartcard mode functions
+ ===============================================================================
+
+ This subsection provides a set of functions allowing to manage the USART
+ Smartcard communication.
+
+ The Smartcard interface is designed to support asynchronous protocol Smartcards as
+ defined in the ISO 7816-3 standard.
+
+ The USART can provide a clock to the smartcard through the SCLK output.
+ In smartcard mode, SCLK is not associated to the communication but is simply derived
+ from the internal peripheral input clock through a 5-bit prescaler.
+
+ Smartcard communication is possible through the following procedure:
+ 1. Configures the Smartcard Prescaler using the USART_SetPrescaler() function.
+ 2. Configures the Smartcard Guard Time using the USART_SetGuardTime() function.
+ 3. Program the USART clock using the USART_ClockInit() function as following:
+ - USART Clock enabled
+ - USART CPOL Low
+ - USART CPHA on first edge
+ - USART Last Bit Clock Enabled
+ 4. Program the Smartcard interface using the USART_Init() function as following:
+ - Word Length = 9 Bits
+ - 1.5 Stop Bit
+ - Even parity
+ - BaudRate = 12096 baud
+ - Hardware flow control disabled (RTS and CTS signals)
+ - Tx and Rx enabled
+ 5. Optionally you can enable the parity error interrupt using the USART_ITConfig()
+ function
+ 6. Enable the USART using the USART_Cmd() function.
+ 7. Enable the Smartcard NACK using the USART_SmartCardNACKCmd() function.
+ 8. Enable the Smartcard interface using the USART_SmartCardCmd() function.
+
+ Please refer to the ISO 7816-3 specification for more details.
+
+
+@note It is also possible to choose 0.5 stop bit for receiving but it is recommended
+ to use 1.5 stop bits for both transmitting and receiving to avoid switching
+ between the two configurations.
+@note In smartcard mode, the following bits must be kept cleared:
+ - LINEN bit in the USART_CR2 register.
+ - HDSEL and IREN bits in the USART_CR3 register.
+@note Smartcard mode is available on USART peripherals only (not available on UART4
+ and UART5 peripherals).
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Sets the specified USART guard time.
+ * @param USARTx: where x can be 1, 2, 3 or 6 to select the USART or
+ * UART peripheral.
+ * @param USART_GuardTime: specifies the guard time.
+ * @retval None
+ */
+void USART_SetGuardTime(USART_TypeDef* USARTx, uint8_t USART_GuardTime)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_1236_PERIPH(USARTx));
+
+ /* Clear the USART Guard time */
+ USARTx->GTPR &= USART_GTPR_PSC;
+ /* Set the USART guard time */
+ USARTx->GTPR |= (uint16_t)((uint16_t)USART_GuardTime << 0x08);
+}
+
+/**
+ * @brief Enables or disables the USART's Smart Card mode.
+ * @param USARTx: where x can be 1, 2, 3 or 6 to select the USART or
+ * UART peripheral.
+ * @param NewState: new state of the Smart Card mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void USART_SmartCardCmd(USART_TypeDef* USARTx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_1236_PERIPH(USARTx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the SC mode by setting the SCEN bit in the CR3 register */
+ USARTx->CR3 |= USART_CR3_SCEN;
+ }
+ else
+ {
+ /* Disable the SC mode by clearing the SCEN bit in the CR3 register */
+ USARTx->CR3 &= (uint16_t)~((uint16_t)USART_CR3_SCEN);
+ }
+}
+
+/**
+ * @brief Enables or disables NACK transmission.
+ * @param USARTx: where x can be 1, 2, 3 or 6 to select the USART or
+ * UART peripheral.
+ * @param NewState: new state of the NACK transmission.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void USART_SmartCardNACKCmd(USART_TypeDef* USARTx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_1236_PERIPH(USARTx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+ if (NewState != DISABLE)
+ {
+ /* Enable the NACK transmission by setting the NACK bit in the CR3 register */
+ USARTx->CR3 |= USART_CR3_NACK;
+ }
+ else
+ {
+ /* Disable the NACK transmission by clearing the NACK bit in the CR3 register */
+ USARTx->CR3 &= (uint16_t)~((uint16_t)USART_CR3_NACK);
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup USART_Group7 IrDA mode functions
+ * @brief IrDA mode functions
+ *
+@verbatim
+ ===============================================================================
+ IrDA mode functions
+ ===============================================================================
+
+ This subsection provides a set of functions allowing to manage the USART
+ IrDA communication.
+
+ IrDA is a half duplex communication protocol. If the Transmitter is busy, any data
+ on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver
+ is busy, data on the TX from the USART to IrDA will not be encoded by IrDA.
+ While receiving data, transmission should be avoided as the data to be transmitted
+ could be corrupted.
+
+ IrDA communication is possible through the following procedure:
+ 1. Program the Baud rate, Word length = 8 bits, Stop bits, Parity, Transmitter/Receiver
+ modes and hardware flow control values using the USART_Init() function.
+ 2. Enable the USART using the USART_Cmd() function.
+ 3. Configures the IrDA pulse width by configuring the prescaler using
+ the USART_SetPrescaler() function.
+ 4. Configures the IrDA USART_IrDAMode_LowPower or USART_IrDAMode_Normal mode
+ using the USART_IrDAConfig() function.
+ 5. Enable the IrDA using the USART_IrDACmd() function.
+
+@note A pulse of width less than two and greater than one PSC period(s) may or may
+ not be rejected.
+@note The receiver set up time should be managed by software. The IrDA physical layer
+ specification specifies a minimum of 10 ms delay between transmission and
+ reception (IrDA is a half duplex protocol).
+@note In IrDA mode, the following bits must be kept cleared:
+ - LINEN, STOP and CLKEN bits in the USART_CR2 register.
+ - SCEN and HDSEL bits in the USART_CR3 register.
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Configures the USART's IrDA interface.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param USART_IrDAMode: specifies the IrDA mode.
+ * This parameter can be one of the following values:
+ * @arg USART_IrDAMode_LowPower
+ * @arg USART_IrDAMode_Normal
+ * @retval None
+ */
+void USART_IrDAConfig(USART_TypeDef* USARTx, uint16_t USART_IrDAMode)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_USART_IRDA_MODE(USART_IrDAMode));
+
+ USARTx->CR3 &= (uint16_t)~((uint16_t)USART_CR3_IRLP);
+ USARTx->CR3 |= USART_IrDAMode;
+}
+
+/**
+ * @brief Enables or disables the USART's IrDA interface.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param NewState: new state of the IrDA mode.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void USART_IrDACmd(USART_TypeDef* USARTx, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the IrDA mode by setting the IREN bit in the CR3 register */
+ USARTx->CR3 |= USART_CR3_IREN;
+ }
+ else
+ {
+ /* Disable the IrDA mode by clearing the IREN bit in the CR3 register */
+ USARTx->CR3 &= (uint16_t)~((uint16_t)USART_CR3_IREN);
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup USART_Group8 DMA transfers management functions
+ * @brief DMA transfers management functions
+ *
+@verbatim
+ ===============================================================================
+ DMA transfers management functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the USART's DMA interface.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param USART_DMAReq: specifies the DMA request.
+ * This parameter can be any combination of the following values:
+ * @arg USART_DMAReq_Tx: USART DMA transmit request
+ * @arg USART_DMAReq_Rx: USART DMA receive request
+ * @param NewState: new state of the DMA Request sources.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void USART_DMACmd(USART_TypeDef* USARTx, uint16_t USART_DMAReq, FunctionalState NewState)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_USART_DMAREQ(USART_DMAReq));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ if (NewState != DISABLE)
+ {
+ /* Enable the DMA transfer for selected requests by setting the DMAT and/or
+ DMAR bits in the USART CR3 register */
+ USARTx->CR3 |= USART_DMAReq;
+ }
+ else
+ {
+ /* Disable the DMA transfer for selected requests by clearing the DMAT and/or
+ DMAR bits in the USART CR3 register */
+ USARTx->CR3 &= (uint16_t)~USART_DMAReq;
+ }
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup USART_Group9 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts and flags management functions
+ ===============================================================================
+
+ This subsection provides a set of functions allowing to configure the USART
+ Interrupts sources, DMA channels requests and check or clear the flags or
+ pending bits status.
+ The user should identify which mode will be used in his application to manage
+ the communication: Polling mode, Interrupt mode or DMA mode.
+
+ Polling Mode
+ =============
+ In Polling Mode, the SPI communication can be managed by 10 flags:
+ 1. USART_FLAG_TXE : to indicate the status of the transmit buffer register
+ 2. USART_FLAG_RXNE : to indicate the status of the receive buffer register
+ 3. USART_FLAG_TC : to indicate the status of the transmit operation
+ 4. USART_FLAG_IDLE : to indicate the status of the Idle Line
+ 5. USART_FLAG_CTS : to indicate the status of the nCTS input
+ 6. USART_FLAG_LBD : to indicate the status of the LIN break detection
+ 7. USART_FLAG_NE : to indicate if a noise error occur
+ 8. USART_FLAG_FE : to indicate if a frame error occur
+ 9. USART_FLAG_PE : to indicate if a parity error occur
+ 10. USART_FLAG_ORE : to indicate if an Overrun error occur
+
+ In this Mode it is advised to use the following functions:
+ - FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);
+ - void USART_ClearFlag(USART_TypeDef* USARTx, uint16_t USART_FLAG);
+
+ Interrupt Mode
+ ===============
+ In Interrupt Mode, the USART communication can be managed by 8 interrupt sources
+ and 10 pending bits:
+
+ Pending Bits:
+ -------------
+ 1. USART_IT_TXE : to indicate the status of the transmit buffer register
+ 2. USART_IT_RXNE : to indicate the status of the receive buffer register
+ 3. USART_IT_TC : to indicate the status of the transmit operation
+ 4. USART_IT_IDLE : to indicate the status of the Idle Line
+ 5. USART_IT_CTS : to indicate the status of the nCTS input
+ 6. USART_IT_LBD : to indicate the status of the LIN break detection
+ 7. USART_IT_NE : to indicate if a noise error occur
+ 8. USART_IT_FE : to indicate if a frame error occur
+ 9. USART_IT_PE : to indicate if a parity error occur
+ 10. USART_IT_ORE : to indicate if an Overrun error occur
+
+ Interrupt Source:
+ -----------------
+ 1. USART_IT_TXE : specifies the interrupt source for the Tx buffer empty
+ interrupt.
+ 2. USART_IT_RXNE : specifies the interrupt source for the Rx buffer not
+ empty interrupt.
+ 3. USART_IT_TC : specifies the interrupt source for the Transmit complete
+ interrupt.
+ 4. USART_IT_IDLE : specifies the interrupt source for the Idle Line interrupt.
+ 5. USART_IT_CTS : specifies the interrupt source for the CTS interrupt.
+ 6. USART_IT_LBD : specifies the interrupt source for the LIN break detection
+ interrupt.
+ 7. USART_IT_PE : specifies the interrupt source for the parity error interrupt.
+ 8. USART_IT_ERR : specifies the interrupt source for the errors interrupt.
+
+@note Some parameters are coded in order to use them as interrupt source or as pending bits.
+
+ In this Mode it is advised to use the following functions:
+ - void USART_ITConfig(USART_TypeDef* USARTx, uint16_t USART_IT, FunctionalState NewState);
+ - ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint16_t USART_IT);
+ - void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint16_t USART_IT);
+
+ DMA Mode
+ ========
+ In DMA Mode, the USART communication can be managed by 2 DMA Channel requests:
+ 1. USART_DMAReq_Tx: specifies the Tx buffer DMA transfer request
+ 2. USART_DMAReq_Rx: specifies the Rx buffer DMA transfer request
+
+ In this Mode it is advised to use the following function:
+ - void USART_DMACmd(USART_TypeDef* USARTx, uint16_t USART_DMAReq, FunctionalState NewState);
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables or disables the specified USART interrupts.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param USART_IT: specifies the USART interrupt sources to be enabled or disabled.
+ * This parameter can be one of the following values:
+ * @arg USART_IT_CTS: CTS change interrupt
+ * @arg USART_IT_LBD: LIN Break detection interrupt
+ * @arg USART_IT_TXE: Transmit Data Register empty interrupt
+ * @arg USART_IT_TC: Transmission complete interrupt
+ * @arg USART_IT_RXNE: Receive Data register not empty interrupt
+ * @arg USART_IT_IDLE: Idle line detection interrupt
+ * @arg USART_IT_PE: Parity Error interrupt
+ * @arg USART_IT_ERR: Error interrupt(Frame error, noise error, overrun error)
+ * @param NewState: new state of the specified USARTx interrupts.
+ * This parameter can be: ENABLE or DISABLE.
+ * @retval None
+ */
+void USART_ITConfig(USART_TypeDef* USARTx, uint16_t USART_IT, FunctionalState NewState)
+{
+ uint32_t usartreg = 0x00, itpos = 0x00, itmask = 0x00;
+ uint32_t usartxbase = 0x00;
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_USART_CONFIG_IT(USART_IT));
+ assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+ /* The CTS interrupt is not available for UART4 and UART5 */
+ if (USART_IT == USART_IT_CTS)
+ {
+ assert_param(IS_USART_1236_PERIPH(USARTx));
+ }
+
+ usartxbase = (uint32_t)USARTx;
+
+ /* Get the USART register index */
+ usartreg = (((uint8_t)USART_IT) >> 0x05);
+
+ /* Get the interrupt position */
+ itpos = USART_IT & IT_MASK;
+ itmask = (((uint32_t)0x01) << itpos);
+
+ if (usartreg == 0x01) /* The IT is in CR1 register */
+ {
+ usartxbase += 0x0C;
+ }
+ else if (usartreg == 0x02) /* The IT is in CR2 register */
+ {
+ usartxbase += 0x10;
+ }
+ else /* The IT is in CR3 register */
+ {
+ usartxbase += 0x14;
+ }
+ if (NewState != DISABLE)
+ {
+ *(__IO uint32_t*)usartxbase |= itmask;
+ }
+ else
+ {
+ *(__IO uint32_t*)usartxbase &= ~itmask;
+ }
+}
+
+/**
+ * @brief Checks whether the specified USART flag is set or not.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param USART_FLAG: specifies the flag to check.
+ * This parameter can be one of the following values:
+ * @arg USART_FLAG_CTS: CTS Change flag (not available for UART4 and UART5)
+ * @arg USART_FLAG_LBD: LIN Break detection flag
+ * @arg USART_FLAG_TXE: Transmit data register empty flag
+ * @arg USART_FLAG_TC: Transmission Complete flag
+ * @arg USART_FLAG_RXNE: Receive data register not empty flag
+ * @arg USART_FLAG_IDLE: Idle Line detection flag
+ * @arg USART_FLAG_ORE: OverRun Error flag
+ * @arg USART_FLAG_NE: Noise Error flag
+ * @arg USART_FLAG_FE: Framing Error flag
+ * @arg USART_FLAG_PE: Parity Error flag
+ * @retval The new state of USART_FLAG (SET or RESET).
+ */
+FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG)
+{
+ FlagStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_USART_FLAG(USART_FLAG));
+
+ /* The CTS flag is not available for UART4 and UART5 */
+ if (USART_FLAG == USART_FLAG_CTS)
+ {
+ assert_param(IS_USART_1236_PERIPH(USARTx));
+ }
+
+ if ((USARTx->SR & USART_FLAG) != (uint16_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the USARTx's pending flags.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param USART_FLAG: specifies the flag to clear.
+ * This parameter can be any combination of the following values:
+ * @arg USART_FLAG_CTS: CTS Change flag (not available for UART4 and UART5).
+ * @arg USART_FLAG_LBD: LIN Break detection flag.
+ * @arg USART_FLAG_TC: Transmission Complete flag.
+ * @arg USART_FLAG_RXNE: Receive data register not empty flag.
+ *
+ * @note PE (Parity error), FE (Framing error), NE (Noise error), ORE (OverRun
+ * error) and IDLE (Idle line detected) flags are cleared by software
+ * sequence: a read operation to USART_SR register (USART_GetFlagStatus())
+ * followed by a read operation to USART_DR register (USART_ReceiveData()).
+ * @note RXNE flag can be also cleared by a read to the USART_DR register
+ * (USART_ReceiveData()).
+ * @note TC flag can be also cleared by software sequence: a read operation to
+ * USART_SR register (USART_GetFlagStatus()) followed by a write operation
+ * to USART_DR register (USART_SendData()).
+ * @note TXE flag is cleared only by a write to the USART_DR register
+ * (USART_SendData()).
+ *
+ * @retval None
+ */
+void USART_ClearFlag(USART_TypeDef* USARTx, uint16_t USART_FLAG)
+{
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_USART_CLEAR_FLAG(USART_FLAG));
+
+ /* The CTS flag is not available for UART4 and UART5 */
+ if ((USART_FLAG & USART_FLAG_CTS) == USART_FLAG_CTS)
+ {
+ assert_param(IS_USART_1236_PERIPH(USARTx));
+ }
+
+ USARTx->SR = (uint16_t)~USART_FLAG;
+}
+
+/**
+ * @brief Checks whether the specified USART interrupt has occurred or not.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param USART_IT: specifies the USART interrupt source to check.
+ * This parameter can be one of the following values:
+ * @arg USART_IT_CTS: CTS change interrupt (not available for UART4 and UART5)
+ * @arg USART_IT_LBD: LIN Break detection interrupt
+ * @arg USART_IT_TXE: Transmit Data Register empty interrupt
+ * @arg USART_IT_TC: Transmission complete interrupt
+ * @arg USART_IT_RXNE: Receive Data register not empty interrupt
+ * @arg USART_IT_IDLE: Idle line detection interrupt
+ * @arg USART_IT_ORE_RX : OverRun Error interrupt if the RXNEIE bit is set
+ * @arg USART_IT_ORE_ER : OverRun Error interrupt if the EIE bit is set
+ * @arg USART_IT_NE: Noise Error interrupt
+ * @arg USART_IT_FE: Framing Error interrupt
+ * @arg USART_IT_PE: Parity Error interrupt
+ * @retval The new state of USART_IT (SET or RESET).
+ */
+ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint16_t USART_IT)
+{
+ uint32_t bitpos = 0x00, itmask = 0x00, usartreg = 0x00;
+ ITStatus bitstatus = RESET;
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_USART_GET_IT(USART_IT));
+
+ /* The CTS interrupt is not available for UART4 and UART5 */
+ if (USART_IT == USART_IT_CTS)
+ {
+ assert_param(IS_USART_1236_PERIPH(USARTx));
+ }
+
+ /* Get the USART register index */
+ usartreg = (((uint8_t)USART_IT) >> 0x05);
+ /* Get the interrupt position */
+ itmask = USART_IT & IT_MASK;
+ itmask = (uint32_t)0x01 << itmask;
+
+ if (usartreg == 0x01) /* The IT is in CR1 register */
+ {
+ itmask &= USARTx->CR1;
+ }
+ else if (usartreg == 0x02) /* The IT is in CR2 register */
+ {
+ itmask &= USARTx->CR2;
+ }
+ else /* The IT is in CR3 register */
+ {
+ itmask &= USARTx->CR3;
+ }
+
+ bitpos = USART_IT >> 0x08;
+ bitpos = (uint32_t)0x01 << bitpos;
+ bitpos &= USARTx->SR;
+ if ((itmask != (uint16_t)RESET)&&(bitpos != (uint16_t)RESET))
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+
+ return bitstatus;
+}
+
+/**
+ * @brief Clears the USARTx's interrupt pending bits.
+ * @param USARTx: where x can be 1, 2, 3, 4, 5 or 6 to select the USART or
+ * UART peripheral.
+ * @param USART_IT: specifies the interrupt pending bit to clear.
+ * This parameter can be one of the following values:
+ * @arg USART_IT_CTS: CTS change interrupt (not available for UART4 and UART5)
+ * @arg USART_IT_LBD: LIN Break detection interrupt
+ * @arg USART_IT_TC: Transmission complete interrupt.
+ * @arg USART_IT_RXNE: Receive Data register not empty interrupt.
+ *
+ * @note PE (Parity error), FE (Framing error), NE (Noise error), ORE (OverRun
+ * error) and IDLE (Idle line detected) pending bits are cleared by
+ * software sequence: a read operation to USART_SR register
+ * (USART_GetITStatus()) followed by a read operation to USART_DR register
+ * (USART_ReceiveData()).
+ * @note RXNE pending bit can be also cleared by a read to the USART_DR register
+ * (USART_ReceiveData()).
+ * @note TC pending bit can be also cleared by software sequence: a read
+ * operation to USART_SR register (USART_GetITStatus()) followed by a write
+ * operation to USART_DR register (USART_SendData()).
+ * @note TXE pending bit is cleared only by a write to the USART_DR register
+ * (USART_SendData()).
+ *
+ * @retval None
+ */
+void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint16_t USART_IT)
+{
+ uint16_t bitpos = 0x00, itmask = 0x00;
+ /* Check the parameters */
+ assert_param(IS_USART_ALL_PERIPH(USARTx));
+ assert_param(IS_USART_CLEAR_IT(USART_IT));
+
+ /* The CTS interrupt is not available for UART4 and UART5 */
+ if (USART_IT == USART_IT_CTS)
+ {
+ assert_param(IS_USART_1236_PERIPH(USARTx));
+ }
+
+ bitpos = USART_IT >> 0x08;
+ itmask = ((uint16_t)0x01 << (uint16_t)bitpos);
+ USARTx->SR = (uint16_t)~itmask;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/SPL/src/stm32f4xx_wwdg.c b/TimerCounter/SPL/src/stm32f4xx_wwdg.c
new file mode 100644
index 0000000..816a92d
--- /dev/null
+++ b/TimerCounter/SPL/src/stm32f4xx_wwdg.c
@@ -0,0 +1,303 @@
+/**
+ ******************************************************************************
+ * @file stm32f4xx_wwdg.c
+ * @author MCD Application Team
+ * @version V1.0.0
+ * @date 30-September-2011
+ * @brief This file provides firmware functions to manage the following
+ * functionalities of the Window watchdog (WWDG) peripheral:
+ * - Prescaler, Refresh window and Counter configuration
+ * - WWDG activation
+ * - Interrupts and flags management
+ *
+ * @verbatim
+ *
+ * ===================================================================
+ * WWDG features
+ * ===================================================================
+ *
+ * Once enabled the WWDG generates a system reset on expiry of a programmed
+ * time period, unless the program refreshes the counter (downcounter)
+ * before to reach 0x3F value (i.e. a reset is generated when the counter
+ * value rolls over from 0x40 to 0x3F).
+ * An MCU reset is also generated if the counter value is refreshed
+ * before the counter has reached the refresh window value. This
+ * implies that the counter must be refreshed in a limited window.
+ *
+ * Once enabled the WWDG cannot be disabled except by a system reset.
+ *
+ * WWDGRST flag in RCC_CSR register can be used to inform when a WWDG
+ * reset occurs.
+ *
+ * The WWDG counter input clock is derived from the APB clock divided
+ * by a programmable prescaler.
+ *
+ * WWDG counter clock = PCLK1 / Prescaler
+ * WWDG timeout = (WWDG counter clock) * (counter value)
+ *
+ * Min-max timeout value @42 MHz(PCLK1): ~97.5 us / ~49.9 ms
+ *
+ * ===================================================================
+ * How to use this driver
+ * ===================================================================
+ * 1. Enable WWDG clock using RCC_APB1PeriphClockCmd(RCC_APB1Periph_WWDG, ENABLE) function
+ *
+ * 2. Configure the WWDG prescaler using WWDG_SetPrescaler() function
+ *
+ * 3. Configure the WWDG refresh window using WWDG_SetWindowValue() function
+ *
+ * 4. Set the WWDG counter value and start it using WWDG_Enable() function.
+ * When the WWDG is enabled the counter value should be configured to
+ * a value greater than 0x40 to prevent generating an immediate reset.
+ *
+ * 5. Optionally you can enable the Early wakeup interrupt which is
+ * generated when the counter reach 0x40.
+ * Once enabled this interrupt cannot be disabled except by a system reset.
+ *
+ * 6. Then the application program must refresh the WWDG counter at regular
+ * intervals during normal operation to prevent an MCU reset, using
+ * WWDG_SetCounter() function. This operation must occur only when
+ * the counter value is lower than the refresh window value,
+ * programmed using WWDG_SetWindowValue().
+ *
+ * @endverbatim
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+ * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+ * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+ * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+ * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+ * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+ *
+ *
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_wwdg.h"
+#include "stm32f4xx_rcc.h"
+
+/** @addtogroup STM32F4xx_StdPeriph_Driver
+ * @{
+ */
+
+/** @defgroup WWDG
+ * @brief WWDG driver modules
+ * @{
+ */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+
+/* ----------- WWDG registers bit address in the alias region ----------- */
+#define WWDG_OFFSET (WWDG_BASE - PERIPH_BASE)
+/* Alias word address of EWI bit */
+#define CFR_OFFSET (WWDG_OFFSET + 0x04)
+#define EWI_BitNumber 0x09
+#define CFR_EWI_BB (PERIPH_BB_BASE + (CFR_OFFSET * 32) + (EWI_BitNumber * 4))
+
+/* --------------------- WWDG registers bit mask ------------------------ */
+/* CFR register bit mask */
+#define CFR_WDGTB_MASK ((uint32_t)0xFFFFFE7F)
+#define CFR_W_MASK ((uint32_t)0xFFFFFF80)
+#define BIT_MASK ((uint8_t)0x7F)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup WWDG_Private_Functions
+ * @{
+ */
+
+/** @defgroup WWDG_Group1 Prescaler, Refresh window and Counter configuration functions
+ * @brief Prescaler, Refresh window and Counter configuration functions
+ *
+@verbatim
+ ===============================================================================
+ Prescaler, Refresh window and Counter configuration functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Deinitializes the WWDG peripheral registers to their default reset values.
+ * @param None
+ * @retval None
+ */
+void WWDG_DeInit(void)
+{
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_WWDG, ENABLE);
+ RCC_APB1PeriphResetCmd(RCC_APB1Periph_WWDG, DISABLE);
+}
+
+/**
+ * @brief Sets the WWDG Prescaler.
+ * @param WWDG_Prescaler: specifies the WWDG Prescaler.
+ * This parameter can be one of the following values:
+ * @arg WWDG_Prescaler_1: WWDG counter clock = (PCLK1/4096)/1
+ * @arg WWDG_Prescaler_2: WWDG counter clock = (PCLK1/4096)/2
+ * @arg WWDG_Prescaler_4: WWDG counter clock = (PCLK1/4096)/4
+ * @arg WWDG_Prescaler_8: WWDG counter clock = (PCLK1/4096)/8
+ * @retval None
+ */
+void WWDG_SetPrescaler(uint32_t WWDG_Prescaler)
+{
+ uint32_t tmpreg = 0;
+ /* Check the parameters */
+ assert_param(IS_WWDG_PRESCALER(WWDG_Prescaler));
+ /* Clear WDGTB[1:0] bits */
+ tmpreg = WWDG->CFR & CFR_WDGTB_MASK;
+ /* Set WDGTB[1:0] bits according to WWDG_Prescaler value */
+ tmpreg |= WWDG_Prescaler;
+ /* Store the new value */
+ WWDG->CFR = tmpreg;
+}
+
+/**
+ * @brief Sets the WWDG window value.
+ * @param WindowValue: specifies the window value to be compared to the downcounter.
+ * This parameter value must be lower than 0x80.
+ * @retval None
+ */
+void WWDG_SetWindowValue(uint8_t WindowValue)
+{
+ __IO uint32_t tmpreg = 0;
+
+ /* Check the parameters */
+ assert_param(IS_WWDG_WINDOW_VALUE(WindowValue));
+ /* Clear W[6:0] bits */
+
+ tmpreg = WWDG->CFR & CFR_W_MASK;
+
+ /* Set W[6:0] bits according to WindowValue value */
+ tmpreg |= WindowValue & (uint32_t) BIT_MASK;
+
+ /* Store the new value */
+ WWDG->CFR = tmpreg;
+}
+
+/**
+ * @brief Enables the WWDG Early Wakeup interrupt(EWI).
+ * @note Once enabled this interrupt cannot be disabled except by a system reset.
+ * @param None
+ * @retval None
+ */
+void WWDG_EnableIT(void)
+{
+ *(__IO uint32_t *) CFR_EWI_BB = (uint32_t)ENABLE;
+}
+
+/**
+ * @brief Sets the WWDG counter value.
+ * @param Counter: specifies the watchdog counter value.
+ * This parameter must be a number between 0x40 and 0x7F (to prevent generating
+ * an immediate reset)
+ * @retval None
+ */
+void WWDG_SetCounter(uint8_t Counter)
+{
+ /* Check the parameters */
+ assert_param(IS_WWDG_COUNTER(Counter));
+ /* Write to T[6:0] bits to configure the counter value, no need to do
+ a read-modify-write; writing a 0 to WDGA bit does nothing */
+ WWDG->CR = Counter & BIT_MASK;
+}
+/**
+ * @}
+ */
+
+/** @defgroup WWDG_Group2 WWDG activation functions
+ * @brief WWDG activation functions
+ *
+@verbatim
+ ===============================================================================
+ WWDG activation function
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Enables WWDG and load the counter value.
+ * @param Counter: specifies the watchdog counter value.
+ * This parameter must be a number between 0x40 and 0x7F (to prevent generating
+ * an immediate reset)
+ * @retval None
+ */
+void WWDG_Enable(uint8_t Counter)
+{
+ /* Check the parameters */
+ assert_param(IS_WWDG_COUNTER(Counter));
+ WWDG->CR = WWDG_CR_WDGA | Counter;
+}
+/**
+ * @}
+ */
+
+/** @defgroup WWDG_Group3 Interrupts and flags management functions
+ * @brief Interrupts and flags management functions
+ *
+@verbatim
+ ===============================================================================
+ Interrupts and flags management functions
+ ===============================================================================
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Checks whether the Early Wakeup interrupt flag is set or not.
+ * @param None
+ * @retval The new state of the Early Wakeup interrupt flag (SET or RESET)
+ */
+FlagStatus WWDG_GetFlagStatus(void)
+{
+ FlagStatus bitstatus = RESET;
+
+ if ((WWDG->SR) != (uint32_t)RESET)
+ {
+ bitstatus = SET;
+ }
+ else
+ {
+ bitstatus = RESET;
+ }
+ return bitstatus;
+}
+
+/**
+ * @brief Clears Early Wakeup interrupt flag.
+ * @param None
+ * @retval None
+ */
+void WWDG_ClearFlag(void)
+{
+ WWDG->SR = (uint32_t)RESET;
+}
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
diff --git a/TimerCounter/TimerCounter.ebp b/TimerCounter/TimerCounter.ebp
new file mode 100644
index 0000000..8bf0d4a
--- /dev/null
+++ b/TimerCounter/TimerCounter.ebp
@@ -0,0 +1,226 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/TimerCounter/TimerCounter.elay b/TimerCounter/TimerCounter.elay
new file mode 100644
index 0000000..470d357
--- /dev/null
+++ b/TimerCounter/TimerCounter.elay
@@ -0,0 +1,9 @@
+
+
+
+
+
+
+
+
+
diff --git a/TimerCounter/cmsis/arm_common_tables.h b/TimerCounter/cmsis/arm_common_tables.h
new file mode 100644
index 0000000..7245c4f
--- /dev/null
+++ b/TimerCounter/cmsis/arm_common_tables.h
@@ -0,0 +1,35 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010 ARM Limited. All rights reserved.
+*
+* $Date: 11. November 2010
+* $Revision: V1.0.2
+*
+* Project: CMSIS DSP Library
+* Title: arm_common_tables.h
+*
+* Description: This file has extern declaration for common tables like Bitreverse, reciprocal etc which are used across different functions
+*
+* Target Processor: Cortex-M4/Cortex-M3
+*
+* Version 1.0.2 2010/11/11
+* Documentation updated.
+*
+* Version 1.0.1 2010/10/05
+* Production release and review comments incorporated.
+*
+* Version 1.0.0 2010/09/20
+* Production release and review comments incorporated.
+* -------------------------------------------------------------------- */
+
+#ifndef _ARM_COMMON_TABLES_H
+#define _ARM_COMMON_TABLES_H
+
+#include "arm_math.h"
+
+extern uint16_t armBitRevTable[256];
+extern q15_t armRecipTableQ15[64];
+extern q31_t armRecipTableQ31[64];
+extern const q31_t realCoefAQ31[1024];
+extern const q31_t realCoefBQ31[1024];
+
+#endif /* ARM_COMMON_TABLES_H */
diff --git a/TimerCounter/cmsis/arm_math.h b/TimerCounter/cmsis/arm_math.h
new file mode 100644
index 0000000..ffa03b6
--- /dev/null
+++ b/TimerCounter/cmsis/arm_math.h
@@ -0,0 +1,7051 @@
+/* ----------------------------------------------------------------------
+ * Copyright (C) 2010 ARM Limited. All rights reserved.
+ *
+ * $Date: 15. July 2011
+ * $Revision: V1.0.10
+ *
+ * Project: CMSIS DSP Library
+ * Title: arm_math.h
+ *
+ * Description: Public header file for CMSIS DSP Library
+ *
+ * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+ *
+ * Version 1.0.10 2011/7/15
+ * Big Endian support added and Merged M0 and M3/M4 Source code.
+ *
+ * Version 1.0.3 2010/11/29
+ * Re-organized the CMSIS folders and updated documentation.
+ *
+ * Version 1.0.2 2010/11/11
+ * Documentation updated.
+ *
+ * Version 1.0.1 2010/10/05
+ * Production release and review comments incorporated.
+ *
+ * Version 1.0.0 2010/09/20
+ * Production release and review comments incorporated.
+ * -------------------------------------------------------------------- */
+
+/**
+ \mainpage CMSIS DSP Software Library
+ *
+ * Introduction
+ *
+ * This user manual describes the CMSIS DSP software library,
+ * a suite of common signal processing functions for use on Cortex-M processor based devices.
+ *
+ * The library is divided into a number of modules each covering a specific category:
+ * - Basic math functions
+ * - Fast math functions
+ * - Complex math functions
+ * - Filters
+ * - Matrix functions
+ * - Transforms
+ * - Motor control functions
+ * - Statistical functions
+ * - Support functions
+ * - Interpolation functions
+ *
+ * The library has separate functions for operating on 8-bit integers, 16-bit integers,
+ * 32-bit integer and 32-bit floating-point values.
+ *
+ * Processor Support
+ *
+ * The library is completely written in C and is fully CMSIS compliant.
+ * High performance is achieved through maximum use of Cortex-M4 intrinsics.
+ *
+ * The supplied library source code also builds and runs on the Cortex-M3 and Cortex-M0 processor,
+ * with the DSP intrinsics being emulated through software.
+ *
+ *
+ * Toolchain Support
+ *
+ * The library has been developed and tested with MDK-ARM version 4.21.
+ * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
+ *
+ * Using the Library
+ *
+ * The library installer contains prebuilt versions of the libraries in the Lib folder.
+ * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
+ * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
+ * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
+ * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
+ * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
+ * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
+ * - arm_cortexM0l_math.lib (Little endian on Cortex-M0)
+ * - arm_cortexM0b_math.lib (Big endian on Cortex-M3)
+ *
+ * The library functions are declared in the public file arm_math.h which is placed in the Include folder.
+ * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
+ * public header file arm_math.h for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
+ * Define the appropriate pre processor MACRO ARM_MATH_CM4 or ARM_MATH_CM3 or
+ * ARM_MATH_CM0 depending on the target processor in the application.
+ *
+ * Examples
+ *
+ * The library ships with a number of examples which demonstrate how to use the library functions.
+ *
+ * Building the Library
+ *
+ * The library installer contains project files to re build libraries on MDK Tool chain in the CMSIS\DSP_Lib\Source\ARM folder.
+ * - arm_cortexM0b_math.uvproj
+ * - arm_cortexM0l_math.uvproj
+ * - arm_cortexM3b_math.uvproj
+ * - arm_cortexM3l_math.uvproj
+ * - arm_cortexM4b_math.uvproj
+ * - arm_cortexM4l_math.uvproj
+ * - arm_cortexM4bf_math.uvproj
+ * - arm_cortexM4lf_math.uvproj
+ *
+ * Each library project have differant pre-processor macros.
+ *
+ * ARM_MATH_CMx:
+ * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
+ * and ARM_MATH_CM0 for building library on cortex-M0 target.
+ *
+ * ARM_MATH_BIG_ENDIAN:
+ * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
+ *
+ * ARM_MATH_MATRIX_CHECK:
+ * Define macro for checking on the input and output sizes of matrices
+ *
+ * ARM_MATH_ROUNDING:
+ * Define macro for rounding on support functions
+ *
+ * __FPU_PRESENT:
+ * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
+ *
+ *
+ * The project can be built by opening the appropriate project in MDK-ARM 4.21 chain and defining the optional pre processor MACROs detailed above.
+ *
+ * Copyright Notice
+ *
+ * Copyright (C) 2010 ARM Limited. All rights reserved.
+ */
+
+
+/**
+ * @defgroup groupMath Basic Math Functions
+ */
+
+/**
+ * @defgroup groupFastMath Fast Math Functions
+ * This set of functions provides a fast approximation to sine, cosine, and square root.
+ * As compared to most of the other functions in the CMSIS math library, the fast math functions
+ * operate on individual values and not arrays.
+ * There are separate functions for Q15, Q31, and floating-point data.
+ *
+ */
+
+/**
+ * @defgroup groupCmplxMath Complex Math Functions
+ * This set of functions operates on complex data vectors.
+ * The data in the complex arrays is stored in an interleaved fashion
+ * (real, imag, real, imag, ...).
+ * In the API functions, the number of samples in a complex array refers
+ * to the number of complex values; the array contains twice this number of
+ * real values.
+ */
+
+/**
+ * @defgroup groupFilters Filtering Functions
+ */
+
+/**
+ * @defgroup groupMatrix Matrix Functions
+ *
+ * This set of functions provides basic matrix math operations.
+ * The functions operate on matrix data structures. For example,
+ * the type
+ * definition for the floating-point matrix structure is shown
+ * below:
+ *
+ * typedef struct
+ * {
+ * uint16_t numRows; // number of rows of the matrix.
+ * uint16_t numCols; // number of columns of the matrix.
+ * float32_t *pData; // points to the data of the matrix.
+ * } arm_matrix_instance_f32;
+ *
+ * There are similar definitions for Q15 and Q31 data types.
+ *
+ * The structure specifies the size of the matrix and then points to
+ * an array of data. The array is of size numRows X numCols
+ * and the values are arranged in row order. That is, the
+ * matrix element (i, j) is stored at:
+ *
+ * pData[i*numCols + j]
+ *
+ *
+ * \par Init Functions
+ * There is an associated initialization function for each type of matrix
+ * data structure.
+ * The initialization function sets the values of the internal structure fields.
+ * Refer to the function arm_mat_init_f32(), arm_mat_init_q31()
+ * and arm_mat_init_q15() for floating-point, Q31 and Q15 types, respectively.
+ *
+ * \par
+ * Use of the initialization function is optional. However, if initialization function is used
+ * then the instance structure cannot be placed into a const data section.
+ * To place the instance structure in a const data
+ * section, manually initialize the data structure. For example:
+ *
+ * arm_matrix_instance_f32 S = {nRows, nColumns, pData};
+ * arm_matrix_instance_q31 S = {nRows, nColumns, pData};
+ * arm_matrix_instance_q15 S = {nRows, nColumns, pData};
+ *
+ * where nRows specifies the number of rows, nColumns
+ * specifies the number of columns, and pData points to the
+ * data array.
+ *
+ * \par Size Checking
+ * By default all of the matrix functions perform size checking on the input and
+ * output matrices. For example, the matrix addition function verifies that the
+ * two input matrices and the output matrix all have the same number of rows and
+ * columns. If the size check fails the functions return:
+ *
+ * ARM_MATH_SIZE_MISMATCH
+ *
+ * Otherwise the functions return
+ *
+ * ARM_MATH_SUCCESS
+ *
+ * There is some overhead associated with this matrix size checking.
+ * The matrix size checking is enabled via the #define
+ *
+ * ARM_MATH_MATRIX_CHECK
+ *
+ * within the library project settings. By default this macro is defined
+ * and size checking is enabled. By changing the project settings and
+ * undefining this macro size checking is eliminated and the functions
+ * run a bit faster. With size checking disabled the functions always
+ * return ARM_MATH_SUCCESS.
+ */
+
+/**
+ * @defgroup groupTransforms Transform Functions
+ */
+
+/**
+ * @defgroup groupController Controller Functions
+ */
+
+/**
+ * @defgroup groupStats Statistics Functions
+ */
+/**
+ * @defgroup groupSupport Support Functions
+ */
+
+/**
+ * @defgroup groupInterpolation Interpolation Functions
+ * These functions perform 1- and 2-dimensional interpolation of data.
+ * Linear interpolation is used for 1-dimensional data and
+ * bilinear interpolation is used for 2-dimensional data.
+ */
+
+/**
+ * @defgroup groupExamples Examples
+ */
+#ifndef _ARM_MATH_H
+#define _ARM_MATH_H
+
+#define __CMSIS_GENERIC /* disable NVIC and Systick functions */
+
+#if defined (ARM_MATH_CM4)
+ #include "core_cm4.h"
+#elif defined (ARM_MATH_CM3)
+ #include "core_cm3.h"
+#elif defined (ARM_MATH_CM0)
+ #include "core_cm0.h"
+#else
+#include "ARMCM4.h"
+#warning "Define either ARM_MATH_CM4 OR ARM_MATH_CM3...By Default building on ARM_MATH_CM4....."
+#endif
+
+#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
+#include "string.h"
+ #include "math.h"
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+
+ /**
+ * @brief Macros required for reciprocal calculation in Normalized LMS
+ */
+
+#define DELTA_Q31 (0x100)
+#define DELTA_Q15 0x5
+#define INDEX_MASK 0x0000003F
+#define PI 3.14159265358979f
+
+ /**
+ * @brief Macros required for SINE and COSINE Fast math approximations
+ */
+
+#define TABLE_SIZE 256
+#define TABLE_SPACING_Q31 0x800000
+#define TABLE_SPACING_Q15 0x80
+
+ /**
+ * @brief Macros required for SINE and COSINE Controller functions
+ */
+ /* 1.31(q31) Fixed value of 2/360 */
+ /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
+#define INPUT_SPACING 0xB60B61
+
+
+ /**
+ * @brief Error status returned by some functions in the library.
+ */
+
+ typedef enum
+ {
+ ARM_MATH_SUCCESS = 0, /**< No error */
+ ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
+ ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
+ ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
+ ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
+ ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
+ ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
+ } arm_status;
+
+ /**
+ * @brief 8-bit fractional data type in 1.7 format.
+ */
+ typedef int8_t q7_t;
+
+ /**
+ * @brief 16-bit fractional data type in 1.15 format.
+ */
+ typedef int16_t q15_t;
+
+ /**
+ * @brief 32-bit fractional data type in 1.31 format.
+ */
+ typedef int32_t q31_t;
+
+ /**
+ * @brief 64-bit fractional data type in 1.63 format.
+ */
+ typedef int64_t q63_t;
+
+ /**
+ * @brief 32-bit floating-point type definition.
+ */
+ typedef float float32_t;
+
+ /**
+ * @brief 64-bit floating-point type definition.
+ */
+ typedef double float64_t;
+
+ /**
+ * @brief definition to read/write two 16 bit values.
+ */
+#define __SIMD32(addr) (*(int32_t **) & (addr))
+
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0)
+ /**
+ * @brief definition to pack two 16 bit values.
+ */
+#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
+ (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
+
+#endif
+
+
+ /**
+ * @brief definition to pack four 8 bit values.
+ */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
+#else
+
+#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
+ (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
+ (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
+ (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
+
+#endif
+
+
+ /**
+ * @brief Clips Q63 to Q31 values.
+ */
+ static __INLINE q31_t clip_q63_to_q31(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
+ }
+
+ /**
+ * @brief Clips Q63 to Q15 values.
+ */
+ static __INLINE q15_t clip_q63_to_q15(
+ q63_t x)
+ {
+ return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
+ }
+
+ /**
+ * @brief Clips Q31 to Q7 values.
+ */
+ static __INLINE q7_t clip_q31_to_q7(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
+ ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
+ }
+
+ /**
+ * @brief Clips Q31 to Q15 values.
+ */
+ static __INLINE q15_t clip_q31_to_q15(
+ q31_t x)
+ {
+ return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
+ ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
+ }
+
+ /**
+ * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
+ */
+
+ static __INLINE q63_t mult32x64(
+ q63_t x,
+ q31_t y)
+ {
+ return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
+ (((q63_t) (x >> 32) * y)));
+ }
+
+
+#if defined (ARM_MATH_CM0) && defined ( __CC_ARM )
+#define __CLZ __clz
+#endif
+
+#if defined (ARM_MATH_CM0) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) || defined (__TASKING__) )
+
+ static __INLINE uint32_t __CLZ(q31_t data);
+
+
+ static __INLINE uint32_t __CLZ(q31_t data)
+ {
+ uint32_t count = 0;
+ uint32_t mask = 0x80000000;
+
+ while((data & mask) == 0)
+ {
+ count += 1u;
+ mask = mask >> 1u;
+ }
+
+ return(count);
+
+ }
+
+#endif
+
+ /**
+ * @brief Function to Calculates 1/in(reciprocal) value of Q31 Data type.
+ */
+
+ static __INLINE uint32_t arm_recip_q31(
+ q31_t in,
+ q31_t * dst,
+ q31_t * pRecipTable)
+ {
+
+ uint32_t out, tempVal;
+ uint32_t index, i;
+ uint32_t signBits;
+
+ if(in > 0)
+ {
+ signBits = __CLZ(in) - 1;
+ }
+ else
+ {
+ signBits = __CLZ(-in) - 1;
+ }
+
+ /* Convert input sample to 1.31 format */
+ in = in << signBits;
+
+ /* calculation of index for initial approximated Val */
+ index = (uint32_t) (in >> 24u);
+ index = (index & INDEX_MASK);
+
+ /* 1.31 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0u; i < 2u; i++)
+ {
+ tempVal = (q31_t) (((q63_t) in * out) >> 31u);
+ tempVal = 0x7FFFFFFF - tempVal;
+ /* 1.31 with exp 1 */
+ //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
+ out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1u);
+
+ }
+
+ /**
+ * @brief Function to Calculates 1/in(reciprocal) value of Q15 Data type.
+ */
+ static __INLINE uint32_t arm_recip_q15(
+ q15_t in,
+ q15_t * dst,
+ q15_t * pRecipTable)
+ {
+
+ uint32_t out = 0, tempVal = 0;
+ uint32_t index = 0, i = 0;
+ uint32_t signBits = 0;
+
+ if(in > 0)
+ {
+ signBits = __CLZ(in) - 17;
+ }
+ else
+ {
+ signBits = __CLZ(-in) - 17;
+ }
+
+ /* Convert input sample to 1.15 format */
+ in = in << signBits;
+
+ /* calculation of index for initial approximated Val */
+ index = in >> 8;
+ index = (index & INDEX_MASK);
+
+ /* 1.15 with exp 1 */
+ out = pRecipTable[index];
+
+ /* calculation of reciprocal value */
+ /* running approximation for two iterations */
+ for (i = 0; i < 2; i++)
+ {
+ tempVal = (q15_t) (((q31_t) in * out) >> 15);
+ tempVal = 0x7FFF - tempVal;
+ /* 1.15 with exp 1 */
+ out = (q15_t) (((q31_t) out * tempVal) >> 14);
+ }
+
+ /* write output */
+ *dst = out;
+
+ /* return num of signbits of out = 1/in value */
+ return (signBits + 1);
+
+ }
+
+
+ /*
+ * @brief C custom defined intrinisic function for only M0 processors
+ */
+#if defined(ARM_MATH_CM0)
+
+ static __INLINE q31_t __SSAT(
+ q31_t x,
+ uint32_t y)
+ {
+ int32_t posMax, negMin;
+ uint32_t i;
+
+ posMax = 1;
+ for (i = 0; i < (y - 1); i++)
+ {
+ posMax = posMax * 2;
+ }
+
+ if(x > 0)
+ {
+ posMax = (posMax - 1);
+
+ if(x > posMax)
+ {
+ x = posMax;
+ }
+ }
+ else
+ {
+ negMin = -posMax;
+
+ if(x < negMin)
+ {
+ x = negMin;
+ }
+ }
+ return (x);
+
+
+ }
+
+#endif /* end of ARM_MATH_CM0 */
+
+
+
+ /*
+ * @brief C custom defined intrinsic function for M3 and M0 processors
+ */
+#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0)
+
+ /*
+ * @brief C custom defined QADD8 for M3 and M0 processors
+ */
+ static __INLINE q31_t __QADD8(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q7_t r, s, t, u;
+
+ r = (char) x;
+ s = (char) y;
+
+ r = __SSAT((q31_t) (r + s), 8);
+ s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
+ t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
+ u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
+
+ sum = (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
+ (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
+
+ return sum;
+
+ }
+
+ /*
+ * @brief C custom defined QSUB8 for M3 and M0 processors
+ */
+ static __INLINE q31_t __QSUB8(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s, t, u;
+
+ r = (char) x;
+ s = (char) y;
+
+ r = __SSAT((r - s), 8);
+ s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
+ t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
+ u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
+
+ sum =
+ (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r & 0x000000FF);
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined QADD16 for M3 and M0 processors
+ */
+
+ /*
+ * @brief C custom defined QADD16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __QADD16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = __SSAT(r + s, 16);
+ s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+
+ }
+
+ /*
+ * @brief C custom defined SHADD16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __SHADD16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) + (s >> 1));
+ s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+
+ }
+
+ /*
+ * @brief C custom defined QSUB16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __QSUB16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = __SSAT(r - s, 16);
+ s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SHSUB16 for M3 and M0 processors
+ */
+ static __INLINE q31_t __SHSUB16(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t diff;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) - (s >> 1));
+ s = (((x >> 17) - (y >> 17)) << 16);
+
+ diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return diff;
+ }
+
+ /*
+ * @brief C custom defined QASX for M3 and M0 processors
+ */
+ static __INLINE q31_t __QASX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum = 0;
+
+ sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) + (short) y))) << 16) +
+ clip_q31_to_q15((q31_t) ((short) x - (short) (y >> 16)));
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SHASX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SHASX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) - (y >> 17));
+ s = (((x >> 17) + (s >> 1)) << 16);
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+ }
+
+
+ /*
+ * @brief C custom defined QSAX for M3 and M0 processors
+ */
+ static __INLINE q31_t __QSAX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum = 0;
+
+ sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) - (short) y))) << 16) +
+ clip_q31_to_q15((q31_t) ((short) x + (short) (y >> 16)));
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SHSAX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SHSAX(
+ q31_t x,
+ q31_t y)
+ {
+
+ q31_t sum;
+ q31_t r, s;
+
+ r = (short) x;
+ s = (short) y;
+
+ r = ((r >> 1) + (y >> 17));
+ s = (((x >> 17) - (s >> 1)) << 16);
+
+ sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
+
+ return sum;
+ }
+
+ /*
+ * @brief C custom defined SMUSDX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMUSDX(
+ q31_t x,
+ q31_t y)
+ {
+
+ return ((q31_t)(((short) x * (short) (y >> 16)) -
+ ((short) (x >> 16) * (short) y)));
+ }
+
+ /*
+ * @brief C custom defined SMUADX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMUADX(
+ q31_t x,
+ q31_t y)
+ {
+
+ return ((q31_t)(((short) x * (short) (y >> 16)) +
+ ((short) (x >> 16) * (short) y)));
+ }
+
+ /*
+ * @brief C custom defined QADD for M3 and M0 processors
+ */
+ static __INLINE q31_t __QADD(
+ q31_t x,
+ q31_t y)
+ {
+ return clip_q63_to_q31((q63_t) x + y);
+ }
+
+ /*
+ * @brief C custom defined QSUB for M3 and M0 processors
+ */
+ static __INLINE q31_t __QSUB(
+ q31_t x,
+ q31_t y)
+ {
+ return clip_q63_to_q31((q63_t) x - y);
+ }
+
+ /*
+ * @brief C custom defined SMLAD for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMLAD(
+ q31_t x,
+ q31_t y,
+ q31_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
+ ((short) x * (short) y));
+ }
+
+ /*
+ * @brief C custom defined SMLADX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMLADX(
+ q31_t x,
+ q31_t y,
+ q31_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) (y)) +
+ ((short) x * (short) (y >> 16)));
+ }
+
+ /*
+ * @brief C custom defined SMLSDX for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMLSDX(
+ q31_t x,
+ q31_t y,
+ q31_t sum)
+ {
+
+ return (sum - ((short) (x >> 16) * (short) (y)) +
+ ((short) x * (short) (y >> 16)));
+ }
+
+ /*
+ * @brief C custom defined SMLALD for M3 and M0 processors
+ */
+ static __INLINE q63_t __SMLALD(
+ q31_t x,
+ q31_t y,
+ q63_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
+ ((short) x * (short) y));
+ }
+
+ /*
+ * @brief C custom defined SMLALDX for M3 and M0 processors
+ */
+ static __INLINE q63_t __SMLALDX(
+ q31_t x,
+ q31_t y,
+ q63_t sum)
+ {
+
+ return (sum + ((short) (x >> 16) * (short) y)) +
+ ((short) x * (short) (y >> 16));
+ }
+
+ /*
+ * @brief C custom defined SMUAD for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMUAD(
+ q31_t x,
+ q31_t y)
+ {
+
+ return (((x >> 16) * (y >> 16)) +
+ (((x << 16) >> 16) * ((y << 16) >> 16)));
+ }
+
+ /*
+ * @brief C custom defined SMUSD for M3 and M0 processors
+ */
+ static __INLINE q31_t __SMUSD(
+ q31_t x,
+ q31_t y)
+ {
+
+ return (-((x >> 16) * (y >> 16)) +
+ (((x << 16) >> 16) * ((y << 16) >> 16)));
+ }
+
+
+
+
+#endif /* (ARM_MATH_CM3) || defined (ARM_MATH_CM0) */
+
+
+ /**
+ * @brief Instance structure for the Q7 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q7;
+
+ /**
+ * @brief Instance structure for the Q15 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ } arm_fir_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ } arm_fir_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q7 FIR filter.
+ * @param[in] *S points to an instance of the Q7 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_q7(
+ const arm_fir_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q7 FIR filter.
+ * @param[in,out] *S points to an instance of the Q7 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed.
+ * @return none
+ */
+ void arm_fir_init_q7(
+ arm_fir_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR filter.
+ * @param[in] *S points to an instance of the Q15 FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_fast_q15(
+ const arm_fir_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q15 FIR filter.
+ * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
+ * numTaps is not a supported value.
+ */
+
+ arm_status arm_fir_init_q15(
+ arm_fir_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR filter.
+ * @param[in] *S points to an instance of the Q31 FIR filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q31 FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_fast_q31(
+ const arm_fir_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR filter.
+ * @param[in,out] *S points to an instance of the Q31 FIR structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return none.
+ */
+ void arm_fir_init_q31(
+ arm_fir_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the floating-point FIR filter.
+ * @param[in] *S points to an instance of the floating-point FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_f32(
+ const arm_fir_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point FIR filter.
+ * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
+ * @param[in] numTaps Number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of samples that are processed at a time.
+ * @return none.
+ */
+ void arm_fir_init_f32(
+ arm_fir_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+
+ } arm_biquad_casd_df1_inst_q15;
+
+
+ /**
+ * @brief Instance structure for the Q31 Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
+
+ } arm_biquad_casd_df1_inst_q31;
+
+ /**
+ * @brief Instance structure for the floating-point Biquad cascade filter.
+ */
+ typedef struct
+ {
+ uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
+ float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
+
+
+ } arm_biquad_casd_df1_inst_f32;
+
+
+
+ /**
+ * @brief Processing function for the Q15 Biquad cascade filter.
+ * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q15 Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ * @return none
+ */
+
+ void arm_biquad_cascade_df1_init_q15(
+ arm_biquad_casd_df1_inst_q15 * S,
+ uint8_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int8_t postShift);
+
+
+ /**
+ * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_fast_q15(
+ const arm_biquad_casd_df1_inst_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 Biquad cascade filter
+ * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_fast_q31(
+ const arm_biquad_casd_df1_inst_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
+ * @return none
+ */
+
+ void arm_biquad_cascade_df1_init_q31(
+ arm_biquad_casd_df1_inst_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int8_t postShift);
+
+ /**
+ * @brief Processing function for the floating-point Biquad cascade filter.
+ * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df1_f32(
+ const arm_biquad_casd_df1_inst_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @return none
+ */
+
+ void arm_biquad_cascade_df1_init_f32(
+ arm_biquad_casd_df1_inst_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+ /**
+ * @brief Instance structure for the floating-point matrix structure.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ float32_t *pData; /**< points to the data of the matrix. */
+ } arm_matrix_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q15 matrix structure.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q15_t *pData; /**< points to the data of the matrix. */
+
+ } arm_matrix_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 matrix structure.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows of the matrix. */
+ uint16_t numCols; /**< number of columns of the matrix. */
+ q31_t *pData; /**< points to the data of the matrix. */
+
+ } arm_matrix_instance_q31;
+
+
+
+ /**
+ * @brief Floating-point matrix addition.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_add_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix addition.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_add_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix addition.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_add_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix transpose.
+ * @param[in] *pSrc points to the input matrix
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_trans_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pDst);
+
+
+ /**
+ * @brief Q15 matrix transpose.
+ * @param[in] *pSrc points to the input matrix
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_trans_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix transpose.
+ * @param[in] *pSrc points to the input matrix
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either ARM_MATH_SIZE_MISMATCH
+ * or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_trans_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix multiplication
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix multiplication
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+ /**
+ * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @param[in] *pState points to the array for storing intermediate results
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_fast_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst,
+ q15_t * pState);
+
+ /**
+ * @brief Q31 matrix multiplication
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_mult_fast_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Floating-point matrix subtraction
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_sub_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix subtraction
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_sub_q15(
+ const arm_matrix_instance_q15 * pSrcA,
+ const arm_matrix_instance_q15 * pSrcB,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix subtraction
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_sub_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst);
+
+ /**
+ * @brief Floating-point matrix scaling.
+ * @param[in] *pSrc points to the input matrix
+ * @param[in] scale scale factor
+ * @param[out] *pDst points to the output matrix
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_scale_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ float32_t scale,
+ arm_matrix_instance_f32 * pDst);
+
+ /**
+ * @brief Q15 matrix scaling.
+ * @param[in] *pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to output matrix
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_scale_q15(
+ const arm_matrix_instance_q15 * pSrc,
+ q15_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q15 * pDst);
+
+ /**
+ * @brief Q31 matrix scaling.
+ * @param[in] *pSrc points to input matrix
+ * @param[in] scaleFract fractional portion of the scale factor
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking.
+ */
+
+ arm_status arm_mat_scale_q31(
+ const arm_matrix_instance_q31 * pSrc,
+ q31_t scaleFract,
+ int32_t shift,
+ arm_matrix_instance_q31 * pDst);
+
+
+ /**
+ * @brief Q31 matrix initialization.
+ * @param[in,out] *S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] *pData points to the matrix data array.
+ * @return none
+ */
+
+ void arm_mat_init_q31(
+ arm_matrix_instance_q31 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q31_t *pData);
+
+ /**
+ * @brief Q15 matrix initialization.
+ * @param[in,out] *S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] *pData points to the matrix data array.
+ * @return none
+ */
+
+ void arm_mat_init_q15(
+ arm_matrix_instance_q15 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ q15_t *pData);
+
+ /**
+ * @brief Floating-point matrix initialization.
+ * @param[in,out] *S points to an instance of the floating-point matrix structure.
+ * @param[in] nRows number of rows in the matrix.
+ * @param[in] nColumns number of columns in the matrix.
+ * @param[in] *pData points to the matrix data array.
+ * @return none
+ */
+
+ void arm_mat_init_f32(
+ arm_matrix_instance_f32 * S,
+ uint16_t nRows,
+ uint16_t nColumns,
+ float32_t *pData);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 PID Control.
+ */
+ typedef struct
+ {
+ q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ #ifdef ARM_MATH_CM0
+ q15_t A1;
+ q15_t A2;
+ #else
+ q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
+ #endif
+ q15_t state[3]; /**< The state array of length 3. */
+ q15_t Kp; /**< The proportional gain. */
+ q15_t Ki; /**< The integral gain. */
+ q15_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 PID Control.
+ */
+ typedef struct
+ {
+ q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ q31_t A2; /**< The derived gain, A2 = Kd . */
+ q31_t state[3]; /**< The state array of length 3. */
+ q31_t Kp; /**< The proportional gain. */
+ q31_t Ki; /**< The integral gain. */
+ q31_t Kd; /**< The derivative gain. */
+
+ } arm_pid_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point PID Control.
+ */
+ typedef struct
+ {
+ float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
+ float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
+ float32_t A2; /**< The derived gain, A2 = Kd . */
+ float32_t state[3]; /**< The state array of length 3. */
+ float32_t Kp; /**< The proportional gain. */
+ float32_t Ki; /**< The integral gain. */
+ float32_t Kd; /**< The derivative gain. */
+ } arm_pid_instance_f32;
+
+
+
+ /**
+ * @brief Initialization function for the floating-point PID Control.
+ * @param[in,out] *S points to an instance of the PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ * @return none.
+ */
+ void arm_pid_init_f32(
+ arm_pid_instance_f32 * S,
+ int32_t resetStateFlag);
+
+ /**
+ * @brief Reset function for the floating-point PID Control.
+ * @param[in,out] *S is an instance of the floating-point PID Control structure
+ * @return none
+ */
+ void arm_pid_reset_f32(
+ arm_pid_instance_f32 * S);
+
+
+ /**
+ * @brief Initialization function for the Q31 PID Control.
+ * @param[in,out] *S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ * @return none.
+ */
+ void arm_pid_init_q31(
+ arm_pid_instance_q31 * S,
+ int32_t resetStateFlag);
+
+
+ /**
+ * @brief Reset function for the Q31 PID Control.
+ * @param[in,out] *S points to an instance of the Q31 PID Control structure
+ * @return none
+ */
+
+ void arm_pid_reset_q31(
+ arm_pid_instance_q31 * S);
+
+ /**
+ * @brief Initialization function for the Q15 PID Control.
+ * @param[in,out] *S points to an instance of the Q15 PID structure.
+ * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
+ * @return none.
+ */
+ void arm_pid_init_q15(
+ arm_pid_instance_q15 * S,
+ int32_t resetStateFlag);
+
+ /**
+ * @brief Reset function for the Q15 PID Control.
+ * @param[in,out] *S points to an instance of the q15 PID Control structure
+ * @return none
+ */
+ void arm_pid_reset_q15(
+ arm_pid_instance_q15 * S);
+
+
+ /**
+ * @brief Instance structure for the floating-point Linear Interpolate function.
+ */
+ typedef struct
+ {
+ uint32_t nValues;
+ float32_t x1;
+ float32_t xSpacing;
+ float32_t *pYData; /**< pointer to the table of Y values */
+ } arm_linear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the floating-point bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ float32_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q31_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q15_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q15 bilinear interpolation function.
+ */
+
+ typedef struct
+ {
+ uint16_t numRows; /**< number of rows in the data table. */
+ uint16_t numCols; /**< number of columns in the data table. */
+ q7_t *pData; /**< points to the data table. */
+ } arm_bilinear_interp_instance_q7;
+
+
+ /**
+ * @brief Q7 vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector multiplication.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_mult_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q15 CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ } arm_cfft_radix4_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point CFFT/CIFFT function.
+ */
+
+ typedef struct
+ {
+ uint16_t fftLen; /**< length of the FFT. */
+ uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
+ uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
+ float32_t *pTwiddle; /**< points to the twiddle factor table. */
+ uint16_t *pBitRevTable; /**< points to the bit reversal table. */
+ uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
+ float32_t onebyfftLen; /**< value of 1/fftLen. */
+ } arm_cfft_radix4_instance_f32;
+
+ /**
+ * @brief Processing function for the Q15 CFFT/CIFFT.
+ * @param[in] *S points to an instance of the Q15 CFFT/CIFFT structure.
+ * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
+ * @return none.
+ */
+
+ void arm_cfft_radix4_q15(
+ const arm_cfft_radix4_instance_q15 * S,
+ q15_t * pSrc);
+
+ /**
+ * @brief Initialization function for the Q15 CFFT/CIFFT.
+ * @param[in,out] *S points to an instance of the Q15 CFFT/CIFFT structure.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
+ * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLen is not a supported value.
+ */
+
+ arm_status arm_cfft_radix4_init_q15(
+ arm_cfft_radix4_instance_q15 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Processing function for the Q31 CFFT/CIFFT.
+ * @param[in] *S points to an instance of the Q31 CFFT/CIFFT structure.
+ * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
+ * @return none.
+ */
+
+ void arm_cfft_radix4_q31(
+ const arm_cfft_radix4_instance_q31 * S,
+ q31_t * pSrc);
+
+ /**
+ * @brief Initialization function for the Q31 CFFT/CIFFT.
+ * @param[in,out] *S points to an instance of the Q31 CFFT/CIFFT structure.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
+ * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLen is not a supported value.
+ */
+
+ arm_status arm_cfft_radix4_init_q31(
+ arm_cfft_radix4_instance_q31 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+ /**
+ * @brief Processing function for the floating-point CFFT/CIFFT.
+ * @param[in] *S points to an instance of the floating-point CFFT/CIFFT structure.
+ * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
+ * @return none.
+ */
+
+ void arm_cfft_radix4_f32(
+ const arm_cfft_radix4_instance_f32 * S,
+ float32_t * pSrc);
+
+ /**
+ * @brief Initialization function for the floating-point CFFT/CIFFT.
+ * @param[in,out] *S points to an instance of the floating-point CFFT/CIFFT structure.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
+ * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLen is not a supported value.
+ */
+
+ arm_status arm_cfft_radix4_init_f32(
+ arm_cfft_radix4_instance_f32 * S,
+ uint16_t fftLen,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag);
+
+
+
+ /*----------------------------------------------------------------------
+ * Internal functions prototypes FFT function
+ ----------------------------------------------------------------------*/
+
+ /**
+ * @brief Core function for the floating-point CFFT butterfly process.
+ * @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] *pCoef points to the twiddle coefficient buffer.
+ * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ */
+
+ void arm_radix4_butterfly_f32(
+ float32_t * pSrc,
+ uint16_t fftLen,
+ float32_t * pCoef,
+ uint16_t twidCoefModifier);
+
+ /**
+ * @brief Core function for the floating-point CIFFT butterfly process.
+ * @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] *pCoef points to twiddle coefficient buffer.
+ * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @param[in] onebyfftLen value of 1/fftLen.
+ * @return none.
+ */
+
+ void arm_radix4_butterfly_inverse_f32(
+ float32_t * pSrc,
+ uint16_t fftLen,
+ float32_t * pCoef,
+ uint16_t twidCoefModifier,
+ float32_t onebyfftLen);
+
+ /**
+ * @brief In-place bit reversal function.
+ * @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
+ * @param[in] fftSize length of the FFT.
+ * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table.
+ * @param[in] *pBitRevTab points to the bit reversal table.
+ * @return none.
+ */
+
+ void arm_bitreversal_f32(
+ float32_t *pSrc,
+ uint16_t fftSize,
+ uint16_t bitRevFactor,
+ uint16_t *pBitRevTab);
+
+ /**
+ * @brief Core function for the Q31 CFFT butterfly process.
+ * @param[in, out] *pSrc points to the in-place buffer of Q31 data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] *pCoef points to twiddle coefficient buffer.
+ * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ */
+
+ void arm_radix4_butterfly_q31(
+ q31_t *pSrc,
+ uint32_t fftLen,
+ q31_t *pCoef,
+ uint32_t twidCoefModifier);
+
+ /**
+ * @brief Core function for the Q31 CIFFT butterfly process.
+ * @param[in, out] *pSrc points to the in-place buffer of Q31 data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] *pCoef points to twiddle coefficient buffer.
+ * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ */
+
+ void arm_radix4_butterfly_inverse_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ q31_t * pCoef,
+ uint32_t twidCoefModifier);
+
+ /**
+ * @brief In-place bit reversal function.
+ * @param[in, out] *pSrc points to the in-place buffer of Q31 data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table
+ * @param[in] *pBitRevTab points to bit reversal table.
+ * @return none.
+ */
+
+ void arm_bitreversal_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ uint16_t bitRevFactor,
+ uint16_t *pBitRevTab);
+
+ /**
+ * @brief Core function for the Q15 CFFT butterfly process.
+ * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] *pCoef16 points to twiddle coefficient buffer.
+ * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ */
+
+ void arm_radix4_butterfly_q15(
+ q15_t *pSrc16,
+ uint32_t fftLen,
+ q15_t *pCoef16,
+ uint32_t twidCoefModifier);
+
+ /**
+ * @brief Core function for the Q15 CIFFT butterfly process.
+ * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] *pCoef16 points to twiddle coefficient buffer.
+ * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ */
+
+ void arm_radix4_butterfly_inverse_q15(
+ q15_t *pSrc16,
+ uint32_t fftLen,
+ q15_t *pCoef16,
+ uint32_t twidCoefModifier);
+
+ /**
+ * @brief In-place bit reversal function.
+ * @param[in, out] *pSrc points to the in-place buffer of Q15 data type.
+ * @param[in] fftLen length of the FFT.
+ * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table
+ * @param[in] *pBitRevTab points to bit reversal table.
+ * @return none.
+ */
+
+ void arm_bitreversal_q15(
+ q15_t * pSrc,
+ uint32_t fftLen,
+ uint16_t bitRevFactor,
+ uint16_t *pBitRevTab);
+
+ /**
+ * @brief Instance structure for the Q15 RFFT/RIFFT function.
+ */
+
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint32_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 RFFT/RIFFT function.
+ */
+
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint32_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point RFFT/RIFFT function.
+ */
+
+ typedef struct
+ {
+ uint32_t fftLenReal; /**< length of the real FFT. */
+ uint16_t fftLenBy2; /**< length of the complex FFT. */
+ uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
+ uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
+ uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
+ float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
+ float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_rfft_instance_f32;
+
+ /**
+ * @brief Processing function for the Q15 RFFT/RIFFT.
+ * @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure.
+ * @param[in] *pSrc points to the input buffer.
+ * @param[out] *pDst points to the output buffer.
+ * @return none.
+ */
+
+ void arm_rfft_q15(
+ const arm_rfft_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst);
+
+ /**
+ * @brief Initialization function for the Q15 RFFT/RIFFT.
+ * @param[in, out] *S points to an instance of the Q15 RFFT/RIFFT structure.
+ * @param[in] *S_CFFT points to an instance of the Q15 CFFT/CIFFT structure.
+ * @param[in] fftLenReal length of the FFT.
+ * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
+ * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal is not a supported value.
+ */
+
+ arm_status arm_rfft_init_q15(
+ arm_rfft_instance_q15 * S,
+ arm_cfft_radix4_instance_q15 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ /**
+ * @brief Processing function for the Q31 RFFT/RIFFT.
+ * @param[in] *S points to an instance of the Q31 RFFT/RIFFT structure.
+ * @param[in] *pSrc points to the input buffer.
+ * @param[out] *pDst points to the output buffer.
+ * @return none.
+ */
+
+ void arm_rfft_q31(
+ const arm_rfft_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst);
+
+ /**
+ * @brief Initialization function for the Q31 RFFT/RIFFT.
+ * @param[in, out] *S points to an instance of the Q31 RFFT/RIFFT structure.
+ * @param[in, out] *S_CFFT points to an instance of the Q31 CFFT/CIFFT structure.
+ * @param[in] fftLenReal length of the FFT.
+ * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
+ * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal is not a supported value.
+ */
+
+ arm_status arm_rfft_init_q31(
+ arm_rfft_instance_q31 * S,
+ arm_cfft_radix4_instance_q31 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ /**
+ * @brief Initialization function for the floating-point RFFT/RIFFT.
+ * @param[in,out] *S points to an instance of the floating-point RFFT/RIFFT structure.
+ * @param[in,out] *S_CFFT points to an instance of the floating-point CFFT/CIFFT structure.
+ * @param[in] fftLenReal length of the FFT.
+ * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
+ * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal is not a supported value.
+ */
+
+ arm_status arm_rfft_init_f32(
+ arm_rfft_instance_f32 * S,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint32_t fftLenReal,
+ uint32_t ifftFlagR,
+ uint32_t bitReverseFlag);
+
+ /**
+ * @brief Processing function for the floating-point RFFT/RIFFT.
+ * @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure.
+ * @param[in] *pSrc points to the input buffer.
+ * @param[out] *pDst points to the output buffer.
+ * @return none.
+ */
+
+ void arm_rfft_f32(
+ const arm_rfft_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point DCT4/IDCT4 function.
+ */
+
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ float32_t normalize; /**< normalizing factor. */
+ float32_t *pTwiddle; /**< points to the twiddle factor table. */
+ float32_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_f32;
+
+ /**
+ * @brief Initialization function for the floating-point DCT4/IDCT4.
+ * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
+ * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
+ * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLenReal is not a supported transform length.
+ */
+
+ arm_status arm_dct4_init_f32(
+ arm_dct4_instance_f32 * S,
+ arm_rfft_instance_f32 * S_RFFT,
+ arm_cfft_radix4_instance_f32 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ float32_t normalize);
+
+ /**
+ * @brief Processing function for the floating-point DCT4/IDCT4.
+ * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
+ * @param[in] *pState points to state buffer.
+ * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
+ * @return none.
+ */
+
+ void arm_dct4_f32(
+ const arm_dct4_instance_f32 * S,
+ float32_t * pState,
+ float32_t * pInlineBuffer);
+
+ /**
+ * @brief Instance structure for the Q31 DCT4/IDCT4 function.
+ */
+
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q31_t normalize; /**< normalizing factor. */
+ q31_t *pTwiddle; /**< points to the twiddle factor table. */
+ q31_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q31;
+
+ /**
+ * @brief Initialization function for the Q31 DCT4/IDCT4.
+ * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
+ * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
+ * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N is not a supported transform length.
+ */
+
+ arm_status arm_dct4_init_q31(
+ arm_dct4_instance_q31 * S,
+ arm_rfft_instance_q31 * S_RFFT,
+ arm_cfft_radix4_instance_q31 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q31_t normalize);
+
+ /**
+ * @brief Processing function for the Q31 DCT4/IDCT4.
+ * @param[in] *S points to an instance of the Q31 DCT4 structure.
+ * @param[in] *pState points to state buffer.
+ * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
+ * @return none.
+ */
+
+ void arm_dct4_q31(
+ const arm_dct4_instance_q31 * S,
+ q31_t * pState,
+ q31_t * pInlineBuffer);
+
+ /**
+ * @brief Instance structure for the Q15 DCT4/IDCT4 function.
+ */
+
+ typedef struct
+ {
+ uint16_t N; /**< length of the DCT4. */
+ uint16_t Nby2; /**< half of the length of the DCT4. */
+ q15_t normalize; /**< normalizing factor. */
+ q15_t *pTwiddle; /**< points to the twiddle factor table. */
+ q15_t *pCosFactor; /**< points to the cosFactor table. */
+ arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
+ arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
+ } arm_dct4_instance_q15;
+
+ /**
+ * @brief Initialization function for the Q15 DCT4/IDCT4.
+ * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
+ * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
+ * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
+ * @param[in] N length of the DCT4.
+ * @param[in] Nby2 half of the length of the DCT4.
+ * @param[in] normalize normalizing factor.
+ * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if N is not a supported transform length.
+ */
+
+ arm_status arm_dct4_init_q15(
+ arm_dct4_instance_q15 * S,
+ arm_rfft_instance_q15 * S_RFFT,
+ arm_cfft_radix4_instance_q15 * S_CFFT,
+ uint16_t N,
+ uint16_t Nby2,
+ q15_t normalize);
+
+ /**
+ * @brief Processing function for the Q15 DCT4/IDCT4.
+ * @param[in] *S points to an instance of the Q15 DCT4 structure.
+ * @param[in] *pState points to state buffer.
+ * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
+ * @return none.
+ */
+
+ void arm_dct4_q15(
+ const arm_dct4_instance_q15 * S,
+ q15_t * pState,
+ q15_t * pInlineBuffer);
+
+ /**
+ * @brief Floating-point vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q7 vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector addition.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_add_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q7 vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector subtraction.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_sub_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a floating-point vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scale scale factor to be applied
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_f32(
+ float32_t * pSrc,
+ float32_t scale,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a Q7 vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_q7(
+ q7_t * pSrc,
+ q7_t scaleFract,
+ int8_t shift,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a Q15 vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_q15(
+ q15_t * pSrc,
+ q15_t scaleFract,
+ int8_t shift,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Multiplies a Q31 vector by a scalar.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] scaleFract fractional portion of the scale value
+ * @param[in] shift number of bits to shift the result by
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_scale_q31(
+ q31_t * pSrc,
+ q31_t scaleFract,
+ int8_t shift,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q7 vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Floating-point vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q15 vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Q31 vector absolute value.
+ * @param[in] *pSrc points to the input buffer
+ * @param[out] *pDst points to the output buffer
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ */
+
+ void arm_abs_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Dot product of floating-point vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_f32(
+ float32_t * pSrcA,
+ float32_t * pSrcB,
+ uint32_t blockSize,
+ float32_t * result);
+
+ /**
+ * @brief Dot product of Q7 vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ uint32_t blockSize,
+ q31_t * result);
+
+ /**
+ * @brief Dot product of Q15 vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+ /**
+ * @brief Dot product of Q31 vectors.
+ * @param[in] *pSrcA points to the first input vector
+ * @param[in] *pSrcB points to the second input vector
+ * @param[in] blockSize number of samples in each vector
+ * @param[out] *result output result returned here
+ * @return none.
+ */
+
+ void arm_dot_prod_q31(
+ q31_t * pSrcA,
+ q31_t * pSrcB,
+ uint32_t blockSize,
+ q63_t * result);
+
+ /**
+ * @brief Shifts the elements of a Q7 vector a specified number of bits.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_shift_q7(
+ q7_t * pSrc,
+ int8_t shiftBits,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Shifts the elements of a Q15 vector a specified number of bits.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_shift_q15(
+ q15_t * pSrc,
+ int8_t shiftBits,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Shifts the elements of a Q31 vector a specified number of bits.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_shift_q31(
+ q31_t * pSrc,
+ int8_t shiftBits,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a floating-point vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_f32(
+ float32_t * pSrc,
+ float32_t offset,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a Q7 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_q7(
+ q7_t * pSrc,
+ q7_t offset,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a Q15 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_q15(
+ q15_t * pSrc,
+ q15_t offset,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Adds a constant offset to a Q31 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[in] offset is the offset to be added
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_offset_q31(
+ q31_t * pSrc,
+ q31_t offset,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a floating-point vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a Q7 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a Q15 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Negates the elements of a Q31 vector.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] blockSize number of samples in the vector
+ * @return none.
+ */
+
+ void arm_negate_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+ /**
+ * @brief Copies the elements of a floating-point vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Copies the elements of a Q7 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_q7(
+ q7_t * pSrc,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Copies the elements of a Q15 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Copies the elements of a Q31 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_copy_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+ /**
+ * @brief Fills a constant value into a floating-point vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_f32(
+ float32_t value,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a Q7 vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_q7(
+ q7_t value,
+ q7_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a Q15 vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_q15(
+ q15_t value,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Fills a constant value into a Q31 vector.
+ * @param[in] value input value to be filled
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_fill_q31(
+ q31_t value,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+/**
+ * @brief Convolution of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+/**
+ * @brief Convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Convolution of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+ /**
+ * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+ /**
+ * @brief Convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
+ * @return none.
+ */
+
+ void arm_conv_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+ /**
+ * @brief Partial convolution of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+ /**
+ * @brief Partial convolution of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+ /**
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+ /**
+ * @brief Partial convolution of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+ /**
+ * @brief Partial convolution of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] firstIndex is the first output sample to start with.
+ * @param[in] numPoints is the number of output points to be computed.
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
+ */
+
+ arm_status arm_conv_partial_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst,
+ uint32_t firstIndex,
+ uint32_t numPoints);
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR decimator.
+ */
+
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ } arm_fir_decimate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR decimator.
+ */
+
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+
+ } arm_fir_decimate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR decimator.
+ */
+
+ typedef struct
+ {
+ uint8_t M; /**< decimation factor. */
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+
+ } arm_fir_decimate_instance_f32;
+
+
+
+ /**
+ * @brief Processing function for the floating-point FIR decimator.
+ * @param[in] *S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_f32(
+ const arm_fir_decimate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point FIR decimator.
+ * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize is not a multiple of M.
+ */
+
+ arm_status arm_fir_decimate_init_f32(
+ arm_fir_decimate_instance_f32 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator.
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_fast_q15(
+ const arm_fir_decimate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR decimator.
+ * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize is not a multiple of M.
+ */
+
+ arm_status arm_fir_decimate_init_q15(
+ arm_fir_decimate_instance_q15 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator.
+ * @param[in] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_q31(
+ const arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
+ * @param[in] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none
+ */
+
+ void arm_fir_decimate_fast_q31(
+ arm_fir_decimate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 FIR decimator.
+ * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
+ * @param[in] numTaps number of coefficients in the filter.
+ * @param[in] M decimation factor.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * blockSize is not a multiple of M.
+ */
+
+ arm_status arm_fir_decimate_init_q31(
+ arm_fir_decimate_instance_q31 * S,
+ uint16_t numTaps,
+ uint8_t M,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR interpolator.
+ */
+
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR interpolator.
+ */
+
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
+ } arm_fir_interpolate_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR interpolator.
+ */
+
+ typedef struct
+ {
+ uint8_t L; /**< upsample factor. */
+ uint16_t phaseLength; /**< length of each polyphase filter component. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
+ float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
+ } arm_fir_interpolate_instance_f32;
+
+
+ /**
+ * @brief Processing function for the Q15 FIR interpolator.
+ * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_interpolate_q15(
+ const arm_fir_interpolate_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 FIR interpolator.
+ * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps is not a multiple of the interpolation factor L.
+ */
+
+ arm_status arm_fir_interpolate_init_q15(
+ arm_fir_interpolate_instance_q15 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 FIR interpolator.
+ * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_interpolate_q31(
+ const arm_fir_interpolate_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR interpolator.
+ * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps is not a multiple of the interpolation factor L.
+ */
+
+ arm_status arm_fir_interpolate_init_q31(
+ arm_fir_interpolate_instance_q31 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the floating-point FIR interpolator.
+ * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_interpolate_f32(
+ const arm_fir_interpolate_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point FIR interpolator.
+ * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
+ * @param[in] L upsample factor.
+ * @param[in] numTaps number of filter coefficients in the filter.
+ * @param[in] *pCoeffs points to the filter coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
+ * the filter length numTaps is not a multiple of the interpolation factor L.
+ */
+
+ arm_status arm_fir_interpolate_init_f32(
+ arm_fir_interpolate_instance_f32 * S,
+ uint8_t L,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the high precision Q31 Biquad cascade filter.
+ */
+
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
+ q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
+
+ } arm_biquad_cas_df1_32x64_ins_q31;
+
+
+ /**
+ * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cas_df1_32x64_q31(
+ const arm_biquad_cas_df1_32x64_ins_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
+ * @return none
+ */
+
+ void arm_biquad_cas_df1_32x64_init_q31(
+ arm_biquad_cas_df1_32x64_ins_q31 * S,
+ uint8_t numStages,
+ q31_t * pCoeffs,
+ q63_t * pState,
+ uint8_t postShift);
+
+
+
+ /**
+ * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
+ */
+
+ typedef struct
+ {
+ uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
+ float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
+ float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
+ } arm_biquad_cascade_df2T_instance_f32;
+
+
+ /**
+ * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in] *S points to an instance of the filter data structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_biquad_cascade_df2T_f32(
+ const arm_biquad_cascade_df2T_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
+ * @param[in,out] *S points to an instance of the filter data structure.
+ * @param[in] numStages number of 2nd order stages in the filter.
+ * @param[in] *pCoeffs points to the filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @return none
+ */
+
+ void arm_biquad_cascade_df2T_init_f32(
+ arm_biquad_cascade_df2T_instance_f32 * S,
+ uint8_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+
+
+ /**
+ * @brief Instance structure for the Q15 FIR lattice filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 FIR lattice filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point FIR lattice filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numStages; /**< number of filter stages. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
+ } arm_fir_lattice_instance_f32;
+
+ /**
+ * @brief Initialization function for the Q15 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+ void arm_fir_lattice_init_q15(
+ arm_fir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t * pCoeffs,
+ q15_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q15 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+ void arm_fir_lattice_q15(
+ const arm_fir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+ void arm_fir_lattice_init_q31(
+ arm_fir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t * pCoeffs,
+ q31_t * pState);
+
+
+ /**
+ * @brief Processing function for the Q31 FIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_fir_lattice_q31(
+ const arm_fir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+/**
+ * @brief Initialization function for the floating-point FIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] numStages number of filter stages.
+ * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
+ * @param[in] *pState points to the state buffer. The array is of length numStages.
+ * @return none.
+ */
+
+ void arm_fir_lattice_init_f32(
+ arm_fir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t * pCoeffs,
+ float32_t * pState);
+
+ /**
+ * @brief Processing function for the floating-point FIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point FIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_fir_lattice_f32(
+ const arm_fir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the Q15 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q31 IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_q31;
+
+ /**
+ * @brief Instance structure for the floating-point IIR lattice filter.
+ */
+ typedef struct
+ {
+ uint16_t numStages; /**< number of stages in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
+ float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
+ float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
+ } arm_iir_lattice_instance_f32;
+
+ /**
+ * @brief Processing function for the floating-point IIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_f32(
+ const arm_iir_lattice_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point IIR lattice filter.
+ * @param[in] *S points to an instance of the floating-point IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_init_f32(
+ arm_iir_lattice_instance_f32 * S,
+ uint16_t numStages,
+ float32_t *pkCoeffs,
+ float32_t *pvCoeffs,
+ float32_t *pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q31 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_q31(
+ const arm_iir_lattice_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q31 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q31 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_init_q31(
+ arm_iir_lattice_instance_q31 * S,
+ uint16_t numStages,
+ q31_t *pkCoeffs,
+ q31_t *pvCoeffs,
+ q31_t *pState,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Processing function for the Q15 IIR lattice filter.
+ * @param[in] *S points to an instance of the Q15 IIR lattice structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_iir_lattice_q15(
+ const arm_iir_lattice_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+/**
+ * @brief Initialization function for the Q15 IIR lattice filter.
+ * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
+ * @param[in] numStages number of stages in the filter.
+ * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
+ * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
+ * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
+ * @param[in] blockSize number of samples to process per call.
+ * @return none.
+ */
+
+ void arm_iir_lattice_init_q15(
+ arm_iir_lattice_instance_q15 * S,
+ uint16_t numStages,
+ q15_t *pkCoeffs,
+ q15_t *pvCoeffs,
+ q15_t *pState,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the floating-point LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that controls filter coefficient updates. */
+ } arm_lms_instance_f32;
+
+ /**
+ * @brief Processing function for floating-point LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_f32(
+ const arm_lms_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for floating-point LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to the coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_init_f32(
+ arm_lms_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+ /**
+ * @brief Instance structure for the Q15 LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+ } arm_lms_instance_q15;
+
+
+ /**
+ * @brief Initialization function for the Q15 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to the coefficient buffer.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_init_q15(
+ arm_lms_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+ /**
+ * @brief Processing function for Q15 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_q15(
+ const arm_lms_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint32_t postShift; /**< bit shift applied to coefficients. */
+
+ } arm_lms_instance_q31;
+
+ /**
+ * @brief Processing function for Q31 LMS filter.
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_q31(
+ const arm_lms_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for Q31 LMS filter.
+ * @param[in] *S points to an instance of the Q31 LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_init_q31(
+ arm_lms_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t *pCoeffs,
+ q31_t *pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint32_t postShift);
+
+ /**
+ * @brief Instance structure for the floating-point normalized LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ float32_t mu; /**< step size that control filter coefficient updates. */
+ float32_t energy; /**< saves previous frame energy. */
+ float32_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_f32;
+
+ /**
+ * @brief Processing function for floating-point normalized LMS filter.
+ * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_f32(
+ arm_lms_norm_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pRef,
+ float32_t * pOut,
+ float32_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for floating-point normalized LMS filter.
+ * @param[in] *S points to an instance of the floating-point LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_init_f32(
+ arm_lms_norm_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ float32_t mu,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Instance structure for the Q31 normalized LMS filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q31_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ q31_t *recipTable; /**< points to the reciprocal initial value table. */
+ q31_t energy; /**< saves previous frame energy. */
+ q31_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q31;
+
+ /**
+ * @brief Processing function for Q31 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_q31(
+ arm_lms_norm_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pRef,
+ q31_t * pOut,
+ q31_t * pErr,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for Q31 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_norm_init_q31(
+ arm_lms_norm_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ q31_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+ /**
+ * @brief Instance structure for the Q15 normalized LMS filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< Number of coefficients in the filter. */
+ q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+ q15_t mu; /**< step size that controls filter coefficient updates. */
+ uint8_t postShift; /**< bit shift applied to coefficients. */
+ q15_t *recipTable; /**< Points to the reciprocal initial value table. */
+ q15_t energy; /**< saves previous frame energy. */
+ q15_t x0; /**< saves previous input sample. */
+ } arm_lms_norm_instance_q15;
+
+ /**
+ * @brief Processing function for Q15 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[in] *pRef points to the block of reference data.
+ * @param[out] *pOut points to the block of output data.
+ * @param[out] *pErr points to the block of error data.
+ * @param[in] blockSize number of samples to process.
+ * @return none.
+ */
+
+ void arm_lms_norm_q15(
+ arm_lms_norm_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pRef,
+ q15_t * pOut,
+ q15_t * pErr,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for Q15 normalized LMS filter.
+ * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
+ * @param[in] numTaps number of filter coefficients.
+ * @param[in] *pCoeffs points to coefficient buffer.
+ * @param[in] *pState points to state buffer.
+ * @param[in] mu step size that controls filter coefficient updates.
+ * @param[in] blockSize number of samples to process.
+ * @param[in] postShift bit shift applied to coefficients.
+ * @return none.
+ */
+
+ void arm_lms_norm_init_q15(
+ arm_lms_norm_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ q15_t mu,
+ uint32_t blockSize,
+ uint8_t postShift);
+
+ /**
+ * @brief Correlation of floating-point sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_f32(
+ float32_t * pSrcA,
+ uint32_t srcALen,
+ float32_t * pSrcB,
+ uint32_t srcBLen,
+ float32_t * pDst);
+
+ /**
+ * @brief Correlation of Q15 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_fast_q15(
+ q15_t * pSrcA,
+ uint32_t srcALen,
+ q15_t * pSrcB,
+ uint32_t srcBLen,
+ q15_t * pDst);
+
+ /**
+ * @brief Correlation of Q31 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+ /**
+ * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_fast_q31(
+ q31_t * pSrcA,
+ uint32_t srcALen,
+ q31_t * pSrcB,
+ uint32_t srcBLen,
+ q31_t * pDst);
+
+ /**
+ * @brief Correlation of Q7 sequences.
+ * @param[in] *pSrcA points to the first input sequence.
+ * @param[in] srcALen length of the first input sequence.
+ * @param[in] *pSrcB points to the second input sequence.
+ * @param[in] srcBLen length of the second input sequence.
+ * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
+ * @return none.
+ */
+
+ void arm_correlate_q7(
+ q7_t * pSrcA,
+ uint32_t srcALen,
+ q7_t * pSrcB,
+ uint32_t srcBLen,
+ q7_t * pDst);
+
+ /**
+ * @brief Instance structure for the floating-point sparse FIR filter.
+ */
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_f32;
+
+ /**
+ * @brief Instance structure for the Q31 sparse FIR filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q31;
+
+ /**
+ * @brief Instance structure for the Q15 sparse FIR filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q15;
+
+ /**
+ * @brief Instance structure for the Q7 sparse FIR filter.
+ */
+
+ typedef struct
+ {
+ uint16_t numTaps; /**< number of coefficients in the filter. */
+ uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
+ q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
+ q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
+ uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
+ int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
+ } arm_fir_sparse_instance_q7;
+
+ /**
+ * @brief Processing function for the floating-point sparse FIR filter.
+ * @param[in] *S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_f32(
+ arm_fir_sparse_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ float32_t * pScratchIn,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the floating-point sparse FIR filter.
+ * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_f32(
+ arm_fir_sparse_instance_f32 * S,
+ uint16_t numTaps,
+ float32_t * pCoeffs,
+ float32_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q31 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_q31(
+ arm_fir_sparse_instance_q31 * S,
+ q31_t * pSrc,
+ q31_t * pDst,
+ q31_t * pScratchIn,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q31 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_q31(
+ arm_fir_sparse_instance_q31 * S,
+ uint16_t numTaps,
+ q31_t * pCoeffs,
+ q31_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q15 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_q15(
+ arm_fir_sparse_instance_q15 * S,
+ q15_t * pSrc,
+ q15_t * pDst,
+ q15_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+
+ /**
+ * @brief Initialization function for the Q15 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_q15(
+ arm_fir_sparse_instance_q15 * S,
+ uint16_t numTaps,
+ q15_t * pCoeffs,
+ q15_t * pState,
+ int32_t * pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+ /**
+ * @brief Processing function for the Q7 sparse FIR filter.
+ * @param[in] *S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] *pSrc points to the block of input data.
+ * @param[out] *pDst points to the block of output data
+ * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
+ * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
+ * @param[in] blockSize number of input samples to process per call.
+ * @return none.
+ */
+
+ void arm_fir_sparse_q7(
+ arm_fir_sparse_instance_q7 * S,
+ q7_t * pSrc,
+ q7_t * pDst,
+ q7_t * pScratchIn,
+ q31_t * pScratchOut,
+ uint32_t blockSize);
+
+ /**
+ * @brief Initialization function for the Q7 sparse FIR filter.
+ * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
+ * @param[in] numTaps number of nonzero coefficients in the filter.
+ * @param[in] *pCoeffs points to the array of filter coefficients.
+ * @param[in] *pState points to the state buffer.
+ * @param[in] *pTapDelay points to the array of offset times.
+ * @param[in] maxDelay maximum offset time supported.
+ * @param[in] blockSize number of samples that will be processed per block.
+ * @return none
+ */
+
+ void arm_fir_sparse_init_q7(
+ arm_fir_sparse_instance_q7 * S,
+ uint16_t numTaps,
+ q7_t * pCoeffs,
+ q7_t * pState,
+ int32_t *pTapDelay,
+ uint16_t maxDelay,
+ uint32_t blockSize);
+
+
+ /*
+ * @brief Floating-point sin_cos function.
+ * @param[in] theta input value in degrees
+ * @param[out] *pSinVal points to the processed sine output.
+ * @param[out] *pCosVal points to the processed cos output.
+ * @return none.
+ */
+
+ void arm_sin_cos_f32(
+ float32_t theta,
+ float32_t *pSinVal,
+ float32_t *pCcosVal);
+
+ /*
+ * @brief Q31 sin_cos function.
+ * @param[in] theta scaled input value in degrees
+ * @param[out] *pSinVal points to the processed sine output.
+ * @param[out] *pCosVal points to the processed cosine output.
+ * @return none.
+ */
+
+ void arm_sin_cos_q31(
+ q31_t theta,
+ q31_t *pSinVal,
+ q31_t *pCosVal);
+
+
+ /**
+ * @brief Floating-point complex conjugate.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_conj_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex conjugate.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_conj_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex conjugate.
+ * @param[in] *pSrc points to the input vector
+ * @param[out] *pDst points to the output vector
+ * @param[in] numSamples number of complex samples in each vector
+ * @return none.
+ */
+
+ void arm_cmplx_conj_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+
+ /**
+ * @brief Floating-point complex magnitude squared
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_squared_f32(
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q31 complex magnitude squared
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_squared_q31(
+ q31_t * pSrc,
+ q31_t * pDst,
+ uint32_t numSamples);
+
+ /**
+ * @brief Q15 complex magnitude squared
+ * @param[in] *pSrc points to the complex input vector
+ * @param[out] *pDst points to the real output vector
+ * @param[in] numSamples number of complex samples in the input vector
+ * @return none.
+ */
+
+ void arm_cmplx_mag_squared_q15(
+ q15_t * pSrc,
+ q15_t * pDst,
+ uint32_t numSamples);
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup PID PID Motor Control
+ *
+ * A Proportional Integral Derivative (PID) controller is a generic feedback control
+ * loop mechanism widely used in industrial control systems.
+ * A PID controller is the most commonly used type of feedback controller.
+ *
+ * This set of functions implements (PID) controllers
+ * for Q15, Q31, and floating-point data types. The functions operate on a single sample
+ * of data and each call to the function returns a single processed value.
+ * S points to an instance of the PID control data structure. in
+ * is the input sample value. The functions return the output value.
+ *
+ * \par Algorithm:
+ *
+ *
+ * \par
+ * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
+ *
+ * \par
+ * \image html PID.gif "Proportional Integral Derivative Controller"
+ *
+ * \par
+ * The PID controller calculates an "error" value as the difference between
+ * the measured output and the reference input.
+ * The controller attempts to minimize the error by adjusting the process control inputs.
+ * The proportional value determines the reaction to the current error,
+ * the integral value determines the reaction based on the sum of recent errors,
+ * and the derivative value determines the reaction based on the rate at which the error has been changing.
+ *
+ * \par Instance Structure
+ * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
+ * A separate instance structure must be defined for each PID Controller.
+ * There are separate instance structure declarations for each of the 3 supported data types.
+ *
+ * \par Reset Functions
+ * There is also an associated reset function for each data type which clears the state array.
+ *
+ * \par Initialization Functions
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
+ * - Zeros out the values in the state buffer.
+ *
+ * \par
+ * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
+ *
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the fixed-point versions of the PID Controller functions.
+ * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup PID
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point PID Control.
+ * @param[in,out] *S is an instance of the floating-point PID Control structure
+ * @param[in] in input sample to process
+ * @return out processed output sample.
+ */
+
+
+ static __INLINE float32_t arm_pid_f32(
+ arm_pid_instance_f32 * S,
+ float32_t in)
+ {
+ float32_t out;
+
+ /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
+ out = (S->A0 * in) +
+ (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+
+ }
+
+ /**
+ * @brief Process function for the Q31 PID Control.
+ * @param[in,out] *S points to an instance of the Q31 PID Control structure
+ * @param[in] in input sample to process
+ * @return out processed output sample.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
+ * Thus, if the accumulator result overflows it wraps around rather than clip.
+ * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
+ * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
+ */
+
+ static __INLINE q31_t arm_pid_q31(
+ arm_pid_instance_q31 * S,
+ q31_t in)
+ {
+ q63_t acc;
+ q31_t out;
+
+ /* acc = A0 * x[n] */
+ acc = (q63_t) S->A0 * in;
+
+ /* acc += A1 * x[n-1] */
+ acc += (q63_t) S->A1 * S->state[0];
+
+ /* acc += A2 * x[n-2] */
+ acc += (q63_t) S->A2 * S->state[1];
+
+ /* convert output to 1.31 format to add y[n-1] */
+ out = (q31_t) (acc >> 31u);
+
+ /* out += y[n-1] */
+ out += S->state[2];
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+
+ }
+
+ /**
+ * @brief Process function for the Q15 PID Control.
+ * @param[in,out] *S points to an instance of the Q15 PID Control structure
+ * @param[in] in input sample to process
+ * @return out processed output sample.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using a 64-bit internal accumulator.
+ * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
+ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
+ * Lastly, the accumulator is saturated to yield a result in 1.15 format.
+ */
+
+ static __INLINE q15_t arm_pid_q15(
+ arm_pid_instance_q15 * S,
+ q15_t in)
+ {
+ q63_t acc;
+ q15_t out;
+
+ /* Implementation of PID controller */
+
+ #ifdef ARM_MATH_CM0
+
+ /* acc = A0 * x[n] */
+ acc = ((q31_t) S->A0 )* in ;
+
+ #else
+
+ /* acc = A0 * x[n] */
+ acc = (q31_t) __SMUAD(S->A0, in);
+
+ #endif
+
+ #ifdef ARM_MATH_CM0
+
+ /* acc += A1 * x[n-1] + A2 * x[n-2] */
+ acc += (q31_t) S->A1 * S->state[0] ;
+ acc += (q31_t) S->A2 * S->state[1] ;
+
+ #else
+
+ /* acc += A1 * x[n-1] + A2 * x[n-2] */
+ acc = __SMLALD(S->A1, (q31_t)__SIMD32(S->state), acc);
+
+ #endif
+
+ /* acc += y[n-1] */
+ acc += (q31_t) S->state[2] << 15;
+
+ /* saturate the output */
+ out = (q15_t) (__SSAT((acc >> 15), 16));
+
+ /* Update state */
+ S->state[1] = S->state[0];
+ S->state[0] = in;
+ S->state[2] = out;
+
+ /* return to application */
+ return (out);
+
+ }
+
+ /**
+ * @} end of PID group
+ */
+
+
+ /**
+ * @brief Floating-point matrix inverse.
+ * @param[in] *src points to the instance of the input floating-point matrix structure.
+ * @param[out] *dst points to the instance of the output floating-point matrix structure.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
+ */
+
+ arm_status arm_mat_inverse_f32(
+ const arm_matrix_instance_f32 * src,
+ arm_matrix_instance_f32 * dst);
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+
+ /**
+ * @defgroup clarke Vector Clarke Transform
+ * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
+ * Generally the Clarke transform uses three-phase currents Ia, Ib and Ic to calculate currents
+ * in the two-phase orthogonal stator axis Ialpha and Ibeta.
+ * When Ialpha is superposed with Ia as shown in the figure below
+ * \image html clarke.gif Stator current space vector and its components in (a,b).
+ * and Ia + Ib + Ic = 0, in this condition Ialpha and Ibeta
+ * can be calculated using only Ia and Ib.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeFormula.gif
+ * where Ia and Ib are the instantaneous stator phases and
+ * pIalpha and pIbeta are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup clarke
+ * @{
+ */
+
+ /**
+ *
+ * @brief Floating-point Clarke transform
+ * @param[in] Ia input three-phase coordinate a
+ * @param[in] Ib input three-phase coordinate b
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @return none.
+ */
+
+ static __INLINE void arm_clarke_f32(
+ float32_t Ia,
+ float32_t Ib,
+ float32_t * pIalpha,
+ float32_t * pIbeta)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
+ *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
+
+ }
+
+ /**
+ * @brief Clarke transform for Q31 version
+ * @param[in] Ia input three-phase coordinate a
+ * @param[in] Ib input three-phase coordinate b
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition, hence there is no risk of overflow.
+ */
+
+ static __INLINE void arm_clarke_q31(
+ q31_t Ia,
+ q31_t Ib,
+ q31_t * pIalpha,
+ q31_t * pIbeta)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIalpha from Ia by equation pIalpha = Ia */
+ *pIalpha = Ia;
+
+ /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
+
+ /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
+ product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
+
+ /* pIbeta is calculated by adding the intermediate products */
+ *pIbeta = __QADD(product1, product2);
+ }
+
+ /**
+ * @} end of clarke group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q31 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_q7_to_q31(
+ q7_t * pSrc,
+ q31_t * pDst,
+ uint32_t blockSize);
+
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_clarke Vector Inverse Clarke Transform
+ * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html clarkeInvFormula.gif
+ * where pIa and pIb are the instantaneous stator phases and
+ * Ialpha and Ibeta are the two coordinates of time invariant vector.
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Clarke transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_clarke
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Clarke transform
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] *pIa points to output three-phase coordinate a
+ * @param[out] *pIb points to output three-phase coordinate b
+ * @return none.
+ */
+
+
+ static __INLINE void arm_inv_clarke_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pIa,
+ float32_t * pIb)
+ {
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
+ *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
+
+ }
+
+ /**
+ * @brief Inverse Clarke transform for Q31 version
+ * @param[in] Ialpha input two-phase orthogonal vector axis alpha
+ * @param[in] Ibeta input two-phase orthogonal vector axis beta
+ * @param[out] *pIa points to output three-phase coordinate a
+ * @param[out] *pIb points to output three-phase coordinate b
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the subtraction, hence there is no risk of overflow.
+ */
+
+ static __INLINE void arm_inv_clarke_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pIa,
+ q31_t * pIb)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+
+ /* Calculating pIa from Ialpha by equation pIa = Ialpha */
+ *pIa = Ialpha;
+
+ /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
+
+ /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
+
+ /* pIb is calculated by subtracting the products */
+ *pIb = __QSUB(product2, product1);
+
+ }
+
+ /**
+ * @} end of inv_clarke group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to Q15 vector.
+ * @param[in] *pSrc input pointer
+ * @param[out] *pDst output pointer
+ * @param[in] blockSize number of samples to process
+ * @return none.
+ */
+ void arm_q7_to_q15(
+ q7_t * pSrc,
+ q15_t * pDst,
+ uint32_t blockSize);
+
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup park Vector Park Transform
+ *
+ * Forward Park transform converts the input two-coordinate vector to flux and torque components.
+ * The Park transform can be used to realize the transformation of the Ialpha and the Ibeta currents
+ * from the stationary to the moving reference frame and control the spatial relationship between
+ * the stator vector current and rotor flux vector.
+ * If we consider the d axis aligned with the rotor flux, the diagram below shows the
+ * current vector and the relationship from the two reference frames:
+ * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkFormula.gif
+ * where Ialpha and Ibeta are the stator vector components,
+ * pId and pIq are rotor vector components and cosVal and sinVal are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Park transform
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] *pId points to output rotor reference frame d
+ * @param[out] *pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ *
+ * The function implements the forward Park transform.
+ *
+ */
+
+ static __INLINE void arm_park_f32(
+ float32_t Ialpha,
+ float32_t Ibeta,
+ float32_t * pId,
+ float32_t * pIq,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
+ *pId = Ialpha * cosVal + Ibeta * sinVal;
+
+ /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
+ *pIq = -Ialpha * sinVal + Ibeta * cosVal;
+
+ }
+
+ /**
+ * @brief Park transform for Q31 version
+ * @param[in] Ialpha input two-phase vector coordinate alpha
+ * @param[in] Ibeta input two-phase vector coordinate beta
+ * @param[out] *pId points to output rotor reference frame d
+ * @param[out] *pIq points to output rotor reference frame q
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition and subtraction, hence there is no risk of overflow.
+ */
+
+
+ static __INLINE void arm_park_q31(
+ q31_t Ialpha,
+ q31_t Ibeta,
+ q31_t * pId,
+ q31_t * pIq,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Ialpha * cosVal) */
+ product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * sinVal) */
+ product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Ialpha * sinVal) */
+ product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Ibeta * cosVal) */
+ product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
+
+ /* Calculate pId by adding the two intermediate products 1 and 2 */
+ *pId = __QADD(product1, product2);
+
+ /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
+ *pIq = __QSUB(product4, product3);
+ }
+
+ /**
+ * @} end of park group
+ */
+
+ /**
+ * @brief Converts the elements of the Q7 vector to floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q7_to_float(
+ q7_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+
+ /**
+ * @ingroup groupController
+ */
+
+ /**
+ * @defgroup inv_park Vector Inverse Park transform
+ * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
+ *
+ * The function operates on a single sample of data and each call to the function returns the processed output.
+ * The library provides separate functions for Q31 and floating-point data types.
+ * \par Algorithm
+ * \image html parkInvFormula.gif
+ * where pIalpha and pIbeta are the stator vector components,
+ * Id and Iq are rotor vector components and cosVal and sinVal are the
+ * cosine and sine values of theta (rotor flux position).
+ * \par Fixed-Point Behavior
+ * Care must be taken when using the Q31 version of the Park transform.
+ * In particular, the overflow and saturation behavior of the accumulator used must be considered.
+ * Refer to the function specific documentation below for usage guidelines.
+ */
+
+ /**
+ * @addtogroup inv_park
+ * @{
+ */
+
+ /**
+ * @brief Floating-point Inverse Park transform
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ */
+
+ static __INLINE void arm_inv_park_f32(
+ float32_t Id,
+ float32_t Iq,
+ float32_t * pIalpha,
+ float32_t * pIbeta,
+ float32_t sinVal,
+ float32_t cosVal)
+ {
+ /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
+ *pIalpha = Id * cosVal - Iq * sinVal;
+
+ /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
+ *pIbeta = Id * sinVal + Iq * cosVal;
+
+ }
+
+
+ /**
+ * @brief Inverse Park transform for Q31 version
+ * @param[in] Id input coordinate of rotor reference frame d
+ * @param[in] Iq input coordinate of rotor reference frame q
+ * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
+ * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
+ * @param[in] sinVal sine value of rotation angle theta
+ * @param[in] cosVal cosine value of rotation angle theta
+ * @return none.
+ *
+ * Scaling and Overflow Behavior:
+ * \par
+ * The function is implemented using an internal 32-bit accumulator.
+ * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
+ * There is saturation on the addition, hence there is no risk of overflow.
+ */
+
+
+ static __INLINE void arm_inv_park_q31(
+ q31_t Id,
+ q31_t Iq,
+ q31_t * pIalpha,
+ q31_t * pIbeta,
+ q31_t sinVal,
+ q31_t cosVal)
+ {
+ q31_t product1, product2; /* Temporary variables used to store intermediate results */
+ q31_t product3, product4; /* Temporary variables used to store intermediate results */
+
+ /* Intermediate product is calculated by (Id * cosVal) */
+ product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * sinVal) */
+ product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
+
+
+ /* Intermediate product is calculated by (Id * sinVal) */
+ product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
+
+ /* Intermediate product is calculated by (Iq * cosVal) */
+ product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
+
+ /* Calculate pIalpha by using the two intermediate products 1 and 2 */
+ *pIalpha = __QSUB(product1, product2);
+
+ /* Calculate pIbeta by using the two intermediate products 3 and 4 */
+ *pIbeta = __QADD(product4, product3);
+
+ }
+
+ /**
+ * @} end of Inverse park group
+ */
+
+
+ /**
+ * @brief Converts the elements of the Q31 vector to floating-point vector.
+ * @param[in] *pSrc is input pointer
+ * @param[out] *pDst is output pointer
+ * @param[in] blockSize is the number of samples to process
+ * @return none.
+ */
+ void arm_q31_to_float(
+ q31_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize);
+
+ /**
+ * @ingroup groupInterpolation
+ */
+
+ /**
+ * @defgroup LinearInterpolate Linear Interpolation
+ *
+ * Linear interpolation is a method of curve fitting using linear polynomials.
+ * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
+ *
+ * \par
+ * \image html LinearInterp.gif "Linear interpolation"
+ *
+ * \par
+ * A Linear Interpolate function calculates an output value(y), for the input(x)
+ * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
+ *
+ * \par Algorithm:
+ *
+ * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
+ * where x0, x1 are nearest values of input x
+ * y0, y1 are nearest values to output y
+ *
+ *
+ * \par
+ * This set of functions implements Linear interpolation process
+ * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
+ * sample of data and each call to the function returns a single processed value.
+ * S points to an instance of the Linear Interpolate function data structure.
+ * x is the input sample value. The functions returns the output value.
+ *
+ * \par
+ * if x is outside of the table boundary, Linear interpolation returns first value of the table
+ * if x is below input range and returns last value of table if x is above range.
+ */
+
+ /**
+ * @addtogroup LinearInterpolate
+ * @{
+ */
+
+ /**
+ * @brief Process function for the floating-point Linear Interpolation Function.
+ * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
+ * @param[in] x input sample to process
+ * @return y processed output sample.
+ *
+ */
+
+ static __INLINE float32_t arm_linear_interp_f32(
+ arm_linear_interp_instance_f32 * S,
+ float32_t x)
+ {
+
+ float32_t y;
+ float32_t x0, x1; /* Nearest input values */
+ float32_t y0, y1; /* Nearest output values */
+ float32_t xSpacing = S->xSpacing; /* spacing between input values */
+ int32_t i; /* Index variable */
+ float32_t *pYData = S->pYData; /* pointer to output table */
+
+ /* Calculation of index */
+ i = (x - S->x1) / xSpacing;
+
+ if(i < 0)
+ {
+ /* Iniatilize output for below specified range as least output value of table */
+ y = pYData[0];
+ }
+ else if(i >= S->nValues)
+ {
+ /* Iniatilize output for above specified range as last output value of table */
+ y = pYData[S->nValues-1];
+ }
+ else
+ {
+ /* Calculation of nearest input values */
+ x0 = S->x1 + i * xSpacing;
+ x1 = S->x1 + (i +1) * xSpacing;
+
+ /* Read of nearest output values */
+ y0 = pYData[i];
+ y1 = pYData[i + 1];
+
+ /* Calculation of output */
+ y = y0 + (x - x0) * ((y1 - y0)/(x1-x0));
+
+ }
+
+ /* returns output value */
+ return (y);
+ }
+
+ /**
+ *
+ * @brief Process function for the Q31 Linear Interpolation Function.
+ * @param[in] *pYData pointer to Q31 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+
+
+ static __INLINE q31_t arm_linear_interp_q31(q31_t *pYData,
+ q31_t x, uint32_t nValues)
+ {
+ q31_t y; /* output */
+ q31_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & 0xFFF00000) >> 20);
+
+ if(index >= (nValues - 1))
+ {
+ return(pYData[nValues - 1]);
+ }
+ else if(index < 0)
+ {
+ return(pYData[0]);
+ }
+ else
+ {
+
+ /* 20 bits for the fractional part */
+ /* shift left by 11 to keep fract in 1.31 format */
+ fract = (x & 0x000FFFFF) << 11;
+
+ /* Read two nearest output values from the index in 1.31(q31) format */
+ y0 = pYData[index];
+ y1 = pYData[index + 1u];
+
+ /* Calculation of y0 * (1-fract) and y is in 2.30 format */
+ y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
+
+ /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
+ y += ((q31_t) (((q63_t) y1 * fract) >> 32));
+
+ /* Convert y to 1.31 format */
+ return (y << 1u);
+
+ }
+
+ }
+
+ /**
+ *
+ * @brief Process function for the Q15 Linear Interpolation Function.
+ * @param[in] *pYData pointer to Q15 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ *
+ */
+
+
+ static __INLINE q15_t arm_linear_interp_q15(q15_t *pYData, q31_t x, uint32_t nValues)
+ {
+ q63_t y; /* output */
+ q15_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & 0xFFF00000) >> 20u);
+
+ if(index >= (nValues - 1))
+ {
+ return(pYData[nValues - 1]);
+ }
+ else if(index < 0)
+ {
+ return(pYData[0]);
+ }
+ else
+ {
+ /* 20 bits for the fractional part */
+ /* fract is in 12.20 format */
+ fract = (x & 0x000FFFFF);
+
+ /* Read two nearest output values from the index */
+ y0 = pYData[index];
+ y1 = pYData[index + 1u];
+
+ /* Calculation of y0 * (1-fract) and y is in 13.35 format */
+ y = ((q63_t) y0 * (0xFFFFF - fract));
+
+ /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
+ y += ((q63_t) y1 * (fract));
+
+ /* convert y to 1.15 format */
+ return (y >> 20);
+ }
+
+
+ }
+
+ /**
+ *
+ * @brief Process function for the Q7 Linear Interpolation Function.
+ * @param[in] *pYData pointer to Q7 Linear Interpolation table
+ * @param[in] x input sample to process
+ * @param[in] nValues number of table values
+ * @return y processed output sample.
+ *
+ * \par
+ * Input sample x is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
+ * This function can support maximum of table size 2^12.
+ */
+
+
+ static __INLINE q7_t arm_linear_interp_q7(q7_t *pYData, q31_t x, uint32_t nValues)
+ {
+ q31_t y; /* output */
+ q7_t y0, y1; /* Nearest output values */
+ q31_t fract; /* fractional part */
+ int32_t index; /* Index to read nearest output values */
+
+ /* Input is in 12.20 format */
+ /* 12 bits for the table index */
+ /* Index value calculation */
+ index = ((x & 0xFFF00000) >> 20u);
+
+
+ if(index >= (nValues - 1))
+ {
+ return(pYData[nValues - 1]);
+ }
+ else if(index < 0)
+ {
+ return(pYData[0]);
+ }
+ else
+ {
+
+ /* 20 bits for the fractional part */
+ /* fract is in 12.20 format */
+ fract = (x & 0x000FFFFF);
+
+ /* Read two nearest output values from the index and are in 1.7(q7) format */
+ y0 = pYData[index];
+ y1 = pYData[index + 1u];
+
+ /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
+ y = ((y0 * (0xFFFFF - fract)));
+
+ /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
+ y += (y1 * fract);
+
+ /* convert y to 1.7(q7) format */
+ return (y >> 20u);
+
+ }
+
+ }
+ /**
+ * @} end of LinearInterpolate group
+ */
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return sin(x).
+ */
+
+ float32_t arm_sin_f32(
+ float32_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+
+ q31_t arm_sin_q31(
+ q31_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric sine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return sin(x).
+ */
+
+ q15_t arm_sin_q15(
+ q15_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for floating-point data.
+ * @param[in] x input value in radians.
+ * @return cos(x).
+ */
+
+ float32_t arm_cos_f32(
+ float32_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q31 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+
+ q31_t arm_cos_q31(
+ q31_t x);
+
+ /**
+ * @brief Fast approximation to the trigonometric cosine function for Q15 data.
+ * @param[in] x Scaled input value in radians.
+ * @return cos(x).
+ */
+
+ q15_t arm_cos_q15(
+ q15_t x);
+
+
+ /**
+ * @ingroup groupFastMath
+ */
+
+
+ /**
+ * @defgroup SQRT Square Root
+ *
+ * Computes the square root of a number.
+ * There are separate functions for Q15, Q31, and floating-point data types.
+ * The square root function is computed using the Newton-Raphson algorithm.
+ * This is an iterative algorithm of the form:
+ *
+ * x1 = x0 - f(x0)/f'(x0)
+ *
+ * where x1 is the current estimate,
+ * x0 is the previous estimate and
+ * f'(x0) is the derivative of f() evaluated at x0.
+ * For the square root function, the algorithm reduces to:
+ *
+ *
+ * \par
+ * where numRows specifies the number of rows in the table;
+ * numCols specifies the number of columns in the table;
+ * and pData points to an array of size numRows*numCols values.
+ * The data table pTable is organized in row order and the supplied data values fall on integer indexes.
+ * That is, table element (x,y) is located at pTable[x + y*numCols] where x and y are integers.
+ *
+ * \par
+ * Let (x, y) specify the desired interpolation point. Then define:
+ *
+ * XF = floor(x)
+ * YF = floor(y)
+ *
+ * \par
+ * The interpolated output point is computed as:
+ *